forked from OSchip/llvm-project
[mlir][tensor][bufferize] Fix deallocation of GenerateOp/FromElementsOp
Both ops allocate a buffer. There were cases in which the buffer was not deallocated. Differential Revision: https://reviews.llvm.org/D130469
This commit is contained in:
parent
333ee218ce
commit
664ffa46bb
|
@ -511,6 +511,12 @@ OpTy replaceOpWithNewBufferizedOp(RewriterBase &rewriter, Operation *op,
|
|||
return newOp;
|
||||
}
|
||||
|
||||
/// Return `true` if the buffer of given OpResult should be deallocated. This
|
||||
/// function should be called during `BufferizableOpInterface::bufferize`
|
||||
/// implementations that allocate a new buffer for the given OpResult.
|
||||
bool shouldDeallocateOpResult(OpResult opResult,
|
||||
const BufferizationOptions &options);
|
||||
|
||||
/// Return a MemRefType to which the type of the given value can be bufferized.
|
||||
///
|
||||
/// If possible, op bufferization implementations should not use this function
|
||||
|
|
|
@ -206,6 +206,29 @@ LogicalResult BufferizableOpInterface::resolveTensorOpOperandConflicts(
|
|||
return success();
|
||||
}
|
||||
|
||||
bool bufferization::shouldDeallocateOpResult(
|
||||
OpResult opResult, const BufferizationOptions &options) {
|
||||
Operation *op = opResult.getOwner();
|
||||
assert(options.dynCastBufferizableOp(op).bufferizesToAllocation(opResult) &&
|
||||
"expected that op allocates");
|
||||
|
||||
AnalysisState analysisState(options);
|
||||
if (op->hasAttr(BufferizationDialect::kEscapeAttrName)) {
|
||||
// AllocTensorOp has one result.
|
||||
ArrayAttr escapeAttr =
|
||||
op->getAttr(BufferizationDialect::kEscapeAttrName).cast<ArrayAttr>();
|
||||
return !escapeAttr[0].cast<BoolAttr>().getValue();
|
||||
}
|
||||
|
||||
// No "escape" annotation found.
|
||||
if (options.createDeallocs) {
|
||||
// Perform an ad-hoc analysis.
|
||||
return !analysisState.isTensorYielded(opResult);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// OpFilter
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
|
|
@ -204,22 +204,8 @@ LogicalResult AllocTensorOp::bufferize(RewriterBase &rewriter,
|
|||
}
|
||||
|
||||
// Should the buffer be deallocated?
|
||||
AnalysisState analysisState(options);
|
||||
bool dealloc;
|
||||
if (op->hasAttr(BufferizationDialect::kEscapeAttrName)) {
|
||||
// AllocTensorOp has one result.
|
||||
ArrayAttr escapeAttr =
|
||||
op->getAttr(BufferizationDialect::kEscapeAttrName).cast<ArrayAttr>();
|
||||
dealloc = !escapeAttr[0].cast<BoolAttr>().getValue();
|
||||
} else {
|
||||
// No "escape" annotation found.
|
||||
if (options.createDeallocs) {
|
||||
// Perform an ad-hoc analysis.
|
||||
dealloc = !analysisState.isTensorYielded(getResult());
|
||||
} else {
|
||||
dealloc = false;
|
||||
}
|
||||
}
|
||||
bool dealloc =
|
||||
shouldDeallocateOpResult(getResult().cast<OpResult>(), options);
|
||||
|
||||
// Replace op.
|
||||
replaceOpWithBufferizedValues(rewriter, getOperation(), *alloc);
|
||||
|
|
|
@ -363,9 +363,17 @@ static void createStores(RewriterBase &rewriter, Location loc, int dim,
|
|||
struct FromElementsOpInterface
|
||||
: public BufferizableOpInterface::ExternalModel<FromElementsOpInterface,
|
||||
tensor::FromElementsOp> {
|
||||
|
||||
bool bufferizesToAllocation(Operation *op, OpResult opResult) const {
|
||||
return true;
|
||||
}
|
||||
|
||||
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
||||
const BufferizationOptions &options) const {
|
||||
auto fromElementsOp = cast<tensor::FromElementsOp>(op);
|
||||
// Should the buffer be deallocated?
|
||||
bool dealloc = shouldDeallocateOpResult(
|
||||
fromElementsOp.getResult().cast<OpResult>(), options);
|
||||
|
||||
// TODO: Implement memory space for this op.
|
||||
if (options.defaultMemorySpace != static_cast<unsigned>(0))
|
||||
|
@ -376,11 +384,10 @@ struct FromElementsOpInterface
|
|||
auto tensorType = fromElementsOp.getType().cast<RankedTensorType>();
|
||||
auto shape = tensorType.getShape();
|
||||
// TODO: Create alloc_tensor ops during TensorCopyInsertion.
|
||||
AnalysisState analysisState(options);
|
||||
FailureOr<Value> tensorAlloc = allocateTensorForShapedValue(
|
||||
rewriter, loc, fromElementsOp.getResult(),
|
||||
analysisState.isTensorYielded(fromElementsOp.getResult()), options,
|
||||
/*copy=*/false);
|
||||
FailureOr<Value> tensorAlloc =
|
||||
allocateTensorForShapedValue(rewriter, loc, fromElementsOp.getResult(),
|
||||
/*escape=*/!dealloc, options,
|
||||
/*copy=*/false);
|
||||
if (failed(tensorAlloc))
|
||||
return failure();
|
||||
auto memrefType =
|
||||
|
@ -416,6 +423,7 @@ struct FromElementsOpInterface
|
|||
indices);
|
||||
|
||||
replaceOpWithBufferizedValues(rewriter, op, buffer);
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
@ -424,9 +432,17 @@ struct FromElementsOpInterface
|
|||
struct GenerateOpInterface
|
||||
: public BufferizableOpInterface::ExternalModel<GenerateOpInterface,
|
||||
tensor::GenerateOp> {
|
||||
|
||||
bool bufferizesToAllocation(Operation *op, OpResult opResult) const {
|
||||
return true;
|
||||
}
|
||||
|
||||
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
||||
const BufferizationOptions &options) const {
|
||||
auto generateOp = cast<tensor::GenerateOp>(op);
|
||||
// Should the buffer be deallocated?
|
||||
bool dealloc = shouldDeallocateOpResult(
|
||||
generateOp.getResult().cast<OpResult>(), options);
|
||||
|
||||
// TODO: Implement memory space for this op.
|
||||
if (options.defaultMemorySpace != static_cast<unsigned>(0))
|
||||
|
@ -436,11 +452,10 @@ struct GenerateOpInterface
|
|||
// Allocate memory.
|
||||
Location loc = op->getLoc();
|
||||
// TODO: Create alloc_tensor ops during TensorCopyInsertion.
|
||||
AnalysisState analysisState(options);
|
||||
FailureOr<Value> tensorAlloc = allocateTensorForShapedValue(
|
||||
rewriter, loc, generateOp.getResult(),
|
||||
analysisState.isTensorYielded(generateOp.getResult()), options,
|
||||
/*copy=*/false);
|
||||
FailureOr<Value> tensorAlloc =
|
||||
allocateTensorForShapedValue(rewriter, loc, generateOp.getResult(),
|
||||
/*escape=*/!dealloc, options,
|
||||
/*copy=*/false);
|
||||
if (failed(tensorAlloc))
|
||||
return failure();
|
||||
auto memrefType =
|
||||
|
@ -484,6 +499,7 @@ struct GenerateOpInterface
|
|||
parallelBody->getArguments());
|
||||
|
||||
replaceOpWithBufferizedValues(rewriter, op, buffer);
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
|
|
@ -217,3 +217,22 @@ func.func @rank_reducing_parallel_insert_slice(%in: tensor<100xf32>, %out: tenso
|
|||
// CHECK: }
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @dealloc_generate_buffer
|
||||
func.func @dealloc_generate_buffer(%arg: tensor<*xf32>, %sz: index, %idx: index)
|
||||
-> index
|
||||
{
|
||||
// CHECK: memref.alloc
|
||||
// CHECK: scf.parallel
|
||||
// CHECK: memref.load
|
||||
// CHECK: memref.dealloc
|
||||
%0 = tensor.generate %sz {
|
||||
^bb0(%i : index):
|
||||
%elem = tensor.dim %arg, %i : tensor<*xf32>
|
||||
tensor.yield %elem : index
|
||||
} : tensor<?xindex>
|
||||
%r = tensor.extract %0[%idx] : tensor<?xindex>
|
||||
return %r : index
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue