forked from OSchip/llvm-project
[LV] Using VPlan to model the vectorized code and drive its transformation
VPlan is an ongoing effort to refactor and extend the Loop Vectorizer. This patch introduces the VPlan model into LV and uses it to represent the vectorized code and drive the generation of vectorized IR. In this patch VPlan models the vectorized loop body: the vectorized control-flow is represented using VPlan's Hierarchical CFG, with predication refactored from being a post-vectorization-step into a vectorization planning step modeling if-then VPRegionBlocks, and generating code inline with non-predicated code. The vectorized code within each VPBasicBlock is represented as a sequence of Recipes, each responsible for modelling and generating a sequence of IR instructions. To keep the size of this commit manageable the Recipes in this patch are coarse-grained and capture large chunks of LV's code-generation logic. The constructed VPlans are dumped in dot format under -debug. This commit retains current vectorizer output, except for minor instruction reorderings; see associated modifications to lit tests. For further details on the VPlan model see docs/Proposals/VectorizationPlan.rst and its references. Authors: Gil Rapaport and Ayal Zaks Differential Revision: https://reviews.llvm.org/D32871 llvm-svn: 311077
This commit is contained in:
parent
edd0784be6
commit
6627883369
|
@ -3,6 +3,7 @@ add_llvm_library(LLVMVectorize
|
|||
LoopVectorize.cpp
|
||||
SLPVectorizer.cpp
|
||||
Vectorize.cpp
|
||||
VPlan.cpp
|
||||
|
||||
ADDITIONAL_HEADER_DIRS
|
||||
${LLVM_MAIN_INCLUDE_DIR}/llvm/Transforms
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,401 @@
|
|||
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
///
|
||||
/// \file
|
||||
/// This is the LLVM vectorization plan. It represents a candidate for
|
||||
/// vectorization, allowing to plan and optimize how to vectorize a given loop
|
||||
/// before generating LLVM-IR.
|
||||
/// The vectorizer uses vectorization plans to estimate the costs of potential
|
||||
/// candidates and if profitable to execute the desired plan, generating vector
|
||||
/// LLVM-IR code.
|
||||
///
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "VPlan.h"
|
||||
#include "llvm/ADT/PostOrderIterator.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/Support/GraphWriter.h"
|
||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "vplan"
|
||||
|
||||
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
|
||||
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
|
||||
const VPBlockBase *Block = this;
|
||||
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
||||
Block = Region->getEntry();
|
||||
return cast<VPBasicBlock>(Block);
|
||||
}
|
||||
|
||||
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
|
||||
VPBlockBase *Block = this;
|
||||
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
||||
Block = Region->getEntry();
|
||||
return cast<VPBasicBlock>(Block);
|
||||
}
|
||||
|
||||
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
|
||||
const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
|
||||
const VPBlockBase *Block = this;
|
||||
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
||||
Block = Region->getExit();
|
||||
return cast<VPBasicBlock>(Block);
|
||||
}
|
||||
|
||||
VPBasicBlock *VPBlockBase::getExitBasicBlock() {
|
||||
VPBlockBase *Block = this;
|
||||
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
||||
Block = Region->getExit();
|
||||
return cast<VPBasicBlock>(Block);
|
||||
}
|
||||
|
||||
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
|
||||
if (!Successors.empty() || !Parent)
|
||||
return this;
|
||||
assert(Parent->getExit() == this &&
|
||||
"Block w/o successors not the exit of its parent.");
|
||||
return Parent->getEnclosingBlockWithSuccessors();
|
||||
}
|
||||
|
||||
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
|
||||
if (!Predecessors.empty() || !Parent)
|
||||
return this;
|
||||
assert(Parent->getEntry() == this &&
|
||||
"Block w/o predecessors not the entry of its parent.");
|
||||
return Parent->getEnclosingBlockWithPredecessors();
|
||||
}
|
||||
|
||||
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
|
||||
SmallVector<VPBlockBase *, 8> Blocks;
|
||||
for (VPBlockBase *Block : depth_first(Entry))
|
||||
Blocks.push_back(Block);
|
||||
|
||||
for (VPBlockBase *Block : Blocks)
|
||||
delete Block;
|
||||
}
|
||||
|
||||
BasicBlock *
|
||||
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
|
||||
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
|
||||
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
|
||||
BasicBlock *PrevBB = CFG.PrevBB;
|
||||
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
|
||||
PrevBB->getParent(), CFG.LastBB);
|
||||
DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
|
||||
|
||||
// Hook up the new basic block to its predecessors.
|
||||
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
|
||||
VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
|
||||
auto &PredVPSuccessors = PredVPBB->getSuccessors();
|
||||
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
|
||||
assert(PredBB && "Predecessor basic-block not found building successor.");
|
||||
auto *PredBBTerminator = PredBB->getTerminator();
|
||||
DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
|
||||
if (isa<UnreachableInst>(PredBBTerminator)) {
|
||||
assert(PredVPSuccessors.size() == 1 &&
|
||||
"Predecessor ending w/o branch must have single successor.");
|
||||
PredBBTerminator->eraseFromParent();
|
||||
BranchInst::Create(NewBB, PredBB);
|
||||
} else {
|
||||
assert(PredVPSuccessors.size() == 2 &&
|
||||
"Predecessor ending with branch must have two successors.");
|
||||
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
|
||||
assert(!PredBBTerminator->getSuccessor(idx) &&
|
||||
"Trying to reset an existing successor block.");
|
||||
PredBBTerminator->setSuccessor(idx, NewBB);
|
||||
}
|
||||
}
|
||||
return NewBB;
|
||||
}
|
||||
|
||||
void VPBasicBlock::execute(VPTransformState *State) {
|
||||
bool Replica = State->Instance &&
|
||||
!(State->Instance->Part == 0 && State->Instance->Lane == 0);
|
||||
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
|
||||
VPBlockBase *SingleHPred = nullptr;
|
||||
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
|
||||
|
||||
// 1. Create an IR basic block, or reuse the last one if possible.
|
||||
// The last IR basic block is reused, as an optimization, in three cases:
|
||||
// A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
|
||||
// B. when the current VPBB has a single (hierarchical) predecessor which
|
||||
// is PrevVPBB and the latter has a single (hierarchical) successor; and
|
||||
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
|
||||
// is the exit of this region from a previous instance, or the predecessor
|
||||
// of this region.
|
||||
if (PrevVPBB && /* A */
|
||||
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
|
||||
SingleHPred->getExitBasicBlock() == PrevVPBB &&
|
||||
PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
|
||||
!(Replica && getPredecessors().empty())) { /* C */
|
||||
|
||||
NewBB = createEmptyBasicBlock(State->CFG);
|
||||
State->Builder.SetInsertPoint(NewBB);
|
||||
// Temporarily terminate with unreachable until CFG is rewired.
|
||||
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
|
||||
State->Builder.SetInsertPoint(Terminator);
|
||||
// Register NewBB in its loop. In innermost loops its the same for all BB's.
|
||||
Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
|
||||
L->addBasicBlockToLoop(NewBB, *State->LI);
|
||||
State->CFG.PrevBB = NewBB;
|
||||
}
|
||||
|
||||
// 2. Fill the IR basic block with IR instructions.
|
||||
DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
|
||||
<< " in BB:" << NewBB->getName() << '\n');
|
||||
|
||||
State->CFG.VPBB2IRBB[this] = NewBB;
|
||||
State->CFG.PrevVPBB = this;
|
||||
|
||||
for (VPRecipeBase &Recipe : Recipes)
|
||||
Recipe.execute(*State);
|
||||
|
||||
DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
|
||||
}
|
||||
|
||||
void VPRegionBlock::execute(VPTransformState *State) {
|
||||
ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
|
||||
|
||||
if (!isReplicator()) {
|
||||
// Visit the VPBlocks connected to "this", starting from it.
|
||||
for (VPBlockBase *Block : RPOT) {
|
||||
DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
||||
Block->execute(State);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
assert(!State->Instance && "Replicating a Region with non-null instance.");
|
||||
|
||||
// Enter replicating mode.
|
||||
State->Instance = {0, 0};
|
||||
|
||||
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
|
||||
State->Instance->Part = Part;
|
||||
for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
|
||||
State->Instance->Lane = Lane;
|
||||
// Visit the VPBlocks connected to \p this, starting from it.
|
||||
for (VPBlockBase *Block : RPOT) {
|
||||
DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
||||
Block->execute(State);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Exit replicating mode.
|
||||
State->Instance.reset();
|
||||
}
|
||||
|
||||
/// Generate the code inside the body of the vectorized loop. Assumes a single
|
||||
/// LoopVectorBody basic-block was created for this. Introduce additional
|
||||
/// basic-blocks as needed, and fill them all.
|
||||
void VPlan::execute(VPTransformState *State) {
|
||||
BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
|
||||
BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
|
||||
assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
|
||||
BasicBlock *VectorLatchBB = VectorHeaderBB;
|
||||
|
||||
// 1. Make room to generate basic-blocks inside loop body if needed.
|
||||
VectorLatchBB = VectorHeaderBB->splitBasicBlock(
|
||||
VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
|
||||
Loop *L = State->LI->getLoopFor(VectorHeaderBB);
|
||||
L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
|
||||
// Remove the edge between Header and Latch to allow other connections.
|
||||
// Temporarily terminate with unreachable until CFG is rewired.
|
||||
// Note: this asserts the generated code's assumption that
|
||||
// getFirstInsertionPt() can be dereferenced into an Instruction.
|
||||
VectorHeaderBB->getTerminator()->eraseFromParent();
|
||||
State->Builder.SetInsertPoint(VectorHeaderBB);
|
||||
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
|
||||
State->Builder.SetInsertPoint(Terminator);
|
||||
|
||||
// 2. Generate code in loop body.
|
||||
State->CFG.PrevVPBB = nullptr;
|
||||
State->CFG.PrevBB = VectorHeaderBB;
|
||||
State->CFG.LastBB = VectorLatchBB;
|
||||
|
||||
for (VPBlockBase *Block : depth_first(Entry))
|
||||
Block->execute(State);
|
||||
|
||||
// 3. Merge the temporary latch created with the last basic-block filled.
|
||||
BasicBlock *LastBB = State->CFG.PrevBB;
|
||||
// Connect LastBB to VectorLatchBB to facilitate their merge.
|
||||
assert(isa<UnreachableInst>(LastBB->getTerminator()) &&
|
||||
"Expected VPlan CFG to terminate with unreachable");
|
||||
LastBB->getTerminator()->eraseFromParent();
|
||||
BranchInst::Create(VectorLatchBB, LastBB);
|
||||
|
||||
// Merge LastBB with Latch.
|
||||
bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
|
||||
(void)Merged;
|
||||
assert(Merged && "Could not merge last basic block with latch.");
|
||||
VectorLatchBB = LastBB;
|
||||
|
||||
updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
|
||||
}
|
||||
|
||||
void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
|
||||
BasicBlock *LoopLatchBB) {
|
||||
BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
|
||||
assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
|
||||
DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
|
||||
// The vector body may be more than a single basic-block by this point.
|
||||
// Update the dominator tree information inside the vector body by propagating
|
||||
// it from header to latch, expecting only triangular control-flow, if any.
|
||||
BasicBlock *PostDomSucc = nullptr;
|
||||
for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
|
||||
// Get the list of successors of this block.
|
||||
std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
|
||||
assert(Succs.size() <= 2 &&
|
||||
"Basic block in vector loop has more than 2 successors.");
|
||||
PostDomSucc = Succs[0];
|
||||
if (Succs.size() == 1) {
|
||||
assert(PostDomSucc->getSinglePredecessor() &&
|
||||
"PostDom successor has more than one predecessor.");
|
||||
DT->addNewBlock(PostDomSucc, BB);
|
||||
continue;
|
||||
}
|
||||
BasicBlock *InterimSucc = Succs[1];
|
||||
if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
|
||||
PostDomSucc = Succs[1];
|
||||
InterimSucc = Succs[0];
|
||||
}
|
||||
assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
|
||||
"One successor of a basic block does not lead to the other.");
|
||||
assert(InterimSucc->getSinglePredecessor() &&
|
||||
"Interim successor has more than one predecessor.");
|
||||
assert(std::distance(pred_begin(PostDomSucc), pred_end(PostDomSucc)) == 2 &&
|
||||
"PostDom successor has more than two predecessors.");
|
||||
DT->addNewBlock(InterimSucc, BB);
|
||||
DT->addNewBlock(PostDomSucc, BB);
|
||||
}
|
||||
}
|
||||
|
||||
const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
|
||||
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
|
||||
Twine(getOrCreateBID(Block));
|
||||
}
|
||||
|
||||
const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
|
||||
const std::string &Name = Block->getName();
|
||||
if (!Name.empty())
|
||||
return Name;
|
||||
return "VPB" + Twine(getOrCreateBID(Block));
|
||||
}
|
||||
|
||||
void VPlanPrinter::dump() {
|
||||
Depth = 1;
|
||||
bumpIndent(0);
|
||||
OS << "digraph VPlan {\n";
|
||||
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
|
||||
if (!Plan.getName().empty())
|
||||
OS << "\\n" << DOT::EscapeString(Plan.getName());
|
||||
OS << "\"]\n";
|
||||
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
|
||||
OS << "edge [fontname=Courier, fontsize=30]\n";
|
||||
OS << "compound=true\n";
|
||||
|
||||
for (VPBlockBase *Block : depth_first(Plan.getEntry()))
|
||||
dumpBlock(Block);
|
||||
|
||||
OS << "}\n";
|
||||
}
|
||||
|
||||
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
|
||||
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
|
||||
dumpBasicBlock(BasicBlock);
|
||||
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
||||
dumpRegion(Region);
|
||||
else
|
||||
llvm_unreachable("Unsupported kind of VPBlock.");
|
||||
}
|
||||
|
||||
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
|
||||
bool Hidden, const Twine &Label) {
|
||||
// Due to "dot" we print an edge between two regions as an edge between the
|
||||
// exit basic block and the entry basic of the respective regions.
|
||||
const VPBlockBase *Tail = From->getExitBasicBlock();
|
||||
const VPBlockBase *Head = To->getEntryBasicBlock();
|
||||
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
|
||||
OS << " [ label=\"" << Label << '\"';
|
||||
if (Tail != From)
|
||||
OS << " ltail=" << getUID(From);
|
||||
if (Head != To)
|
||||
OS << " lhead=" << getUID(To);
|
||||
if (Hidden)
|
||||
OS << "; splines=none";
|
||||
OS << "]\n";
|
||||
}
|
||||
|
||||
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
|
||||
auto &Successors = Block->getSuccessors();
|
||||
if (Successors.size() == 1)
|
||||
drawEdge(Block, Successors.front(), false, "");
|
||||
else if (Successors.size() == 2) {
|
||||
drawEdge(Block, Successors.front(), false, "T");
|
||||
drawEdge(Block, Successors.back(), false, "F");
|
||||
} else {
|
||||
unsigned SuccessorNumber = 0;
|
||||
for (auto *Successor : Successors)
|
||||
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
|
||||
}
|
||||
}
|
||||
|
||||
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
|
||||
OS << Indent << getUID(BasicBlock) << " [label =\n";
|
||||
bumpIndent(1);
|
||||
OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
|
||||
bumpIndent(1);
|
||||
for (const VPRecipeBase &Recipe : *BasicBlock)
|
||||
Recipe.print(OS, Indent);
|
||||
bumpIndent(-2);
|
||||
OS << "\n" << Indent << "]\n";
|
||||
dumpEdges(BasicBlock);
|
||||
}
|
||||
|
||||
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
|
||||
OS << Indent << "subgraph " << getUID(Region) << " {\n";
|
||||
bumpIndent(1);
|
||||
OS << Indent << "fontname=Courier\n"
|
||||
<< Indent << "label=\""
|
||||
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
|
||||
<< DOT::EscapeString(Region->getName()) << "\"\n";
|
||||
// Dump the blocks of the region.
|
||||
assert(Region->getEntry() && "Region contains no inner blocks.");
|
||||
for (const VPBlockBase *Block : depth_first(Region->getEntry()))
|
||||
dumpBlock(Block);
|
||||
bumpIndent(-1);
|
||||
OS << Indent << "}\n";
|
||||
dumpEdges(Region);
|
||||
}
|
||||
|
||||
void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
|
||||
std::string IngredientString;
|
||||
raw_string_ostream RSO(IngredientString);
|
||||
if (auto *Inst = dyn_cast<Instruction>(V)) {
|
||||
if (!Inst->getType()->isVoidTy()) {
|
||||
Inst->printAsOperand(RSO, false);
|
||||
RSO << " = ";
|
||||
}
|
||||
RSO << Inst->getOpcodeName() << " ";
|
||||
unsigned E = Inst->getNumOperands();
|
||||
if (E > 0) {
|
||||
Inst->getOperand(0)->printAsOperand(RSO, false);
|
||||
for (unsigned I = 1; I < E; ++I)
|
||||
Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
|
||||
}
|
||||
} else // !Inst
|
||||
V->printAsOperand(RSO, false);
|
||||
RSO.flush();
|
||||
O << DOT::EscapeString(IngredientString);
|
||||
}
|
|
@ -0,0 +1,789 @@
|
|||
//===- VPlan.h - Represent A Vectorizer Plan ------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
///
|
||||
/// \file
|
||||
/// This file contains the declarations of the Vectorization Plan base classes:
|
||||
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
|
||||
/// VPBlockBase, together implementing a Hierarchical CFG;
|
||||
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
|
||||
/// treated as proper graphs for generic algorithms;
|
||||
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
|
||||
/// within VPBasicBlocks;
|
||||
/// 4. The VPlan class holding a candidate for vectorization;
|
||||
/// 5. The VPlanPrinter class providing a way to print a plan in dot format.
|
||||
/// These are documented in docs/VectorizationPlan.rst.
|
||||
///
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
||||
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
||||
|
||||
#include "llvm/ADT/GraphTraits.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/ADT/ilist.h"
|
||||
#include "llvm/ADT/ilist_node.h"
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
// The (re)use of existing LoopVectorize classes is subject to future VPlan
|
||||
// refactoring.
|
||||
namespace {
|
||||
// Forward declarations.
|
||||
//class InnerLoopVectorizer;
|
||||
class LoopVectorizationLegality;
|
||||
class LoopVectorizationCostModel;
|
||||
} // namespace
|
||||
|
||||
namespace llvm {
|
||||
|
||||
// Forward declarations.
|
||||
class BasicBlock;
|
||||
class InnerLoopVectorizer;
|
||||
class VPBasicBlock;
|
||||
|
||||
/// In what follows, the term "input IR" refers to code that is fed into the
|
||||
/// vectorizer whereas the term "output IR" refers to code that is generated by
|
||||
/// the vectorizer.
|
||||
|
||||
/// VPIteration represents a single point in the iteration space of the output
|
||||
/// (vectorized and/or unrolled) IR loop.
|
||||
struct VPIteration {
|
||||
unsigned Part; ///< in [0..UF)
|
||||
unsigned Lane; ///< in [0..VF)
|
||||
};
|
||||
|
||||
/// This is a helper struct for maintaining vectorization state. It's used for
|
||||
/// mapping values from the original loop to their corresponding values in
|
||||
/// the new loop. Two mappings are maintained: one for vectorized values and
|
||||
/// one for scalarized values. Vectorized values are represented with UF
|
||||
/// vector values in the new loop, and scalarized values are represented with
|
||||
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
|
||||
/// vectorization factors, respectively.
|
||||
///
|
||||
/// Entries can be added to either map with setVectorValue and setScalarValue,
|
||||
/// which assert that an entry was not already added before. If an entry is to
|
||||
/// replace an existing one, call resetVectorValue and resetScalarValue. This is
|
||||
/// currently needed to modify the mapped values during "fix-up" operations that
|
||||
/// occur once the first phase of widening is complete. These operations include
|
||||
/// type truncation and the second phase of recurrence widening.
|
||||
///
|
||||
/// Entries from either map can be retrieved using the getVectorValue and
|
||||
/// getScalarValue functions, which assert that the desired value exists.
|
||||
|
||||
struct VectorizerValueMap {
|
||||
private:
|
||||
/// The unroll factor. Each entry in the vector map contains UF vector values.
|
||||
unsigned UF;
|
||||
|
||||
/// The vectorization factor. Each entry in the scalar map contains UF x VF
|
||||
/// scalar values.
|
||||
unsigned VF;
|
||||
|
||||
/// The vector and scalar map storage. We use std::map and not DenseMap
|
||||
/// because insertions to DenseMap invalidate its iterators.
|
||||
typedef SmallVector<Value *, 2> VectorParts;
|
||||
typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts;
|
||||
std::map<Value *, VectorParts> VectorMapStorage;
|
||||
std::map<Value *, ScalarParts> ScalarMapStorage;
|
||||
|
||||
public:
|
||||
/// Construct an empty map with the given unroll and vectorization factors.
|
||||
VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
|
||||
|
||||
/// \return True if the map has any vector entry for \p Key.
|
||||
bool hasAnyVectorValue(Value *Key) const {
|
||||
return VectorMapStorage.count(Key);
|
||||
}
|
||||
|
||||
/// \return True if the map has a vector entry for \p Key and \p Part.
|
||||
bool hasVectorValue(Value *Key, unsigned Part) const {
|
||||
assert(Part < UF && "Queried Vector Part is too large.");
|
||||
if (!hasAnyVectorValue(Key))
|
||||
return false;
|
||||
const VectorParts &Entry = VectorMapStorage.find(Key)->second;
|
||||
assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
|
||||
return Entry[Part] != nullptr;
|
||||
}
|
||||
|
||||
/// \return True if the map has any scalar entry for \p Key.
|
||||
bool hasAnyScalarValue(Value *Key) const {
|
||||
return ScalarMapStorage.count(Key);
|
||||
}
|
||||
|
||||
/// \return True if the map has a scalar entry for \p Key and \p Instance.
|
||||
bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
|
||||
assert(Instance.Part < UF && "Queried Scalar Part is too large.");
|
||||
assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
|
||||
if (!hasAnyScalarValue(Key))
|
||||
return false;
|
||||
const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
|
||||
assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
|
||||
assert(Entry[Instance.Part].size() == VF &&
|
||||
"ScalarParts has wrong dimensions.");
|
||||
return Entry[Instance.Part][Instance.Lane] != nullptr;
|
||||
}
|
||||
|
||||
/// Retrieve the existing vector value that corresponds to \p Key and
|
||||
/// \p Part.
|
||||
Value *getVectorValue(Value *Key, unsigned Part) {
|
||||
assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
|
||||
return VectorMapStorage[Key][Part];
|
||||
}
|
||||
|
||||
/// Retrieve the existing scalar value that corresponds to \p Key and
|
||||
/// \p Instance.
|
||||
Value *getScalarValue(Value *Key, const VPIteration &Instance) {
|
||||
assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
|
||||
return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
|
||||
}
|
||||
|
||||
/// Set a vector value associated with \p Key and \p Part. Assumes such a
|
||||
/// value is not already set. If it is, use resetVectorValue() instead.
|
||||
void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
|
||||
assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
|
||||
if (!VectorMapStorage.count(Key)) {
|
||||
VectorParts Entry(UF);
|
||||
VectorMapStorage[Key] = Entry;
|
||||
}
|
||||
VectorMapStorage[Key][Part] = Vector;
|
||||
}
|
||||
|
||||
/// Set a scalar value associated with \p Key and \p Instance. Assumes such a
|
||||
/// value is not already set.
|
||||
void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
|
||||
assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
|
||||
if (!ScalarMapStorage.count(Key)) {
|
||||
ScalarParts Entry(UF);
|
||||
// TODO: Consider storing uniform values only per-part, as they occupy
|
||||
// lane 0 only, keeping the other VF-1 redundant entries null.
|
||||
for (unsigned Part = 0; Part < UF; ++Part)
|
||||
Entry[Part].resize(VF, nullptr);
|
||||
ScalarMapStorage[Key] = Entry;
|
||||
}
|
||||
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
|
||||
}
|
||||
|
||||
/// Reset the vector value associated with \p Key for the given \p Part.
|
||||
/// This function can be used to update values that have already been
|
||||
/// vectorized. This is the case for "fix-up" operations including type
|
||||
/// truncation and the second phase of recurrence vectorization.
|
||||
void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
|
||||
assert(hasVectorValue(Key, Part) && "Vector value not set for part");
|
||||
VectorMapStorage[Key][Part] = Vector;
|
||||
}
|
||||
|
||||
/// Reset the scalar value associated with \p Key for \p Part and \p Lane.
|
||||
/// This function can be used to update values that have already been
|
||||
/// scalarized. This is the case for "fix-up" operations including scalar phi
|
||||
/// nodes for scalarized and predicated instructions.
|
||||
void resetScalarValue(Value *Key, const VPIteration &Instance,
|
||||
Value *Scalar) {
|
||||
assert(hasScalarValue(Key, Instance) &&
|
||||
"Scalar value not set for part and lane");
|
||||
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
|
||||
}
|
||||
};
|
||||
|
||||
/// VPTransformState holds information passed down when "executing" a VPlan,
|
||||
/// needed for generating the output IR.
|
||||
struct VPTransformState {
|
||||
|
||||
VPTransformState(unsigned VF, unsigned UF, class LoopInfo *LI,
|
||||
class DominatorTree *DT, IRBuilder<> &Builder,
|
||||
VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV)
|
||||
: VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
|
||||
ValueMap(ValueMap), ILV(ILV) {}
|
||||
|
||||
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
|
||||
unsigned VF;
|
||||
unsigned UF;
|
||||
|
||||
/// Hold the indices to generate specific scalar instructions. Null indicates
|
||||
/// that all instances are to be generated, using either scalar or vector
|
||||
/// instructions.
|
||||
Optional<VPIteration> Instance;
|
||||
|
||||
/// Hold state information used when constructing the CFG of the output IR,
|
||||
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
|
||||
struct CFGState {
|
||||
/// The previous VPBasicBlock visited. Initially set to null.
|
||||
VPBasicBlock *PrevVPBB;
|
||||
/// The previous IR BasicBlock created or used. Initially set to the new
|
||||
/// header BasicBlock.
|
||||
BasicBlock *PrevBB;
|
||||
/// The last IR BasicBlock in the output IR. Set to the new latch
|
||||
/// BasicBlock, used for placing the newly created BasicBlocks.
|
||||
BasicBlock *LastBB;
|
||||
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
|
||||
/// of replication, maps the BasicBlock of the last replica created.
|
||||
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
|
||||
|
||||
CFGState() : PrevVPBB(nullptr), PrevBB(nullptr), LastBB(nullptr) {}
|
||||
} CFG;
|
||||
|
||||
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
|
||||
class LoopInfo *LI;
|
||||
|
||||
/// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
|
||||
class DominatorTree *DT;
|
||||
|
||||
/// Hold a reference to the IRBuilder used to generate output IR code.
|
||||
IRBuilder<> &Builder;
|
||||
|
||||
/// Hold a reference to the Value state information used when generating the
|
||||
/// Values of the output IR.
|
||||
VectorizerValueMap &ValueMap;
|
||||
|
||||
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
|
||||
class InnerLoopVectorizer *ILV;
|
||||
};
|
||||
|
||||
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
|
||||
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
|
||||
class VPBlockBase {
|
||||
private:
|
||||
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
||||
|
||||
/// An optional name for the block.
|
||||
std::string Name;
|
||||
|
||||
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
|
||||
/// it is a topmost VPBlockBase.
|
||||
class VPRegionBlock *Parent;
|
||||
|
||||
/// List of predecessor blocks.
|
||||
SmallVector<VPBlockBase *, 1> Predecessors;
|
||||
|
||||
/// List of successor blocks.
|
||||
SmallVector<VPBlockBase *, 1> Successors;
|
||||
|
||||
/// Add \p Successor as the last successor to this block.
|
||||
void appendSuccessor(VPBlockBase *Successor) {
|
||||
assert(Successor && "Cannot add nullptr successor!");
|
||||
Successors.push_back(Successor);
|
||||
}
|
||||
|
||||
/// Add \p Predecessor as the last predecessor to this block.
|
||||
void appendPredecessor(VPBlockBase *Predecessor) {
|
||||
assert(Predecessor && "Cannot add nullptr predecessor!");
|
||||
Predecessors.push_back(Predecessor);
|
||||
}
|
||||
|
||||
/// Remove \p Predecessor from the predecessors of this block.
|
||||
void removePredecessor(VPBlockBase *Predecessor) {
|
||||
auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
|
||||
assert(Pos && "Predecessor does not exist");
|
||||
Predecessors.erase(Pos);
|
||||
}
|
||||
|
||||
/// Remove \p Successor from the successors of this block.
|
||||
void removeSuccessor(VPBlockBase *Successor) {
|
||||
auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
|
||||
assert(Pos && "Successor does not exist");
|
||||
Successors.erase(Pos);
|
||||
}
|
||||
|
||||
protected:
|
||||
VPBlockBase(const unsigned char SC, const std::string &N)
|
||||
: SubclassID(SC), Name(N), Parent(nullptr) {}
|
||||
|
||||
public:
|
||||
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
|
||||
/// that are actually instantiated. Values of this enumeration are kept in the
|
||||
/// SubclassID field of the VPBlockBase objects. They are used for concrete
|
||||
/// type identification.
|
||||
typedef enum { VPBasicBlockSC, VPRegionBlockSC } VPBlockTy;
|
||||
|
||||
typedef SmallVectorImpl<VPBlockBase *> VPBlocksTy;
|
||||
|
||||
virtual ~VPBlockBase() {}
|
||||
|
||||
const std::string &getName() const { return Name; }
|
||||
|
||||
void setName(const Twine &newName) { Name = newName.str(); }
|
||||
|
||||
/// \return an ID for the concrete type of this object.
|
||||
/// This is used to implement the classof checks. This should not be used
|
||||
/// for any other purpose, as the values may change as LLVM evolves.
|
||||
unsigned getVPBlockID() const { return SubclassID; }
|
||||
|
||||
const VPRegionBlock *getParent() const { return Parent; }
|
||||
|
||||
void setParent(VPRegionBlock *P) { Parent = P; }
|
||||
|
||||
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
|
||||
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
||||
/// VPBlockBase is a VPBasicBlock, it is returned.
|
||||
const VPBasicBlock *getEntryBasicBlock() const;
|
||||
VPBasicBlock *getEntryBasicBlock();
|
||||
|
||||
/// \return the VPBasicBlock that is the exit of this VPBlockBase,
|
||||
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
||||
/// VPBlockBase is a VPBasicBlock, it is returned.
|
||||
const VPBasicBlock *getExitBasicBlock() const;
|
||||
VPBasicBlock *getExitBasicBlock();
|
||||
|
||||
const VPBlocksTy &getSuccessors() const { return Successors; }
|
||||
VPBlocksTy &getSuccessors() { return Successors; }
|
||||
|
||||
const VPBlocksTy &getPredecessors() const { return Predecessors; }
|
||||
VPBlocksTy &getPredecessors() { return Predecessors; }
|
||||
|
||||
/// \return the successor of this VPBlockBase if it has a single successor.
|
||||
/// Otherwise return a null pointer.
|
||||
VPBlockBase *getSingleSuccessor() const {
|
||||
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
|
||||
}
|
||||
|
||||
/// \return the predecessor of this VPBlockBase if it has a single
|
||||
/// predecessor. Otherwise return a null pointer.
|
||||
VPBlockBase *getSinglePredecessor() const {
|
||||
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
|
||||
}
|
||||
|
||||
/// An Enclosing Block of a block B is any block containing B, including B
|
||||
/// itself. \return the closest enclosing block starting from "this", which
|
||||
/// has successors. \return the root enclosing block if all enclosing blocks
|
||||
/// have no successors.
|
||||
VPBlockBase *getEnclosingBlockWithSuccessors();
|
||||
|
||||
/// \return the closest enclosing block starting from "this", which has
|
||||
/// predecessors. \return the root enclosing block if all enclosing blocks
|
||||
/// have no predecessors.
|
||||
VPBlockBase *getEnclosingBlockWithPredecessors();
|
||||
|
||||
/// \return the successors either attached directly to this VPBlockBase or, if
|
||||
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
|
||||
/// successors of its own, search recursively for the first enclosing
|
||||
/// VPRegionBlock that has successors and return them. If no such
|
||||
/// VPRegionBlock exists, return the (empty) successors of the topmost
|
||||
/// VPBlockBase reached.
|
||||
const VPBlocksTy &getHierarchicalSuccessors() {
|
||||
return getEnclosingBlockWithSuccessors()->getSuccessors();
|
||||
}
|
||||
|
||||
/// \return the hierarchical successor of this VPBlockBase if it has a single
|
||||
/// hierarchical successor. Otherwise return a null pointer.
|
||||
VPBlockBase *getSingleHierarchicalSuccessor() {
|
||||
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
|
||||
}
|
||||
|
||||
/// \return the predecessors either attached directly to this VPBlockBase or,
|
||||
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
|
||||
/// predecessors of its own, search recursively for the first enclosing
|
||||
/// VPRegionBlock that has predecessors and return them. If no such
|
||||
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
|
||||
/// VPBlockBase reached.
|
||||
const VPBlocksTy &getHierarchicalPredecessors() {
|
||||
return getEnclosingBlockWithPredecessors()->getPredecessors();
|
||||
}
|
||||
|
||||
/// \return the hierarchical predecessor of this VPBlockBase if it has a
|
||||
/// single hierarchical predecessor. Otherwise return a null pointer.
|
||||
VPBlockBase *getSingleHierarchicalPredecessor() {
|
||||
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
|
||||
}
|
||||
|
||||
/// Sets a given VPBlockBase \p Successor as the single successor and \return
|
||||
/// \p Successor. The parent of this Block is copied to be the parent of
|
||||
/// \p Successor.
|
||||
VPBlockBase *setOneSuccessor(VPBlockBase *Successor) {
|
||||
assert(Successors.empty() && "Setting one successor when others exist.");
|
||||
appendSuccessor(Successor);
|
||||
Successor->appendPredecessor(this);
|
||||
Successor->Parent = Parent;
|
||||
return Successor;
|
||||
}
|
||||
|
||||
/// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two
|
||||
/// successors. The parent of this Block is copied to be the parent of both
|
||||
/// \p IfTrue and \p IfFalse.
|
||||
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
|
||||
assert(Successors.empty() && "Setting two successors when others exist.");
|
||||
appendSuccessor(IfTrue);
|
||||
appendSuccessor(IfFalse);
|
||||
IfTrue->appendPredecessor(this);
|
||||
IfFalse->appendPredecessor(this);
|
||||
IfTrue->Parent = Parent;
|
||||
IfFalse->Parent = Parent;
|
||||
}
|
||||
|
||||
void disconnectSuccessor(VPBlockBase *Successor) {
|
||||
assert(Successor && "Successor to disconnect is null.");
|
||||
removeSuccessor(Successor);
|
||||
Successor->removePredecessor(this);
|
||||
}
|
||||
|
||||
/// The method which generates the output IR that correspond to this
|
||||
/// VPBlockBase, thereby "executing" the VPlan.
|
||||
virtual void execute(struct VPTransformState *State) = 0;
|
||||
|
||||
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
|
||||
static void deleteCFG(VPBlockBase *Entry);
|
||||
};
|
||||
|
||||
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
|
||||
/// instructions.
|
||||
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
|
||||
friend VPBasicBlock;
|
||||
|
||||
private:
|
||||
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
||||
|
||||
/// Each VPRecipe belongs to a single VPBasicBlock.
|
||||
VPBasicBlock *Parent;
|
||||
|
||||
public:
|
||||
/// An enumeration for keeping track of the concrete subclass of VPRecipeBase
|
||||
/// that is actually instantiated. Values of this enumeration are kept in the
|
||||
/// SubclassID field of the VPRecipeBase objects. They are used for concrete
|
||||
/// type identification.
|
||||
typedef enum {
|
||||
VPBranchOnMaskSC,
|
||||
VPInterleaveSC,
|
||||
VPPredInstPHISC,
|
||||
VPReplicateSC,
|
||||
VPWidenIntOrFpInductionSC,
|
||||
VPWidenPHISC,
|
||||
VPWidenSC,
|
||||
} VPRecipeTy;
|
||||
|
||||
VPRecipeBase(const unsigned char SC) : SubclassID(SC), Parent(nullptr) {}
|
||||
|
||||
virtual ~VPRecipeBase() {}
|
||||
|
||||
/// \return an ID for the concrete type of this object.
|
||||
/// This is used to implement the classof checks. This should not be used
|
||||
/// for any other purpose, as the values may change as LLVM evolves.
|
||||
unsigned getVPRecipeID() const { return SubclassID; }
|
||||
|
||||
/// \return the VPBasicBlock which this VPRecipe belongs to.
|
||||
VPBasicBlock *getParent() { return Parent; }
|
||||
const VPBasicBlock *getParent() const { return Parent; }
|
||||
|
||||
/// The method which generates the output IR instructions that correspond to
|
||||
/// this VPRecipe, thereby "executing" the VPlan.
|
||||
virtual void execute(struct VPTransformState &State) = 0;
|
||||
|
||||
/// Each recipe prints itself.
|
||||
virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
|
||||
};
|
||||
|
||||
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
|
||||
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
|
||||
/// output IR instructions.
|
||||
class VPBasicBlock : public VPBlockBase {
|
||||
public:
|
||||
typedef iplist<VPRecipeBase> RecipeListTy;
|
||||
|
||||
private:
|
||||
/// The VPRecipes held in the order of output instructions to generate.
|
||||
RecipeListTy Recipes;
|
||||
|
||||
public:
|
||||
/// Instruction iterators...
|
||||
typedef RecipeListTy::iterator iterator;
|
||||
typedef RecipeListTy::const_iterator const_iterator;
|
||||
typedef RecipeListTy::reverse_iterator reverse_iterator;
|
||||
typedef RecipeListTy::const_reverse_iterator const_reverse_iterator;
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
/// Recipe iterator methods
|
||||
///
|
||||
inline iterator begin() { return Recipes.begin(); }
|
||||
inline const_iterator begin() const { return Recipes.begin(); }
|
||||
inline iterator end() { return Recipes.end(); }
|
||||
inline const_iterator end() const { return Recipes.end(); }
|
||||
|
||||
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
|
||||
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
|
||||
inline reverse_iterator rend() { return Recipes.rend(); }
|
||||
inline const_reverse_iterator rend() const { return Recipes.rend(); }
|
||||
|
||||
inline size_t size() const { return Recipes.size(); }
|
||||
inline bool empty() const { return Recipes.empty(); }
|
||||
inline const VPRecipeBase &front() const { return Recipes.front(); }
|
||||
inline VPRecipeBase &front() { return Recipes.front(); }
|
||||
inline const VPRecipeBase &back() const { return Recipes.back(); }
|
||||
inline VPRecipeBase &back() { return Recipes.back(); }
|
||||
|
||||
/// \brief Returns a pointer to a member of the recipe list.
|
||||
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
|
||||
return &VPBasicBlock::Recipes;
|
||||
}
|
||||
|
||||
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
|
||||
: VPBlockBase(VPBasicBlockSC, Name.str()) {
|
||||
if (Recipe)
|
||||
appendRecipe(Recipe);
|
||||
}
|
||||
|
||||
~VPBasicBlock() { Recipes.clear(); }
|
||||
|
||||
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
||||
static inline bool classof(const VPBlockBase *V) {
|
||||
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
|
||||
}
|
||||
|
||||
/// Augment the existing recipes of a VPBasicBlock with an additional
|
||||
/// \p Recipe as the last recipe.
|
||||
void appendRecipe(VPRecipeBase *Recipe) {
|
||||
assert(Recipe && "No recipe to append.");
|
||||
assert(!Recipe->Parent && "Recipe already in VPlan");
|
||||
Recipe->Parent = this;
|
||||
return Recipes.push_back(Recipe);
|
||||
}
|
||||
|
||||
/// The method which generates the output IR instructions that correspond to
|
||||
/// this VPBasicBlock, thereby "executing" the VPlan.
|
||||
void execute(struct VPTransformState *State) override;
|
||||
|
||||
private:
|
||||
/// Create an IR BasicBlock to hold the output instructions generated by this
|
||||
/// VPBasicBlock, and return it. Update the CFGState accordingly.
|
||||
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
|
||||
};
|
||||
|
||||
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
|
||||
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
|
||||
/// A VPRegionBlock may indicate that its contents are to be replicated several
|
||||
/// times. This is designed to support predicated scalarization, in which a
|
||||
/// scalar if-then code structure needs to be generated VF * UF times. Having
|
||||
/// this replication indicator helps to keep a single model for multiple
|
||||
/// candidate VF's. The actual replication takes place only once the desired VF
|
||||
/// and UF have been determined.
|
||||
class VPRegionBlock : public VPBlockBase {
|
||||
private:
|
||||
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
|
||||
VPBlockBase *Entry;
|
||||
|
||||
/// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
|
||||
VPBlockBase *Exit;
|
||||
|
||||
/// An indicator whether this region is to generate multiple replicated
|
||||
/// instances of output IR corresponding to its VPBlockBases.
|
||||
bool IsReplicator;
|
||||
|
||||
public:
|
||||
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
|
||||
const std::string &Name = "", bool IsReplicator = false)
|
||||
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
|
||||
IsReplicator(IsReplicator) {
|
||||
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
|
||||
assert(Exit->getSuccessors().empty() && "Exit block has successors.");
|
||||
Entry->setParent(this);
|
||||
Exit->setParent(this);
|
||||
}
|
||||
|
||||
~VPRegionBlock() {
|
||||
if (Entry)
|
||||
deleteCFG(Entry);
|
||||
}
|
||||
|
||||
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
||||
static inline bool classof(const VPBlockBase *V) {
|
||||
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
|
||||
}
|
||||
|
||||
const VPBlockBase *getEntry() const { return Entry; }
|
||||
VPBlockBase *getEntry() { return Entry; }
|
||||
|
||||
const VPBlockBase *getExit() const { return Exit; }
|
||||
VPBlockBase *getExit() { return Exit; }
|
||||
|
||||
/// An indicator whether this region is to generate multiple replicated
|
||||
/// instances of output IR corresponding to its VPBlockBases.
|
||||
bool isReplicator() const { return IsReplicator; }
|
||||
|
||||
/// The method which generates the output IR instructions that correspond to
|
||||
/// this VPRegionBlock, thereby "executing" the VPlan.
|
||||
void execute(struct VPTransformState *State) override;
|
||||
};
|
||||
|
||||
/// VPlan models a candidate for vectorization, encoding various decisions take
|
||||
/// to produce efficient output IR, including which branches, basic-blocks and
|
||||
/// output IR instructions to generate, and their cost. VPlan holds a
|
||||
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
|
||||
/// VPBlock.
|
||||
class VPlan {
|
||||
private:
|
||||
/// Hold the single entry to the Hierarchical CFG of the VPlan.
|
||||
VPBlockBase *Entry;
|
||||
|
||||
/// Holds the VFs applicable to this VPlan.
|
||||
SmallSet<unsigned, 2> VFs;
|
||||
|
||||
/// Holds the name of the VPlan, for printing.
|
||||
std::string Name;
|
||||
|
||||
public:
|
||||
VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
|
||||
|
||||
~VPlan() {
|
||||
if (Entry)
|
||||
VPBlockBase::deleteCFG(Entry);
|
||||
}
|
||||
|
||||
/// Generate the IR code for this VPlan.
|
||||
void execute(struct VPTransformState *State);
|
||||
|
||||
VPBlockBase *getEntry() { return Entry; }
|
||||
const VPBlockBase *getEntry() const { return Entry; }
|
||||
|
||||
VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
|
||||
|
||||
void addVF(unsigned VF) { VFs.insert(VF); }
|
||||
|
||||
bool hasVF(unsigned VF) { return VFs.count(VF); }
|
||||
|
||||
const std::string &getName() const { return Name; }
|
||||
|
||||
void setName(const Twine &newName) { Name = newName.str(); }
|
||||
|
||||
private:
|
||||
/// Add to the given dominator tree the header block and every new basic block
|
||||
/// that was created between it and the latch block, inclusive.
|
||||
static void updateDominatorTree(class DominatorTree *DT,
|
||||
BasicBlock *LoopPreHeaderBB,
|
||||
BasicBlock *LoopLatchBB);
|
||||
};
|
||||
|
||||
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
|
||||
/// indented and follows the dot format.
|
||||
class VPlanPrinter {
|
||||
friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
|
||||
friend inline raw_ostream &operator<<(raw_ostream &OS,
|
||||
const struct VPlanIngredient &I);
|
||||
|
||||
private:
|
||||
raw_ostream &OS;
|
||||
VPlan &Plan;
|
||||
unsigned Depth;
|
||||
unsigned TabWidth = 2;
|
||||
std::string Indent;
|
||||
|
||||
unsigned BID = 0;
|
||||
|
||||
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
|
||||
|
||||
/// Handle indentation.
|
||||
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
|
||||
|
||||
/// Print a given \p Block of the Plan.
|
||||
void dumpBlock(const VPBlockBase *Block);
|
||||
|
||||
/// Print the information related to the CFG edges going out of a given
|
||||
/// \p Block, followed by printing the successor blocks themselves.
|
||||
void dumpEdges(const VPBlockBase *Block);
|
||||
|
||||
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
|
||||
/// its successor blocks.
|
||||
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
|
||||
|
||||
/// Print a given \p Region of the Plan.
|
||||
void dumpRegion(const VPRegionBlock *Region);
|
||||
|
||||
unsigned getOrCreateBID(const VPBlockBase *Block) {
|
||||
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
|
||||
}
|
||||
|
||||
const Twine getOrCreateName(const VPBlockBase *Block);
|
||||
|
||||
const Twine getUID(const VPBlockBase *Block);
|
||||
|
||||
/// Print the information related to a CFG edge between two VPBlockBases.
|
||||
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
|
||||
const Twine &Label);
|
||||
|
||||
VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
|
||||
|
||||
void dump();
|
||||
|
||||
static void printAsIngredient(raw_ostream &O, Value *V);
|
||||
};
|
||||
|
||||
struct VPlanIngredient {
|
||||
Value *V;
|
||||
VPlanIngredient(Value *V) : V(V) {}
|
||||
};
|
||||
|
||||
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
|
||||
VPlanPrinter::printAsIngredient(OS, I.V);
|
||||
return OS;
|
||||
}
|
||||
|
||||
inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
|
||||
VPlanPrinter Printer(OS, Plan);
|
||||
Printer.dump();
|
||||
return OS;
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs //
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
|
||||
// graph of VPBlockBase nodes...
|
||||
|
||||
template <> struct GraphTraits<VPBlockBase *> {
|
||||
typedef VPBlockBase *NodeRef;
|
||||
typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
|
||||
|
||||
static NodeRef getEntryNode(NodeRef N) { return N; }
|
||||
|
||||
static inline ChildIteratorType child_begin(NodeRef N) {
|
||||
return N->getSuccessors().begin();
|
||||
}
|
||||
|
||||
static inline ChildIteratorType child_end(NodeRef N) {
|
||||
return N->getSuccessors().end();
|
||||
}
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<const VPBlockBase *> {
|
||||
typedef const VPBlockBase *NodeRef;
|
||||
typedef SmallVectorImpl<VPBlockBase *>::const_iterator ChildIteratorType;
|
||||
|
||||
static NodeRef getEntryNode(NodeRef N) { return N; }
|
||||
|
||||
static inline ChildIteratorType child_begin(NodeRef N) {
|
||||
return N->getSuccessors().begin();
|
||||
}
|
||||
|
||||
static inline ChildIteratorType child_end(NodeRef N) {
|
||||
return N->getSuccessors().end();
|
||||
}
|
||||
};
|
||||
|
||||
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
|
||||
// graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order
|
||||
// for a VPBlockBase is considered to be when traversing the predecessors of a
|
||||
// VPBlockBase instead of its successors.
|
||||
//
|
||||
|
||||
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
|
||||
typedef VPBlockBase *NodeRef;
|
||||
typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
|
||||
|
||||
static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) {
|
||||
return B;
|
||||
}
|
||||
|
||||
static inline ChildIteratorType child_begin(NodeRef N) {
|
||||
return N->getPredecessors().begin();
|
||||
}
|
||||
|
||||
static inline ChildIteratorType child_end(NodeRef N) {
|
||||
return N->getPredecessors().end();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace llvm
|
||||
|
||||
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
|
@ -26,9 +26,9 @@ target triple = "aarch64--linux-gnu"
|
|||
; CHECK-NEXT: br i1 [[TMP3]], label %[[PRED_UDIV_IF:.*]], label %[[PRED_UDIV_CONTINUE:.*]]
|
||||
; CHECK: [[PRED_UDIV_IF]]:
|
||||
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 0
|
||||
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 0
|
||||
; CHECK-NEXT: [[TMP6:%.*]] = add nsw i64 [[TMP5]], %x
|
||||
; CHECK-NEXT: [[TMP7:%.*]] = udiv i64 [[TMP4]], [[TMP6]]
|
||||
; CHECK-NEXT: [[TMP5:%.*]] = add nsw i64 [[TMP4]], %x
|
||||
; CHECK-NEXT: [[TMP6:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 0
|
||||
; CHECK-NEXT: [[TMP7:%.*]] = udiv i64 [[TMP6]], [[TMP5]]
|
||||
; CHECK-NEXT: [[TMP8:%.*]] = insertelement <2 x i64> undef, i64 [[TMP7]], i32 0
|
||||
; CHECK-NEXT: br label %[[PRED_UDIV_CONTINUE]]
|
||||
; CHECK: [[PRED_UDIV_CONTINUE]]:
|
||||
|
@ -37,9 +37,9 @@ target triple = "aarch64--linux-gnu"
|
|||
; CHECK-NEXT: br i1 [[TMP10]], label %[[PRED_UDIV_IF1:.*]], label %[[PRED_UDIV_CONTINUE2]]
|
||||
; CHECK: [[PRED_UDIV_IF1]]:
|
||||
; CHECK-NEXT: [[TMP11:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 1
|
||||
; CHECK-NEXT: [[TMP12:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 1
|
||||
; CHECK-NEXT: [[TMP13:%.*]] = add nsw i64 [[TMP12]], %x
|
||||
; CHECK-NEXT: [[TMP14:%.*]] = udiv i64 [[TMP11]], [[TMP13]]
|
||||
; CHECK-NEXT: [[TMP12:%.*]] = add nsw i64 [[TMP11]], %x
|
||||
; CHECK-NEXT: [[TMP13:%.*]] = extractelement <2 x i64> [[WIDE_LOAD]], i32 1
|
||||
; CHECK-NEXT: [[TMP14:%.*]] = udiv i64 [[TMP13]], [[TMP12]]
|
||||
; CHECK-NEXT: [[TMP15:%.*]] = insertelement <2 x i64> [[TMP9]], i64 [[TMP14]], i32 1
|
||||
; CHECK-NEXT: br label %[[PRED_UDIV_CONTINUE2]]
|
||||
; CHECK: [[PRED_UDIV_CONTINUE2]]:
|
||||
|
|
|
@ -18,8 +18,8 @@ target triple = "aarch64--linux-gnu"
|
|||
; Cost of udiv:
|
||||
; (udiv(2) + extractelement(6) + insertelement(3)) / 2 = 5
|
||||
;
|
||||
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
|
||||
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
|
||||
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
|
||||
;
|
||||
define i32 @predicated_udiv(i32* %a, i32* %b, i1 %c, i64 %n) {
|
||||
entry:
|
||||
|
@ -59,8 +59,8 @@ for.end:
|
|||
; Cost of store:
|
||||
; (store(4) + extractelement(3)) / 2 = 3
|
||||
;
|
||||
; CHECK: Found an estimated cost of 3 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4
|
||||
; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4
|
||||
; CHECK: Found an estimated cost of 3 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4
|
||||
;
|
||||
define void @predicated_store(i32* %a, i1 %c, i32 %x, i64 %n) {
|
||||
entry:
|
||||
|
@ -98,10 +98,10 @@ for.end:
|
|||
; Cost of udiv:
|
||||
; (udiv(2) + extractelement(3) + insertelement(3)) / 2 = 4
|
||||
;
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp3 = add nsw i32 %tmp2, %x
|
||||
; CHECK: Found an estimated cost of 4 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
|
||||
; CHECK: Scalarizing: %tmp3 = add nsw i32 %tmp2, %x
|
||||
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp3 = add nsw i32 %tmp2, %x
|
||||
; CHECK: Found an estimated cost of 4 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
|
||||
;
|
||||
define i32 @predicated_udiv_scalarized_operand(i32* %a, i1 %c, i32 %x, i64 %n) {
|
||||
entry:
|
||||
|
@ -143,10 +143,10 @@ for.end:
|
|||
; Cost of store:
|
||||
; store(4) / 2 = 2
|
||||
;
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp2 = add nsw i32 %tmp1, %x
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4
|
||||
; CHECK: Scalarizing: %tmp2 = add nsw i32 %tmp1, %x
|
||||
; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp2 = add nsw i32 %tmp1, %x
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4
|
||||
;
|
||||
define void @predicated_store_scalarized_operand(i32* %a, i1 %c, i32 %x, i64 %n) {
|
||||
entry:
|
||||
|
@ -192,16 +192,16 @@ for.end:
|
|||
; Cost of store:
|
||||
; store(4) / 2 = 2
|
||||
;
|
||||
; CHECK: Found an estimated cost of 1 for VF 2 For instruction: %tmp2 = add i32 %tmp1, %x
|
||||
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp3 = sdiv i32 %tmp1, %tmp2
|
||||
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp3, %tmp2
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp5 = sub i32 %tmp4, %x
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp5, i32* %tmp0, align 4
|
||||
; CHECK-NOT: Scalarizing: %tmp2 = add i32 %tmp1, %x
|
||||
; CHECK: Scalarizing and predicating: %tmp3 = sdiv i32 %tmp1, %tmp2
|
||||
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp3, %tmp2
|
||||
; CHECK: Scalarizing: %tmp5 = sub i32 %tmp4, %x
|
||||
; CHECK: Scalarizing and predicating: store i32 %tmp5, i32* %tmp0, align 4
|
||||
; CHECK: Found an estimated cost of 1 for VF 2 For instruction: %tmp2 = add i32 %tmp1, %x
|
||||
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp3 = sdiv i32 %tmp1, %tmp2
|
||||
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp3, %tmp2
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp5 = sub i32 %tmp4, %x
|
||||
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp5, i32* %tmp0, align 4
|
||||
;
|
||||
define void @predication_multi_context(i32* %a, i1 %c, i32 %x, i64 %n) {
|
||||
entry:
|
||||
|
|
|
@ -24,10 +24,10 @@ for.body:
|
|||
for.end:
|
||||
ret void
|
||||
|
||||
; CHECK: LV: Found an estimated cost of 4 for VF 4 For instruction: %tmp1 = load i32, i32* %tmp0, align 4
|
||||
; CHECK: LV: Found an estimated cost of 4 for VF 4 For instruction: store i32 %tmp2, i32* %tmp0, align 4
|
||||
|
||||
; CHECK: LV: Scalarizing: %tmp1 = load i32, i32* %tmp0, align 4
|
||||
; CHECK: LV: Scalarizing: store i32 %tmp2, i32* %tmp0, align 4
|
||||
|
||||
; CHECK: LV: Found an estimated cost of 4 for VF 4 For instruction: %tmp1 = load i32, i32* %tmp0, align 4
|
||||
; CHECK: LV: Found an estimated cost of 4 for VF 4 For instruction: store i32 %tmp2, i32* %tmp0, align 4
|
||||
}
|
||||
|
||||
|
|
|
@ -467,13 +467,6 @@ for.body:
|
|||
; SINK-AFTER: %[[VCONV:.+]] = sext <4 x i16> %[[VSHUF]] to <4 x i32>
|
||||
; SINK-AFTER: %[[VCONV3:.+]] = sext <4 x i16> %wide.load to <4 x i32>
|
||||
; SINK-AFTER: mul nsw <4 x i32> %[[VCONV3]], %[[VCONV]]
|
||||
; Check also that the sext sank after the load in the scalar loop.
|
||||
; SINK-AFTER: for.body
|
||||
; SINK-AFTER: %scalar.recur = phi i16 [ %scalar.recur.init, %scalar.ph ], [ %[[LOAD:.+]], %for.body ]
|
||||
; SINK-AFTER: %[[LOAD]] = load i16, i16* %arrayidx2
|
||||
; SINK-AFTER: %[[CONV:.+]] = sext i16 %scalar.recur to i32
|
||||
; SINK-AFTER: %[[CONV3:.+]] = sext i16 %[[LOAD]] to i32
|
||||
; SINK-AFTER: %mul = mul nsw i32 %[[CONV3]], %[[CONV]]
|
||||
;
|
||||
define void @sink_after(i16* %a, i32* %b, i64 %n) {
|
||||
entry:
|
||||
|
|
|
@ -209,9 +209,9 @@ entry:
|
|||
; CHECK: br i1 {{.*}}, label %[[IF0:.+]], label %[[CONT0:.+]]
|
||||
; CHECK: [[IF0]]:
|
||||
; CHECK: %[[T00:.+]] = extractelement <2 x i32> %wide.load, i32 0
|
||||
; CHECK: %[[T01:.+]] = extractelement <2 x i32> %wide.load, i32 0
|
||||
; CHECK: %[[T02:.+]] = add nsw i32 %[[T01]], %x
|
||||
; CHECK: %[[T03:.+]] = udiv i32 %[[T00]], %[[T02]]
|
||||
; CHECK: %[[T01:.+]] = add nsw i32 %[[T00]], %x
|
||||
; CHECK: %[[T02:.+]] = extractelement <2 x i32> %wide.load, i32 0
|
||||
; CHECK: %[[T03:.+]] = udiv i32 %[[T02]], %[[T01]]
|
||||
; CHECK: %[[T04:.+]] = insertelement <2 x i32> undef, i32 %[[T03]], i32 0
|
||||
; CHECK: br label %[[CONT0]]
|
||||
; CHECK: [[CONT0]]:
|
||||
|
@ -219,9 +219,9 @@ entry:
|
|||
; CHECK: br i1 {{.*}}, label %[[IF1:.+]], label %[[CONT1:.+]]
|
||||
; CHECK: [[IF1]]:
|
||||
; CHECK: %[[T06:.+]] = extractelement <2 x i32> %wide.load, i32 1
|
||||
; CHECK: %[[T07:.+]] = extractelement <2 x i32> %wide.load, i32 1
|
||||
; CHECK: %[[T08:.+]] = add nsw i32 %[[T07]], %x
|
||||
; CHECK: %[[T09:.+]] = udiv i32 %[[T06]], %[[T08]]
|
||||
; CHECK: %[[T07:.+]] = add nsw i32 %[[T06]], %x
|
||||
; CHECK: %[[T08:.+]] = extractelement <2 x i32> %wide.load, i32 1
|
||||
; CHECK: %[[T09:.+]] = udiv i32 %[[T08]], %[[T07]]
|
||||
; CHECK: %[[T10:.+]] = insertelement <2 x i32> %[[T05]], i32 %[[T09]], i32 1
|
||||
; CHECK: br label %[[CONT1]]
|
||||
; CHECK: [[CONT1]]:
|
||||
|
|
Loading…
Reference in New Issue