[flang] Testing framework, debugging of fixed-point code.

Original-commit: flang-compiler/f18@a8fb2d75a5
Reviewed-on: https://github.com/flang-compiler/f18/pull/101
Tree-same-pre-rewrite: false
This commit is contained in:
peter klausler 2018-05-30 16:08:42 -07:00
parent 5bc907602c
commit 66107803fd
8 changed files with 584 additions and 185 deletions

View File

@ -106,3 +106,4 @@ configure_file(
enable_testing()
add_test(NAME LZBC COMMAND leading-zero-bit-count-test)
add_test(NAME FixedPoint COMMAND fixed-point-test)

View File

@ -15,80 +15,104 @@
#ifndef FORTRAN_EVALUATE_FIXED_POINT_H_
#define FORTRAN_EVALUATE_FIXED_POINT_H_
// Emulates integers of a nearly arbitrary fixed size for use when the C++
// environment does not support it. The size must be some multiple of
// 32 bits. Signed and unsigned operations are distinct.
// Emulates integers of a arbitrary static size for use when the C++
// environment does not support it. Signed and unsigned operations are
// distinguished by member function interface; the data are typeless.
#include "leading-zero-bit-count.h"
#include <cinttypes>
#include <climits>
#include <cstddef>
namespace Fortran::evaluate {
enum class Ordering { Less, Equal, Greater };
static constexpr Ordering Reverse Ordering ordering) {
static constexpr Ordering Reverse(Ordering ordering) {
if (ordering == Ordering::Less) {
return Ordering::Greater;
}
if (ordering == Ordering::Greater) {
} else if (ordering == Ordering::Greater) {
return Ordering::Less;
} else {
return Ordering::Equal;
}
return Ordering::Equal;
}
typedef <int BITS>
// Implement an integer as an assembly of smaller (i.e., 32-bit) integers.
// These are stored in little-endian order. To facilitate exhaustive
// testing of what would otherwise be more rare edge cases, this template class
// may be configured to use other part types &/or partial fields in the
// parts.
template <int BITS, int PARTBITS=32,
typename PART = std::uint32_t, typename BIGPART = std::uint64_t>
class FixedPoint {
private:
using Part = std::uint32_t;
using BigPart = std::uint64_t;
public:
static constexpr int bits{BITS};
static constexpr int partBits{CHAR_BIT * sizeof(Part)};
static_assert(bits >= partBits);
static_assert(sizeof(BigPart) == 2 * partBits);
static constexpr int parts{bits / partBits};
static_assert(bits * partBits == parts); // no partial part
static constexpr int partBits{PARTBITS};
using Part = PART;
using BigPart = BIGPART;
static_assert(sizeof(BigPart) >= 2 * sizeof(Part));
private:
static constexpr int maxPartBits{CHAR_BIT * sizeof(Part)};
static_assert(partBits > 0 && partBits <= maxPartBits);
static constexpr int extraPartBits{maxPartBits - partBits};
static constexpr int parts{(bits + partBits - 1) / partBits};
static_assert(parts >= 1);
static constexpr int extraTopPartBits{extraPartBits + (parts * partBits) - bits};
static constexpr int topPartBits{maxPartBits - extraTopPartBits};
static_assert(topPartBits > 0 && topPartBits <= partBits);
static_assert((parts - 1) * partBits + topPartBits == bits);
static constexpr Part partMask{static_cast<Part>(~0) >> extraPartBits};
static constexpr Part topPartMask{static_cast<Part>(~0) >> extraTopPartBits};
public:
FixedPoint() = delete;
constexpr FixedPoint() {} // zero
constexpr FixedPoint(const FixedPoint &) = default;
constexpr FixedPoint(std::uint64_t n) {
for (int j{0}; j < parts; ++j) {
part_[j] = n;
for (int j{0}; j < parts - 1; ++j) {
part_[j] = n & partMask;
if constexpr (partBits < 64) {
n >>= partBits;
} else {
n = 0;
}
}
part_[parts - 1] = n & topPartMask;
}
constexpr FixedPoint(std::int64_t n) {
std::int64_t signExtension{-(n < 0) << partBits};
for (int j{0}; j < parts; ++j) {
part_[j] = n;
std::int64_t signExtension{-(n < 0)};
signExtension <<= partBits;
for (int j{0}; j < parts - 1; ++j) {
part_[j] = n & partMask;
if constexpr (partBits < 64) {
n = (n >> partBits) | signExtension;
} else {
n = signExtension;
}
}
part_[parts - 1] = n & topPartMask;
}
constexpr FixedPoint &operator=(const FixedPoint &) = default;
constexpr Ordering CompareToZeroUnsigned() const {
constexpr bool IsZero() const {
for (int j{0}; j < parts; ++j) {
if (part_[j] != 0) {
return Ordering::Greater;
return false;
}
}
return Ordering::Equal;
return true;
}
constexpr bool IsNegative() const {
return (part_[parts-1] >> (topPartBits - 1)) & 1;
}
constexpr Ordering CompareToZeroSigned() const {
if (IsNegative()) {
return Ordering::Less;
}
return CompareToZeroUnsigned();
return IsZero() ? Ordering::Equal : Ordering::Greater;
}
constexpr Ordering CompareUnsigned(const FixedPoint &y) const {
@ -104,56 +128,64 @@ public:
}
constexpr Ordering CompareSigned(const FixedPoint &y) const {
if (IsNegative()) {
if (!y.IsNegative()) {
return Ordering::Less;
}
return Reverse(CompareUnsigned(y));
} else if (y.IsNegative()) {
return Ordering::Greater;
} else {
return CompareUnsigned(y);
bool isNegative{IsNegative()};
if (isNegative != y.IsNegative()) {
return isNegative ? Ordering::Less : Ordering::Greater;
}
return CompareUnsigned(y);
}
constexpr int LeadingZeroBitCount() const {
for (int j{0}; j < parts; ++j) {
if (part_[j] != 0) {
return (j * partBits) + evaluate::LeadingZeroBitCount(part_[j]);
if (part_[parts-1] != 0) {
int lzbc{evaluate::LeadingZeroBitCount(part_[parts-1])};
return lzbc - extraTopPartBits;
}
int upperZeroes{topPartBits};
for (int j{1}; j < parts; ++j) {
if (Part p{part_[parts - 1 - j]}) {
int lzbc{evaluate::LeadingZeroBitCount(p)};
return upperZeroes + lzbc - extraPartBits;
}
upperZeroes += partBits;
}
return bits;
}
constexpr std::uint64_t ToUInt64() const {
std::uint64_t n{0};
int filled{0};
static constexpr int toFill{bits < 64 ? bits : 64};
for (int j{0}; filled < 64; ++j, filled += partBits) {
std::uint64_t n{part_[0]};
int filled{partBits};
for (int j{1}; filled < 64 && j < parts; ++j, filled += partBits) {
n |= part_[j] << filled;
}
return n;
}
constexpr std::int64_t ToInt64() const {
return static_cast<std::int64_t>(ToUInt64());
std::int64_t signExtended = ToUInt64();
if (bits < 64) {
signExtended |= -(signExtended >> (bits - 1)) << bits;
}
return signExtended;
}
constexpr void OnesComplement() {
for (int j{0}; j < parts; ++j) {
part_[j] = ~part_[j];
for (int j{0}; j + 1 < parts; ++j) {
part_[j] = ~part_[j] & partMask;
}
part_[parts-1] = ~part_[parts-1] & topPartMask;
}
// Returns true on overflow (i.e., negating the most negative number)
// Returns true on overflow (i.e., negating the most negative signed number)
constexpr bool TwosComplement() {
Part carry{1};
for (int j{0}; j < parts; ++j) {
for (int j{0}; j + 1 < parts; ++j) {
Part newCarry{part_[j] == 0 && carry};
part_[j] = ~part_[j] + carry;
part_[j] = (~part_[j] + carry) & partMask;
carry = newCarry;
}
return carry != IsNegative();
Part before{part_[parts-1]};
part_[parts-1] = (~before + carry) & topPartMask;
return before != 0 && part_[parts-1] == before;
}
constexpr void And(const FixedPoint &y) {
@ -176,25 +208,27 @@ public:
constexpr void ShiftLeft(int count) {
if (count < 0) {
ShiftRight(-count);
} else {
ShiftRightLogical(-count);
} else if (count > 0) {
int shiftParts{count / partBits};
int bitShift{count - partBits * shiftParts};
int j{parts-1};
if (bitShift == 0) {
for (; j >= shiftParts; --j) {
part_[j] = part_[j - shiftParts];
part_[j] = part_[j - shiftParts] & PartMask(j);
}
for (; j >= 0; --j) {
part_[j] = 0;
}
} else {
for (; j > shiftParts; --j) {
part_[j] = (part_[j - shiftParts] << bitShift) |
(part_[j - shiftParts - 1] >> (partBits - bitShift);
part_[j] = ((part_[j - shiftParts] << bitShift) |
(part_[j - shiftParts - 1] >> (partBits - bitShift))) &
PartMask(j);
}
if (j == shiftParts) {
part_[j--] = part_[0] << bitShift;
part_[j] = (part_[0] << bitShift) & PartMask(j);
--j;
}
for (; j >= 0; --j) {
part_[j] = 0;
@ -206,7 +240,7 @@ public:
constexpr void ShiftRightLogical(int count) { // i.e., unsigned
if (count < 0) {
ShiftLeft(-count);
} else {
} else if (count > 0) {
int shiftParts{count / partBits};
int bitShift{count - partBits * shiftParts};
int j{0};
@ -219,8 +253,9 @@ public:
}
} else {
for (; j + shiftParts + 1 < parts; ++j) {
part_[j] = (part_[j + shiftParts] >> bitShift) |
(part_[j + shiftParts + 1] << (partBits - bitShift);
part_[j] = ((part_[j + shiftParts] >> bitShift) |
(part_[j + shiftParts + 1] << (partBits - bitShift))) &
partMask;
}
if (j + shiftParts + 1 == parts) {
part_[j++] = part_[parts - 1] >> bitShift;
@ -233,27 +268,36 @@ public:
}
// Returns carry out.
constexpr bool AddUnsigned(const FixedPoint &y, bool carryIn{false}) {
constexpr bool AddUnsigned(const FixedPoint &y, bool carryIn = false) {
BigPart carry{carryIn};
for (int j{0}; j < parts; ++j) {
for (int j{0}; j + 1 < parts; ++j) {
carry += part_[j];
part_[j] = carry += y.part_[j];
carry >>= 32;
carry += y.part_[j];
part_[j] = carry & partMask;
carry >>= partBits;
}
return carry != 0;
carry += part_[parts-1];
carry += y.part_[parts-1];
part_[parts-1] = carry & topPartMask;
return carry > topPartMask;
}
// Returns true on overflow.
constexpr bool AddSigned(const FixedPoint &y) {
bool carry{AddUnsigned(y)};
return carry != IsNegative();
bool isNegative{IsNegative()};
bool sameSign{isNegative == y.IsNegative()};
AddUnsigned(y);
return sameSign && IsNegative() != isNegative;
}
// Returns true on overflow.
constexpr bool SubtractSigned(const FixedPoint &y) {
bool isNegative{IsNegative()};
bool sameSign{isNegative == y.IsNegative()};
FixedPoint minusy{y};
minusy.TwosComplement();
return AddSigned(minusy);
AddUnsigned(minusy);
return !sameSign && IsNegative() != isNegative;
}
// Overwrites *this with lower half of full product.
@ -263,10 +307,11 @@ public:
if (part_[j] != 0) {
for (int k{0}; k < parts; ++k) {
if (y.part_[k] != 0) {
BigPart x{part_[j]};
x *= y.part_[k];
BigPart xy{part_[j]};
xy *= y.part_[k];
for (int to{j+k}; xy != 0; ++to) {
product[to] = xy += product[to];
xy += product[to];
product[to] = xy & partMask;
xy >>= partBits;
}
}
@ -277,6 +322,11 @@ public:
part_[j] = product[j];
upper.part_[j] = product[j + parts];
}
if (topPartBits < partBits) {
upper.ShiftLeft(partBits - topPartBits);
upper.part_[0] |= part_[parts-1] >> topPartBits;
part_[parts-1] &= topPartMask;
}
}
// Overwrites *this with lower half of full product.
@ -301,53 +351,130 @@ public:
}
}
// Overwrites *this with quotient.
constexpr void DivideUnsigned(const FixedPoint &divisor, FixedPoint &remainder) {
// Overwrites *this with quotient. Returns true on division by zero.
constexpr bool DivideUnsigned(const FixedPoint &divisor, FixedPoint &remainder) {
remainder.Clear();
if (divisor.IsZero()) {
RightMask(bits);
return true;
}
FixedPoint top{*this};
*this = remainder = FixedPoint{0};
Clear();
int bitsDone{top.LeadingZeroBitCount()};
top.ShiftLeft(bitsDone);
for (; bitsDone < bits; ++bitsDone) {
remainder.AddUnsigned(remainder, top.AddUnsigned(top));
bool nextBit{remainder.CompareUnsigned(divisor) != Ordering::Less};
quotient.AddUnsigned(quotient, nextBit);
AddUnsigned(*this, nextBit);
if (nextBit) {
remainder.SubtractSigned(divisor);
}
}
return false;
}
// Overwrites *this with quotient. Returns true on overflow (viz.,
// the most negative value divided by -1) or division by zero.
// A nonzero remainder has the sign of the dividend, i.e., it is
// the MOD intrinsic (X-INT(X/Y)*Y), not MODULO.
constexpr bool DivideSigned(FixedPoint divisor, FixedPoint &remainder) {
bool negateQuotient{false}, negateRemainder{false};
if (IsNegative()) {
negateQuotient = negateRemainder = true;
TwosComplement();
}
bool dividendIsNegative{IsNegative()};
bool negateQuotient{dividendIsNegative};
Ordering divisorOrdering{divisor.CompareToZeroSigned()};
bool overflow{divisorOrdering == Ordering::Equal};
if (divisorOrdering == Ordering::Less) {
negateQuotient = !negateQuotient;
divisor.TwosComplement();
if (divisor.TwosComplement()) {
// divisor was (and is) the most negative number
if (CompareUnsigned(divisor) == Ordering::Equal) {
RightMask(1);
remainder.Clear();
return bits <= 1; // edge case: 1-bit signed numbers overflow on 1!
} else {
remainder = *this;
Clear();
return false;
}
}
} else if (divisorOrdering == Ordering::Equal) {
// division by zero
remainder.Clear();
if (dividendIsNegative) {
LeftMask(1); // most negative signed number
} else {
RightMask(bits - 1); // most positive signed number
}
return true;
}
if (dividendIsNegative) {
if (TwosComplement()) {
// Dividend was (and remains) the most negative number.
// See whether the original divisor was -1 (if so, it's 1 now).
if (divisorOrdering == Ordering::Less &&
divisor.CompareUnsigned(FixedPoint{std::uint64_t{1}}) == Ordering::Equal) {
// most negative number / -1 is the sole overflow case
remainder.Clear();
return true;
}
}
}
// Overflow is not possible, and both the dividend (*this) and divisor
// are now positive.
DivideUnsigned(divisor, remainder);
overflow |= IsNegative();
if (negateQuotient) {
TwosComplement();
}
if (negateRemainder) {
if (dividendIsNegative) {
remainder.TwosComplement();
}
return overflow;
return false;
}
// MASKR intrinsic
constexpr void RightMask(int places) {
int j{0};
for (; j + 1 < parts && places >= partBits; ++j, places -= partBits) {
part_[j] = partMask;
}
if (places > 0) {
if (j + 1 < parts) {
part_[j++] = partMask >> (partBits - places);
} else if (j + 1 == parts) {
if (places >= topPartBits) {
part_[j++] = topPartMask;
} else {
part_[j++] = topPartMask >> (topPartBits - places);
}
}
}
for (; j < parts; ++j) {
part_[j] = 0;
}
}
// MASKL intrinsic
constexpr void LeftMask(int places) {
if (places < 0) {
Clear();
} else if (places >= bits) {
RightMask(bits);
} else {
RightMask(bits - places);
OnesComplement();
}
}
private:
constexpr bool IsNegative() const {
return (part_[parts-1] >> (partBits - 1)) & 1;
static constexpr Part PartMask(int part) {
return part == parts-1 ? topPartMask : partMask;
}
Part part_[parts]; // little-endian order: [parts-1] is most significant
constexpr void Clear() {
for (int j{0}; j < parts; ++j) {
part_[j] = 0;
}
}
Part part_[parts]{}; // little-endian order: [parts-1] is most significant
};
} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_FIXED_POINT_H_

View File

@ -12,10 +12,24 @@
# See the License for the specific language governing permissions and
# limitations under the License.
add_library(FortranEvaluateTesting
testing.cc
)
add_executable(leading-zero-bit-count-test
leading-zero-bit-count.cc
leading-zero-bit-count-test.cc
)
target_link_libraries(leading-zero-bit-count-test
FortranEvaluate
FortranEvaluateTesting
)
add_executable(fixed-point-test
fixed-point-test.cc
)
target_link_libraries(fixed-point-test
FortranEvaluate
FortranEvaluateTesting
)

View File

@ -0,0 +1,184 @@
// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "../../lib/evaluate/fixed-point.h"
#include "testing.h"
#include <cstdio>
using Fortran::evaluate::Ordering;
using Fortran::evaluate::FixedPoint;
template<int BITS, typename FP = FixedPoint<BITS>>
void exhaustiveTesting() {
COMPARE(BITS, ==, FP::bits);
std::uint64_t maxUnsignedValue{(std::uint64_t{1} << BITS) - 1};
std::int64_t maxPositiveSignedValue{(std::int64_t{1} << (BITS - 1)) - 1};
std::int64_t mostNegativeSignedValue{-(std::int64_t{1} << (BITS-1))};
char desc[64];
std::snprintf(desc, sizeof desc, "BITS=%d, PARTBITS=%d, sizeof(Part)=%d", BITS, FP::partBits, static_cast<int>(sizeof(typename FP::Part)));
FP zero;
TEST(zero.IsZero())(desc);
for (std::uint64_t x{0}; x <= maxUnsignedValue; ++x) {
FP a{x};
COMPARE(x, ==, a.ToUInt64())(desc);
FP copy{a};
COMPARE(x, ==, copy.ToUInt64())(desc);
copy = a;
COMPARE(x, ==, copy.ToUInt64())(desc);
COMPARE(x==0, ==, a.IsZero())("%s, x=0x%llx", desc, x);
copy.OnesComplement();
COMPARE(x ^ maxUnsignedValue, ==, copy.ToUInt64())("%s, x=0x%llx", desc, x);
copy = a;
bool over{copy.TwosComplement()};
COMPARE(over, ==, x == std::uint64_t{1} << (BITS-1))("%s, x=0x%llx", desc, x);
COMPARE(-x & maxUnsignedValue, ==, copy.ToUInt64())("%s, x=0x%llx", desc, x);
int lzbc{a.LeadingZeroBitCount()};
COMPARE(lzbc, >=, 0)("%s, x=0x%llx", desc, x);
COMPARE(lzbc, <=, BITS)("%s, x=0x%llx", desc, x);
COMPARE(x==0, ==, lzbc == BITS)("%s, x=0x%llx, lzbc=%d", desc, x, lzbc);
std::uint64_t lzcheck{std::uint64_t{1} << (BITS - lzbc)};
COMPARE(x, <, lzcheck)("%s, x=0x%llx, lzbc=%d", desc, x, lzbc);
COMPARE(x + x + !x, >=, lzcheck)("%s, x=0x%llx, lzbc=%d", desc, x, lzbc);
Ordering ord{Ordering::Equal};
std::int64_t sx = x;
if (x + x > maxUnsignedValue) {
TEST(a.IsNegative())("%s, x=0x%llx", desc, x);
sx = x | (~std::uint64_t{0} << BITS);
TEST(sx < 0)("%s, x=0x%llx %lld", desc, x, sx);
ord = Ordering::Less;
} else {
TEST(!a.IsNegative())("%s, x=0x%llx", desc, x);
TEST(sx >= 0)("%s, x=0x%llx %lld", desc, x, sx);
if (sx > 0) {
ord = Ordering::Greater;
} else {
ord = Ordering::Equal;
}
}
TEST(sx == a.ToInt64())("%s, x=0x%llx %lld", desc, x, sx);
TEST(a.CompareToZeroSigned() == ord)("%s, x=0x%llx %lld", desc, x, sx);
for (int count{0}; count <= BITS + 1; ++count) {
copy = a;
copy.ShiftLeft(count);
COMPARE((x << count) & maxUnsignedValue, ==, copy.ToUInt64())("%s, x=0x%llx, count=%d", desc, x, count);
copy = a;
copy.ShiftRightLogical(count);
COMPARE(x >> count, ==, copy.ToUInt64())("%s, x=0x%llx, count=%d", desc, x, count);
copy = a;
copy.ShiftLeft(-count);
COMPARE(x >> count, ==, copy.ToUInt64())("%s, x=0x%llx, count=%d", desc, x, count);
copy = a;
copy.ShiftRightLogical(-count);
COMPARE((x << count) & maxUnsignedValue, ==, copy.ToUInt64())("%s, x=0x%llx, count=%d", desc, x, count);
}
for (std::uint64_t y{0}; y <= maxUnsignedValue; ++y) {
std::int64_t sy = y;
if (y + y > maxUnsignedValue) {
sy = y | (~std::uint64_t{0} << BITS);
}
FP b{y};
if (x < y) {
ord = Ordering::Less;
} else if (x > y) {
ord = Ordering::Greater;
} else {
ord = Ordering::Equal;
}
TEST(a.CompareUnsigned(b) == ord)("%s, x=0x%llx, y=0x%llx", desc, x, y);
if (sx < sy) {
ord = Ordering::Less;
} else if (sx > sy) {
ord = Ordering::Greater;
} else {
ord = Ordering::Equal;
}
TEST(a.CompareSigned(b) == ord)("%s, x=0x%llx %lld %d, y=0x%llx %lld %d", desc, x, sx, a.IsNegative(), y, sy, b.IsNegative());
copy = a;
copy.And(b);
COMPARE(x & y, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
copy = a;
copy.Or(b);
COMPARE(x | y, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
copy = a;
copy.Xor(b);
COMPARE(x ^ y, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
copy = a;
bool carry{copy.AddUnsigned(b)};
COMPARE(x + y, ==, copy.ToUInt64() + (std::uint64_t{carry} << BITS))("%s, x=0x%llx, y=0x%llx, carry=%d", desc, x, y, carry);
copy = a;
over = copy.AddSigned(b);
COMPARE((sx + sy) & maxUnsignedValue, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
COMPARE(over, ==, sx+sy < mostNegativeSignedValue || sx+sy > maxPositiveSignedValue)("%s, x=0x%llx, y=0x%llx", desc, x, y);
copy = a;
over = copy.SubtractSigned(b);
COMPARE((sx - sy) & maxUnsignedValue, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
COMPARE(over, ==, sx-sy < mostNegativeSignedValue || sx-sy > maxPositiveSignedValue)("%s, x=0x%llx, y=0x%llx", desc, x, y);
copy = a;
FP upper;
copy.MultiplyUnsigned(b, upper);
COMPARE(x * y, ==, (upper.ToUInt64() << BITS) ^ copy.ToUInt64())("%s, x=0x%llx, y=0x%llx, lower=0x%llx, upper=0x%llx", desc, x, y, copy.ToUInt64(), upper.ToUInt64());
copy = a;
copy.MultiplySigned(b, upper);
COMPARE((sx * sy) & maxUnsignedValue, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
COMPARE(((sx * sy) >> BITS) & maxUnsignedValue, ==, upper.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
copy = a;
FP rem;
COMPARE(y == 0, ==, copy.DivideUnsigned(b, rem))("%s, x=0x%llx, y=0x%llx", desc, x, y);
if (y == 0) {
COMPARE(maxUnsignedValue, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
COMPARE(0, ==, rem.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
} else {
COMPARE(x / y, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
COMPARE(x % y, ==, rem.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
}
copy = a;
bool badCase{sx == mostNegativeSignedValue &&
((sy == -1 && sx != sy) || (BITS==1 && sx==sy))};
COMPARE(y == 0 || badCase, ==, copy.DivideSigned(b, rem))("%s, x=0x%llx, y=0x%llx", desc, x, y);
if (y == 0) {
if (sx >= 0) {
COMPARE(maxPositiveSignedValue, ==, copy.ToInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
} else {
COMPARE(mostNegativeSignedValue, ==, copy.ToInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
}
COMPARE(0, ==, rem.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
} else if (badCase) {
COMPARE(x, ==, copy.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
COMPARE(0, ==, rem.ToUInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
} else {
COMPARE(sx/sy, ==, copy.ToInt64())("%s, x=0x%llx %lld, y=0x%llx %lld; unsigned 0x%llx", desc, x, sx, y, sy, copy.ToUInt64());
COMPARE(sx-sy*(sx/sy), ==, rem.ToInt64())("%s, x=0x%llx, y=0x%llx", desc, x, y);
}
}
}
}
int main() {
TEST(Reverse(Ordering::Less) == Ordering::Greater);
TEST(Reverse(Ordering::Greater) == Ordering::Less);
TEST(Reverse(Ordering::Equal) == Ordering::Equal);
exhaustiveTesting<1>();
exhaustiveTesting<2>();
exhaustiveTesting<7>();
exhaustiveTesting<8>();
exhaustiveTesting<9>();
exhaustiveTesting<9, FixedPoint<9, 1>>();
exhaustiveTesting<9, FixedPoint<9, 1, std::uint8_t, std::uint16_t>>();
exhaustiveTesting<9, FixedPoint<9, 2>>();
exhaustiveTesting<9, FixedPoint<9, 2, std::uint8_t, std::uint16_t>>();
exhaustiveTesting<9, FixedPoint<9, 8, std::uint8_t, std::uint16_t>>();
// exhaustiveTesting<15>();
// exhaustiveTesting<16>();
return testing::Complete();
}

View File

@ -0,0 +1,50 @@
// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "../../lib/evaluate/leading-zero-bit-count.h"
#include "testing.h"
using Fortran::evaluate::LeadingZeroBitCount;
int main() {
COMPARE(64, ==, LeadingZeroBitCount(std::uint64_t{0}));
for (int j{0}; j < 64; ++j) {
for (int k{0}; k < j; ++k) {
std::uint64_t x = (std::uint64_t{1} << j) | (std::uint64_t{1} << k);
COMPARE(63 - j, ==, LeadingZeroBitCount(x))("j=%d, k=%d", j, k);
}
}
COMPARE(32, ==, LeadingZeroBitCount(std::uint32_t{0}));
for (int j{0}; j < 32; ++j) {
for (int k{0}; k < j; ++k) {
std::uint32_t x = (std::uint32_t{1} << j) | (std::uint32_t{1} << k);
COMPARE(31 - j, ==, LeadingZeroBitCount(x))("j=%d, k=%d", j, k);
}
}
COMPARE(16, ==, LeadingZeroBitCount(std::uint16_t{0}));
for (int j{0}; j < 16; ++j) {
for (int k{0}; k < j; ++k) {
std::uint16_t x = (std::uint16_t{1} << j) | (std::uint16_t{1} << k);
COMPARE(15 - j, ==, LeadingZeroBitCount(x))("j=%d, k=%d", j, k);
}
}
COMPARE(8, ==, LeadingZeroBitCount(std::uint8_t{0}));
for (int j{0}; j < 8; ++j) {
for (int k{0}; k < j; ++k) {
std::uint8_t x = (std::uint8_t{1} << j) | (std::uint8_t{1} << k);
COMPARE(7 - j, ==, LeadingZeroBitCount(x))("j=%d, k=%d", j, k);
}
}
return testing::Complete();
}

View File

@ -1,39 +0,0 @@
#include "../../lib/evaluate/leading-zero-bit-count.h"
#include "testing.h"
#include <cinttypes>
#include <cstdlib>
#include <iostream>
using Fortran::evaluate::LeadingZeroBitCount;
int main() {
CHECK(64, LeadingZeroBitCount(std::uint64_t{0}));
for (int j{0}; j < 64; ++j) {
for (int k{0}; k < j; ++k) {
std::uint64_t x = (std::uint64_t{1} << j) | (std::uint64_t{1} << k);
CHECK_CASE(x, 63 - j, LeadingZeroBitCount(x));
}
}
CHECK(32, LeadingZeroBitCount(std::uint32_t{0}));
for (int j{0}; j < 32; ++j) {
for (int k{0}; k < j; ++k) {
std::uint32_t x = (std::uint32_t{1} << j) | (std::uint32_t{1} << k);
CHECK_CASE(x, 31 - j, LeadingZeroBitCount(x));
}
}
CHECK(16, LeadingZeroBitCount(std::uint16_t{0}));
for (int j{0}; j < 16; ++j) {
for (int k{0}; k < j; ++k) {
std::uint16_t x = (std::uint16_t{1} << j) | (std::uint16_t{1} << k);
CHECK_CASE(x, 15 - j, LeadingZeroBitCount(x));
}
}
CHECK(8, LeadingZeroBitCount(std::uint8_t{0}));
for (int j{0}; j < 8; ++j) {
for (int k{0}; k < j; ++k) {
std::uint8_t x = (std::uint8_t{1} << j) | (std::uint8_t{1} << k);
CHECK_CASE(x, 7 - j, LeadingZeroBitCount(x));
}
}
return testing::Complete();
}

View File

@ -0,0 +1,108 @@
// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "testing.h"
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <iostream>
namespace testing {
namespace {
int passes{0};
int failures{0};
}
static void BitBucket(const char *, ...) {}
static void PrintFailureDetails(const char *format, ...) {
va_list ap;
va_start(ap, format);
fputs("\t", stderr);
vfprintf(stderr, format, ap);
va_end(ap);
fputc('\n', stderr);
}
FailureDetailPrinter Test(const char *file, int line, const char *predicate,
bool pass) {
if (pass) {
++passes;
return BitBucket;
} else {
++failures;
fprintf(stderr, "%s:%d: FAIL %s\n", file, line, predicate);
return PrintFailureDetails;
}
}
FailureDetailPrinter Compare(const char *file, int line, const char *xs, const char *rel, const char *ys, unsigned long long x, unsigned long long y) {
while (*rel == ' ') {
++rel;
}
bool pass{false};
if (*rel == '<') {
if (rel[1] == '=') {
pass = x <= y;
} else {
pass = x < y;
}
} else if (*rel == '>') {
if (rel[1] == '=') {
pass = x >= y;
} else {
pass = x > y;
}
} else if (*rel == '=') {
pass = x == y;
} else if (*rel == '!') {
pass = x != y;
}
if (pass) {
++passes;
return BitBucket;
} else {
++failures;
fprintf(stderr, "%s:%d: FAIL %s[0x%llx] %s %s[0x%llx]:\n", file, line,
xs, x, rel, ys, y);
return PrintFailureDetails;
}
}
int Complete() {
if (failures == 0) {
if (passes == 1) {
std::cout << "single test PASSES\n";
} else {
std::cout << "all " << std::dec << passes << " tests PASS\n";
}
passes = 0;
return EXIT_SUCCESS;
} else {
if (passes == 1) {
std::cerr << "1 test passes, ";
} else {
std::cerr << std::dec << passes << " tests pass, ";
}
if (failures == 1) {
std::cerr << "1 test FAILS\n";
} else {
std::cerr << std::dec << failures << " tests FAIL\n";
}
passes = failures = 0;
return EXIT_FAILURE;
}
}
} // namespace testing

View File

@ -15,68 +15,22 @@
#ifndef FORTRAN_EVALUATE_TESTING_H_
#define FORTRAN_EVALUATE_TESTING_H_
#include <cinttypes>
#include <cstdlib>
#include <iostream>
namespace testing {
int passes{0};
int failures{0};
// Returns EXIT_SUCCESS or EXIT_FAILURE, so a test's main() should end
// with "return testing::Complete()".
int Complete();
void Check(const char *file, int line, std::uint64_t want, std::uint64_t got) {
if (want != got) {
++failures;
std::cerr << file << ':' << std::dec << line << '(' << (passes + failures)
<< "): want 0x" << std::hex << want
<< ", got 0x" << got << '\n' << std::dec;
} else {
++passes;
}
}
void Check(const char *file, int line, std::uint64_t x, std::uint64_t want,
std::uint64_t got) {
if (want != got) {
++failures;
std::cerr << file << ':' << std::dec << line << '(' << (passes + failures)
<< ")[0x" << std::hex << x << "]: want 0x" << want
<< ", got 0x" << got << '\n' << std::hex;
} else {
++passes;
}
}
int Complete() {
if (failures == 0) {
if (passes == 1) {
std::cout << "test PASSES\n";
} else {
std::cout << "all " << std::dec << passes << " tests PASS\n";
}
passes = 0;
return EXIT_SUCCESS;
} else {
if (passes == 1) {
std::cerr << std::dec << "1 test passes, ";
} else {
std::cerr << std::dec << passes << " tests pass, ";
}
if (failures == 1) {
std::cerr << "1 test FAILS\n";
} else {
std::cerr << std::dec << failures << " tests FAIL\n";
}
passes = failures = 0;
return EXIT_FAILURE;
}
}
// Pass/fail testing. These macros return a pointer to a printf-like
// function that can be optionally called to print more detail, e.g.
// COMPARE(x, ==, y)("z is 0x%llx", z);
// will also print z after the usual failure message if x != y.
#define TEST(predicate) testing::Test(__FILE__, __LINE__, #predicate, (predicate))
#define COMPARE(x, rel, y) testing::Compare(__FILE__, __LINE__, #x, #rel, #y, (x), (y))
// Functions called by thesemacros; do not call directly.
using FailureDetailPrinter = void (*)(const char *, ...);
FailureDetailPrinter Test(const char *file, int line, const char *predicate, bool pass);
FailureDetailPrinter Compare(const char *file, int line, const char *xs, const char *rel, const char *ys, unsigned long long x, unsigned long long y);
} // namespace testing
#define CHECK(want, got) \
testing::Check(__FILE__, __LINE__, (want), (got))
#define CHECK_CASE(n, want, got) \
testing::Check(__FILE__, __LINE__, (n), (want), (got))
#endif // FORTRAN_EVALUATE_TESTING_H_