forked from OSchip/llvm-project
Revert "[mlir] Fix masked vector transfer ops with broadcasts"
This reverts commit c9087788f7
.
Accidentally pushed old version of the commit.
This commit is contained in:
parent
c9087788f7
commit
6555e53ab0
|
@ -17,18 +17,6 @@
|
|||
#include "mlir/IR/BuiltinTypes.h"
|
||||
#include "mlir/IR/OpDefinition.h"
|
||||
|
||||
namespace mlir {
|
||||
namespace vector {
|
||||
namespace detail {
|
||||
|
||||
/// Given the vector type and the permutation map of a vector transfer op,
|
||||
/// compute the expected mask type.
|
||||
VectorType transferMaskType(VectorType vecType, AffineMap map);
|
||||
|
||||
} // namespace detail
|
||||
} // namespace vector
|
||||
} // namespace mlir
|
||||
|
||||
/// Include the generated interface declarations.
|
||||
#include "mlir/Interfaces/VectorInterfaces.h.inc"
|
||||
|
||||
|
|
|
@ -156,19 +156,6 @@ def VectorTransferOpInterface : OpInterface<"VectorTransferOpInterface"> {
|
|||
return $_op.vector().getType().template dyn_cast<VectorType>();
|
||||
}]
|
||||
>,
|
||||
InterfaceMethod<
|
||||
/*desc=*/"Return the mask type if the op has a mask.",
|
||||
/*retTy=*/"Optional<VectorType>",
|
||||
/*methodName=*/"getMaskType",
|
||||
/*args=*/(ins),
|
||||
/*methodBody=*/"",
|
||||
/*defaultImplementation=*/[{
|
||||
return $_op.mask()
|
||||
? llvm::Optional<VectorType>(mlir::vector::detail::transferMaskType(
|
||||
$_op.getVectorType(), $_op.permutation_map()))
|
||||
: llvm::None;
|
||||
}]
|
||||
>,
|
||||
InterfaceMethod<
|
||||
/*desc=*/[{ Return the number of dimensions that participate in the
|
||||
permutation map.}],
|
||||
|
|
|
@ -79,20 +79,13 @@ static BufferAllocs allocBuffers(OpTy xferOp) {
|
|||
|
||||
if (xferOp.mask()) {
|
||||
auto maskType = MemRefType::get({}, xferOp.mask().getType());
|
||||
auto maskBuffer = memref_alloca(maskType).value;
|
||||
memref_store(xferOp.mask(), maskBuffer);
|
||||
result.maskBuffer = memref_load(maskBuffer);
|
||||
result.maskBuffer = memref_alloca(maskType).value;
|
||||
memref_store(xferOp.mask(), result.maskBuffer);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename OpTy>
|
||||
static bool isOutermostDimBroadcast(OpTy xferOp) {
|
||||
auto map = xferOp.permutation_map();
|
||||
return map.getResult(0).template isa<AffineConstantExpr>();
|
||||
}
|
||||
|
||||
/// Given a vector transfer op, calculate which dimension of the `source`
|
||||
/// memref should be unpacked in the next application of TransferOpConversion.
|
||||
/// A return value of None indicates a broadcast.
|
||||
|
@ -102,7 +95,7 @@ static Optional<int64_t> unpackedDim(OpTy xferOp) {
|
|||
if (auto expr = map.getResult(0).template dyn_cast<AffineDimExpr>()) {
|
||||
return expr.getPosition();
|
||||
}
|
||||
assert(isOutermostDimBroadcast(xferOp) &&
|
||||
assert(map.getResult(0).template isa<AffineConstantExpr>() &&
|
||||
"Expected AffineDimExpr or AffineConstantExpr");
|
||||
return None;
|
||||
}
|
||||
|
@ -150,17 +143,14 @@ static void maybeYieldValue(
|
|||
}
|
||||
|
||||
/// Generates a boolean Value that is true if the iv-th bit in xferOp's mask
|
||||
/// is set to true. Does not return a Value if the transfer op does not have a
|
||||
/// mask, if the transfer op's mask is not 1D or if the to-be-unpacked dim of
|
||||
/// the transfer op is a broadcast.
|
||||
/// is set to true. Does not return a Value if the transfer op is not 1D or
|
||||
/// if the transfer op does not have a mask.
|
||||
template <typename OpTy>
|
||||
static Value maybeGenerateMaskCheck(OpBuilder &builder, OpTy xferOp, Value iv) {
|
||||
if (xferOp.getVectorType().getRank() != 1)
|
||||
return Value();
|
||||
if (!xferOp.mask())
|
||||
return Value();
|
||||
if (xferOp.getMaskType()->getRank() != 1)
|
||||
return Value();
|
||||
if (isOutermostDimBroadcast(xferOp))
|
||||
return Value();
|
||||
|
||||
auto ivI32 = std_index_cast(IntegerType::get(builder.getContext(), 32), iv);
|
||||
return vector_extract_element(xferOp.mask(), ivI32).value;
|
||||
|
@ -498,8 +488,8 @@ struct PrepareTransferReadConversion
|
|||
auto *newXfer = rewriter.clone(*xferOp.getOperation());
|
||||
newXfer->setAttr(kPassLabel, rewriter.getUnitAttr());
|
||||
if (xferOp.mask()) {
|
||||
dyn_cast<TransferReadOp>(newXfer).maskMutable().assign(
|
||||
buffers.maskBuffer);
|
||||
auto loadedMask = memref_load(buffers.maskBuffer);
|
||||
dyn_cast<TransferReadOp>(newXfer).maskMutable().assign(loadedMask);
|
||||
}
|
||||
|
||||
memref_store(newXfer->getResult(0), buffers.dataBuffer);
|
||||
|
@ -551,8 +541,9 @@ struct PrepareTransferWriteConversion
|
|||
});
|
||||
|
||||
if (xferOp.mask()) {
|
||||
auto loadedMask = memref_load(buffers.maskBuffer);
|
||||
rewriter.updateRootInPlace(
|
||||
xferOp, [&]() { xferOp.maskMutable().assign(buffers.maskBuffer); });
|
||||
xferOp, [&]() { xferOp.maskMutable().assign(loadedMask); });
|
||||
}
|
||||
|
||||
return success();
|
||||
|
@ -599,18 +590,8 @@ struct TransferOpConversion : public OpRewritePattern<OpTy> {
|
|||
auto maskBuffer = getMaskBuffer(xferOp);
|
||||
auto maskBufferType =
|
||||
maskBuffer.getType().template dyn_cast<MemRefType>();
|
||||
if (isOutermostDimBroadcast(xferOp) ||
|
||||
xferOp.getMaskType()->getRank() == 1) {
|
||||
// Do not unpack a dimension of the mask, if:
|
||||
// * To-be-unpacked transfer op dimension is a broadcast.
|
||||
// * Mask is 1D, i.e., the mask cannot be further unpacked.
|
||||
// (That means that all remaining dimensions of the transfer op must
|
||||
// be broadcasts.)
|
||||
castedMaskBuffer = maskBuffer;
|
||||
} else {
|
||||
auto castedMaskType = unpackOneDim(maskBufferType);
|
||||
castedMaskBuffer = vector_type_cast(castedMaskType, maskBuffer);
|
||||
}
|
||||
auto castedMaskType = unpackOneDim(maskBufferType);
|
||||
castedMaskBuffer = vector_type_cast(castedMaskType, maskBuffer);
|
||||
}
|
||||
|
||||
// Loop bounds and step.
|
||||
|
@ -635,20 +616,13 @@ struct TransferOpConversion : public OpRewritePattern<OpTy> {
|
|||
Strategy<OpTy>::rewriteOp(b, xferOp, castedDataBuffer, iv);
|
||||
|
||||
// If old transfer op has a mask: Set mask on new transfer op.
|
||||
// Special case: If the mask of the old transfer op is 1D and the
|
||||
// unpacked dim is not a broadcast, no mask is needed
|
||||
// on the new transfer op.
|
||||
if (xferOp.mask() && (isOutermostDimBroadcast(xferOp) ||
|
||||
xferOp.getMaskType()->getRank() > 1)) {
|
||||
if (xferOp.mask()) {
|
||||
OpBuilder::InsertionGuard guard(b);
|
||||
b.setInsertionPoint(newXfer); // Insert load before newXfer.
|
||||
|
||||
SmallVector<Value, 8> loadIndices;
|
||||
Strategy<OpTy>::getBufferIndices(xferOp, loadIndices);
|
||||
// In case of broadcast: Use same indices to load from memref as
|
||||
// before.
|
||||
if (!isOutermostDimBroadcast(xferOp))
|
||||
loadIndices.push_back(iv);
|
||||
loadIndices.push_back(iv);
|
||||
|
||||
auto mask = memref_load(castedMaskBuffer, loadIndices);
|
||||
rewriter.updateRootInPlace(
|
||||
|
@ -687,7 +661,7 @@ static Optional<int64_t> get1dMemrefIndices(
|
|||
return dim;
|
||||
}
|
||||
|
||||
assert(isOutermostDimBroadcast(xferOp) &&
|
||||
assert(map.getResult(0).template isa<AffineConstantExpr>() &&
|
||||
"Expected AffineDimExpr or AffineConstantExpr");
|
||||
return None;
|
||||
}
|
||||
|
|
|
@ -2491,11 +2491,10 @@ static ParseResult parseTransferReadOp(OpAsmParser &parser,
|
|||
if (!vectorType)
|
||||
return parser.emitError(typesLoc, "requires vector type");
|
||||
auto permutationAttrName = TransferReadOp::getPermutationMapAttrName();
|
||||
Attribute mapAttr = result.attributes.get(permutationAttrName);
|
||||
if (!mapAttr) {
|
||||
auto attr = result.attributes.get(permutationAttrName);
|
||||
if (!attr) {
|
||||
auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
|
||||
mapAttr = AffineMapAttr::get(permMap);
|
||||
result.attributes.set(permutationAttrName, mapAttr);
|
||||
result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
|
||||
}
|
||||
if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
|
||||
parser.resolveOperands(indexInfo, indexType, result.operands) ||
|
||||
|
@ -2503,10 +2502,7 @@ static ParseResult parseTransferReadOp(OpAsmParser &parser,
|
|||
result.operands))
|
||||
return failure();
|
||||
if (hasMask.succeeded()) {
|
||||
auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
|
||||
// Instead of adding the mask type as an op type, compute it based on the
|
||||
// vector type and the permutation map (to keep the type signature small).
|
||||
auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
|
||||
auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
|
||||
if (parser.resolveOperand(maskInfo, maskType, result.operands))
|
||||
return failure();
|
||||
}
|
||||
|
|
|
@ -10,26 +10,6 @@
|
|||
|
||||
using namespace mlir;
|
||||
|
||||
namespace mlir {
|
||||
namespace vector {
|
||||
namespace detail {
|
||||
|
||||
VectorType transferMaskType(VectorType vecType, AffineMap map) {
|
||||
auto i1Type = IntegerType::get(map.getContext(), 1);
|
||||
SmallVector<int64_t, 8> shape;
|
||||
for (int64_t i = 0; i < vecType.getRank(); ++i) {
|
||||
// Only result dims have a corresponding dim in the mask.
|
||||
if (auto expr = map.getResult(i).template isa<AffineDimExpr>()) {
|
||||
shape.push_back(vecType.getDimSize(i));
|
||||
}
|
||||
}
|
||||
return VectorType::get(shape, i1Type);
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
} // namespace vector
|
||||
} // namespace mlir
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// VectorUnroll Interfaces
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
|
|
@ -5,14 +5,6 @@
|
|||
|
||||
// Test for special cases of 1D vector transfer ops.
|
||||
|
||||
memref.global "private" @gv : memref<5x6xf32> =
|
||||
dense<[[0. , 1. , 2. , 3. , 4. , 5. ],
|
||||
[10., 11., 12., 13., 14., 15.],
|
||||
[20., 21., 22., 23., 24., 25.],
|
||||
[30., 31., 32., 33., 34., 35.],
|
||||
[40., 41., 42., 43., 44., 45.]]>
|
||||
|
||||
// Non-contiguous, strided load
|
||||
func @transfer_read_1d(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
%f = vector.transfer_read %A[%base1, %base2], %fm42
|
||||
|
@ -22,7 +14,6 @@ func @transfer_read_1d(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
|||
return
|
||||
}
|
||||
|
||||
// Broadcast
|
||||
func @transfer_read_1d_broadcast(
|
||||
%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
|
@ -33,7 +24,6 @@ func @transfer_read_1d_broadcast(
|
|||
return
|
||||
}
|
||||
|
||||
// Non-contiguous, strided load
|
||||
func @transfer_read_1d_in_bounds(
|
||||
%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
|
@ -44,7 +34,6 @@ func @transfer_read_1d_in_bounds(
|
|||
return
|
||||
}
|
||||
|
||||
// Non-contiguous, strided load
|
||||
func @transfer_read_1d_mask(
|
||||
%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
|
@ -56,7 +45,6 @@ func @transfer_read_1d_mask(
|
|||
return
|
||||
}
|
||||
|
||||
// Non-contiguous, strided load
|
||||
func @transfer_read_1d_mask_in_bounds(
|
||||
%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
|
@ -68,7 +56,6 @@ func @transfer_read_1d_mask_in_bounds(
|
|||
return
|
||||
}
|
||||
|
||||
// Non-contiguous, strided store
|
||||
func @transfer_write_1d(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
||||
%fn1 = constant -1.0 : f32
|
||||
%vf0 = splat %fn1 : vector<7xf32>
|
||||
|
@ -78,68 +65,57 @@ func @transfer_write_1d(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
|||
return
|
||||
}
|
||||
|
||||
// Non-contiguous, strided store
|
||||
func @transfer_write_1d_mask(%A : memref<?x?xf32>, %base1 : index, %base2 : index) {
|
||||
%fn1 = constant -2.0 : f32
|
||||
%vf0 = splat %fn1 : vector<7xf32>
|
||||
%mask = constant dense<[1, 0, 1, 0, 1, 1, 1]> : vector<7xi1>
|
||||
vector.transfer_write %vf0, %A[%base1, %base2], %mask
|
||||
{permutation_map = affine_map<(d0, d1) -> (d0)>}
|
||||
: vector<7xf32>, memref<?x?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
func @entry() {
|
||||
%c0 = constant 0: index
|
||||
%c1 = constant 1: index
|
||||
%c2 = constant 2: index
|
||||
%c3 = constant 3: index
|
||||
%0 = memref.get_global @gv : memref<5x6xf32>
|
||||
%A = memref.cast %0 : memref<5x6xf32> to memref<?x?xf32>
|
||||
%f10 = constant 10.0: f32
|
||||
// work with dims of 4, not of 3
|
||||
%first = constant 5: index
|
||||
%second = constant 6: index
|
||||
%A = memref.alloc(%first, %second) : memref<?x?xf32>
|
||||
scf.for %i = %c0 to %first step %c1 {
|
||||
%i32 = index_cast %i : index to i32
|
||||
%fi = sitofp %i32 : i32 to f32
|
||||
%fi10 = mulf %fi, %f10 : f32
|
||||
scf.for %j = %c0 to %second step %c1 {
|
||||
%j32 = index_cast %j : index to i32
|
||||
%fj = sitofp %j32 : i32 to f32
|
||||
%fres = addf %fi10, %fj : f32
|
||||
memref.store %fres, %A[%i, %j] : memref<?x?xf32>
|
||||
}
|
||||
}
|
||||
|
||||
// 1. Read from 2D memref on first dimension. Cannot be lowered to an LLVM
|
||||
// vector load. Instead, generates scalar loads.
|
||||
// Read from 2D memref on first dimension. Cannot be lowered to an LLVM
|
||||
// vector load. Instead, generates scalar loads.
|
||||
call @transfer_read_1d(%A, %c1, %c2) : (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( 12, 22, 32, 42, -42, -42, -42, -42, -42 )
|
||||
|
||||
// 2. Write to 2D memref on first dimension. Cannot be lowered to an LLVM
|
||||
// vector store. Instead, generates scalar stores.
|
||||
// Write to 2D memref on first dimension. Cannot be lowered to an LLVM
|
||||
// vector store. Instead, generates scalar stores.
|
||||
call @transfer_write_1d(%A, %c3, %c2) : (memref<?x?xf32>, index, index) -> ()
|
||||
|
||||
// 3. (Same as 1. To check if 2 works correctly.)
|
||||
// (Same as above.)
|
||||
call @transfer_read_1d(%A, %c0, %c2) : (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( 2, 12, 22, -1, -1, -42, -42, -42, -42 )
|
||||
|
||||
// 4. Read a scalar from a 2D memref and broadcast the value to a 1D vector.
|
||||
// Generates a loop with vector.insertelement.
|
||||
// Read a scalar from a 2D memref and broadcast the value to a 1D vector.
|
||||
// Generates a loop with vector.insertelement.
|
||||
call @transfer_read_1d_broadcast(%A, %c1, %c2)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( 12, 12, 12, 12, 12, 12, 12, 12, 12 )
|
||||
|
||||
// 5. Read from 2D memref on first dimension. Accesses are in-bounds, so no
|
||||
// if-check is generated inside the generated loop.
|
||||
// Read from 2D memref on first dimension. Accesses are in-bounds, so no
|
||||
// if-check is generated inside the generated loop.
|
||||
call @transfer_read_1d_in_bounds(%A, %c1, %c2)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( 12, 22, -1 )
|
||||
|
||||
// 6. Optional mask attribute is specified and, in addition, there may be
|
||||
// out-of-bounds accesses.
|
||||
// Optional mask attribute is specified and, in addition, there may be
|
||||
// out-of-bounds accesses.
|
||||
call @transfer_read_1d_mask(%A, %c1, %c2)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( 12, -42, -1, -42, -42, -42, -42, -42, -42 )
|
||||
|
||||
// 7. Same as 6, but accesses are in-bounds.
|
||||
// Same as above, but accesses are in-bounds.
|
||||
call @transfer_read_1d_mask_in_bounds(%A, %c1, %c2)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( 12, -42, -1 )
|
||||
|
||||
// 8. Write to 2D memref on first dimension with a mask.
|
||||
call @transfer_write_1d_mask(%A, %c1, %c0)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
|
||||
// 9. (Same as 1. To check if 8 works correctly.)
|
||||
call @transfer_read_1d(%A, %c0, %c0) : (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( 0, -2, 20, -2, 40, -42, -42, -42, -42 )
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// CHECK: ( 12, 22, 32, 42, -42, -42, -42, -42, -42 )
|
||||
// CHECK: ( 2, 12, 22, -1, -1, -42, -42, -42, -42 )
|
||||
// CHECK: ( 12, 12, 12, 12, 12, 12, 12, 12, 12 )
|
||||
// CHECK: ( 12, 22, -1 )
|
||||
// CHECK: ( 12, -42, -1, -42, -42, -42, -42, -42, -42 )
|
||||
// CHECK: ( 12, -42, -1 )
|
||||
|
|
|
@ -3,11 +3,6 @@
|
|||
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
||||
// RUN: FileCheck %s
|
||||
|
||||
memref.global "private" @gv : memref<3x4xf32> = dense<[[0. , 1. , 2. , 3. ],
|
||||
[10., 11., 12., 13.],
|
||||
[20., 21., 22., 23.]]>
|
||||
|
||||
// Vector load
|
||||
func @transfer_read_2d(%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
%f = vector.transfer_read %A[%base1, %base2], %fm42
|
||||
|
@ -17,7 +12,6 @@ func @transfer_read_2d(%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
|||
return
|
||||
}
|
||||
|
||||
// Vector load with mask
|
||||
func @transfer_read_2d_mask(%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
%mask = constant dense<[[1, 0, 1, 0, 1, 1, 1, 0, 1],
|
||||
|
@ -31,47 +25,6 @@ func @transfer_read_2d_mask(%A : memref<?x?xf32>, %base1: index, %base2: index)
|
|||
return
|
||||
}
|
||||
|
||||
// Vector load with mask + transpose
|
||||
func @transfer_read_2d_mask_transposed(
|
||||
%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
%mask = constant dense<[[1, 0, 1, 0], [0, 0, 1, 0],
|
||||
[1, 1, 1, 1], [0, 1, 1, 0],
|
||||
[1, 1, 1, 1], [1, 1, 1, 1],
|
||||
[1, 1, 1, 1], [0, 0, 0, 0],
|
||||
[1, 1, 1, 1]]> : vector<9x4xi1>
|
||||
%f = vector.transfer_read %A[%base1, %base2], %fm42, %mask
|
||||
{permutation_map = affine_map<(d0, d1) -> (d1, d0)>} :
|
||||
memref<?x?xf32>, vector<9x4xf32>
|
||||
vector.print %f: vector<9x4xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// Vector load with mask + broadcast
|
||||
func @transfer_read_2d_mask_broadcast(
|
||||
%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
%mask = constant dense<[1, 0, 1, 0, 1, 1, 1, 0, 1]> : vector<9xi1>
|
||||
%f = vector.transfer_read %A[%base1, %base2], %fm42, %mask
|
||||
{permutation_map = affine_map<(d0, d1) -> (0, d1)>} :
|
||||
memref<?x?xf32>, vector<4x9xf32>
|
||||
vector.print %f: vector<4x9xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// Transpose + vector load with mask + broadcast
|
||||
func @transfer_read_2d_mask_transpose_broadcast_last_dim(
|
||||
%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
%mask = constant dense<[1, 0, 1, 1]> : vector<4xi1>
|
||||
%f = vector.transfer_read %A[%base1, %base2], %fm42, %mask
|
||||
{permutation_map = affine_map<(d0, d1) -> (d1, 0)>} :
|
||||
memref<?x?xf32>, vector<4x9xf32>
|
||||
vector.print %f: vector<4x9xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// Load + transpose
|
||||
func @transfer_read_2d_transposed(
|
||||
%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
|
@ -82,7 +35,6 @@ func @transfer_read_2d_transposed(
|
|||
return
|
||||
}
|
||||
|
||||
// Load 1D + broadcast to 2D
|
||||
func @transfer_read_2d_broadcast(
|
||||
%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
|
@ -93,7 +45,6 @@ func @transfer_read_2d_broadcast(
|
|||
return
|
||||
}
|
||||
|
||||
// Vector store
|
||||
func @transfer_write_2d(%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fn1 = constant -1.0 : f32
|
||||
%vf0 = splat %fn1 : vector<1x4xf32>
|
||||
|
@ -103,79 +54,55 @@ func @transfer_write_2d(%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
|||
return
|
||||
}
|
||||
|
||||
// Vector store with mask
|
||||
func @transfer_write_2d_mask(%A : memref<?x?xf32>, %base1: index, %base2: index) {
|
||||
%fn1 = constant -2.0 : f32
|
||||
%mask = constant dense<[[1, 0, 1, 0]]> : vector<1x4xi1>
|
||||
%vf0 = splat %fn1 : vector<1x4xf32>
|
||||
vector.transfer_write %vf0, %A[%base1, %base2], %mask
|
||||
{permutation_map = affine_map<(d0, d1) -> (d0, d1)>} :
|
||||
vector<1x4xf32>, memref<?x?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
func @entry() {
|
||||
%c0 = constant 0: index
|
||||
%c1 = constant 1: index
|
||||
%c2 = constant 2: index
|
||||
%c3 = constant 3: index
|
||||
%0 = memref.get_global @gv : memref<3x4xf32>
|
||||
%A = memref.cast %0 : memref<3x4xf32> to memref<?x?xf32>
|
||||
|
||||
// 1. Read 2D vector from 2D memref.
|
||||
%c4 = constant 4: index
|
||||
%c5 = constant 5: index
|
||||
%c8 = constant 5: index
|
||||
%f10 = constant 10.0: f32
|
||||
// work with dims of 4, not of 3
|
||||
%first = constant 3: index
|
||||
%second = constant 4: index
|
||||
%A = memref.alloc(%first, %second) : memref<?x?xf32>
|
||||
scf.for %i = %c0 to %first step %c1 {
|
||||
%i32 = index_cast %i : index to i32
|
||||
%fi = sitofp %i32 : i32 to f32
|
||||
%fi10 = mulf %fi, %f10 : f32
|
||||
scf.for %j = %c0 to %second step %c1 {
|
||||
%j32 = index_cast %j : index to i32
|
||||
%fj = sitofp %j32 : i32 to f32
|
||||
%fres = addf %fi10, %fj : f32
|
||||
memref.store %fres, %A[%i, %j] : memref<?x?xf32>
|
||||
}
|
||||
}
|
||||
// On input, memory contains [[ 0, 1, 2, ...], [10, 11, 12, ...], ...]
|
||||
// Read shifted by 2 and pad with -42:
|
||||
call @transfer_read_2d(%A, %c1, %c2) : (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 12, 13, -42, -42, -42, -42, -42, -42, -42 ), ( 22, 23, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
||||
// 2. Read 2D vector from 2D memref at specified location and transpose the
|
||||
// result.
|
||||
// Same as above, but transposed
|
||||
call @transfer_read_2d_transposed(%A, %c1, %c2)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 12, 22, -42, -42, -42, -42, -42, -42, -42 ), ( 13, 23, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
||||
// 3. Read 2D vector from 2D memref with a 2D mask. In addition, some
|
||||
// accesses are out-of-bounds.
|
||||
// Write into memory shifted by 3
|
||||
call @transfer_write_2d(%A, %c3, %c1) : (memref<?x?xf32>, index, index) -> ()
|
||||
// Read shifted by 0 and pad with -42:
|
||||
call @transfer_read_2d(%A, %c0, %c0) : (memref<?x?xf32>, index, index) -> ()
|
||||
// Same as above, but apply a mask
|
||||
call @transfer_read_2d_mask(%A, %c0, %c0)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 0, -42, 2, -42, -42, -42, -42, -42, -42 ), ( -42, -42, 12, 13, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
||||
// 4. Same as 3, but transpose the result.
|
||||
call @transfer_read_2d_mask_transposed(%A, %c0, %c0)
|
||||
// Same as above, but without mask and transposed
|
||||
call @transfer_read_2d_transposed(%A, %c0, %c0)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 0, -42, 20, -42 ), ( -42, -42, 21, -42 ), ( 2, 12, 22, -42 ), ( -42, 13, 23, -42 ), ( -42, -42, -42, -42 ), ( -42, -42, -42, -42 ), ( -42, -42, -42, -42 ), ( -42, -42, -42, -42 ), ( -42, -42, -42, -42 ) )
|
||||
|
||||
// 5. Read 1D vector from 2D memref at specified location and broadcast the
|
||||
// result to 2D.
|
||||
// Second vector dimension is a broadcast
|
||||
call @transfer_read_2d_broadcast(%A, %c1, %c2)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 12, 12, 12, 12, 12, 12, 12, 12, 12 ), ( 13, 13, 13, 13, 13, 13, 13, 13, 13 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
||||
// 6. Read 1D vector from 2D memref at specified location with mask and
|
||||
// broadcast the result to 2D.
|
||||
call @transfer_read_2d_mask_broadcast(%A, %c2, %c1)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 21, -42, 23, -42, -42, -42, -42, -42, -42 ), ( 21, -42, 23, -42, -42, -42, -42, -42, -42 ), ( 21, -42, 23, -42, -42, -42, -42, -42, -42 ), ( 21, -42, 23, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
||||
// 7. Read 1D vector from 2D memref (second dimension) at specified location
|
||||
// with mask and broadcast the result to 2D. In this test case, mask
|
||||
// elements must be evaluated before lowering to an (N>1)-D transfer.
|
||||
call @transfer_read_2d_mask_transpose_broadcast_last_dim(%A, %c0, %c1)
|
||||
: (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 1, 1, 1, 1, 1, 1, 1, 1, 1 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( 3, 3, 3, 3, 3, 3, 3, 3, 3 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
||||
// 8. Write 2D vector into 2D memref at specified location.
|
||||
call @transfer_write_2d(%A, %c1, %c2) : (memref<?x?xf32>, index, index) -> ()
|
||||
|
||||
// 9. Read memref to verify step 8.
|
||||
call @transfer_read_2d(%A, %c0, %c0) : (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 0, 1, 2, 3, -42, -42, -42, -42, -42 ), ( 10, 11, -1, -1, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
||||
// 10. Write 2D vector into 2D memref at specified location with mask.
|
||||
call @transfer_write_2d_mask(%A, %c0, %c2) : (memref<?x?xf32>, index, index) -> ()
|
||||
|
||||
// 11. Read memref to verify step 10.
|
||||
call @transfer_read_2d(%A, %c0, %c0) : (memref<?x?xf32>, index, index) -> ()
|
||||
// CHECK: ( ( 0, 1, -2, 3, -42, -42, -42, -42, -42 ), ( 10, 11, -1, -1, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// CHECK: ( ( 12, 13, -42, -42, -42, -42, -42, -42, -42 ), ( 22, 23, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
// CHECK: ( ( 12, 22, -42, -42, -42, -42, -42, -42, -42 ), ( 13, 23, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
// CHECK: ( ( 0, 1, 2, 3, -42, -42, -42, -42, -42 ), ( 10, 11, 12, 13, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
// CHECK: ( ( 0, -42, 2, -42, -42, -42, -42, -42, -42 ), ( -42, -42, 12, 13, -42, -42, -42, -42, -42 ), ( 20, 21, 22, 23, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
// CHECK: ( ( 0, 10, 20, -42, -42, -42, -42, -42, -42 ), ( 1, 11, 21, -42, -42, -42, -42, -42, -42 ), ( 2, 12, 22, -42, -42, -42, -42, -42, -42 ), ( 3, 13, 23, -42, -42, -42, -42, -42, -42 ) )
|
||||
// CHECK: ( ( 12, 12, 12, 12, 12, 12, 12, 12, 12 ), ( 13, 13, 13, 13, 13, 13, 13, 13, 13 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ), ( -42, -42, -42, -42, -42, -42, -42, -42, -42 ) )
|
||||
|
|
|
@ -1,8 +1,15 @@
|
|||
// RUN: mlir-opt %s -convert-vector-to-scf -lower-affine -convert-scf-to-std -convert-vector-to-llvm -convert-std-to-llvm | \
|
||||
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
|
||||
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
||||
// RUN: FileCheck %s
|
||||
|
||||
// RUN: mlir-opt %s -test-progressive-convert-vector-to-scf -lower-affine -convert-scf-to-std -convert-vector-to-llvm -convert-std-to-llvm | \
|
||||
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
|
||||
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
||||
// RUN: FileCheck %s
|
||||
|
||||
// Test case is based on test-transfer-read-2d.
|
||||
|
||||
func @transfer_read_3d(%A : memref<?x?x?x?xf32>,
|
||||
%o: index, %a: index, %b: index, %c: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
|
@ -22,17 +29,6 @@ func @transfer_read_3d_broadcast(%A : memref<?x?x?x?xf32>,
|
|||
return
|
||||
}
|
||||
|
||||
func @transfer_read_3d_mask_broadcast(
|
||||
%A : memref<?x?x?x?xf32>, %o: index, %a: index, %b: index, %c: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
%mask = constant dense<[0, 1]> : vector<2xi1>
|
||||
%f = vector.transfer_read %A[%o, %a, %b, %c], %fm42, %mask
|
||||
{permutation_map = affine_map<(d0, d1, d2, d3) -> (d1, 0, 0)>}
|
||||
: memref<?x?x?x?xf32>, vector<2x5x3xf32>
|
||||
vector.print %f: vector<2x5x3xf32>
|
||||
return
|
||||
}
|
||||
|
||||
func @transfer_read_3d_transposed(%A : memref<?x?x?x?xf32>,
|
||||
%o: index, %a: index, %b: index, %c: index) {
|
||||
%fm42 = constant -42.0: f32
|
||||
|
@ -84,34 +80,20 @@ func @entry() {
|
|||
}
|
||||
}
|
||||
|
||||
// 1. Read 3D vector from 4D memref.
|
||||
call @transfer_read_3d(%A, %c0, %c0, %c0, %c0)
|
||||
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
|
||||
// CHECK: ( ( ( 0, 0, -42 ), ( 2, 3, -42 ), ( 4, 6, -42 ), ( 6, 9, -42 ), ( -42, -42, -42 ) ), ( ( 20, 30, -42 ), ( 22, 33, -42 ), ( 24, 36, -42 ), ( 26, 39, -42 ), ( -42, -42, -42 ) ) )
|
||||
|
||||
// 2. Write 3D vector to 4D memref.
|
||||
call @transfer_write_3d(%A, %c0, %c0, %c1, %c1)
|
||||
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
|
||||
|
||||
// 3. Read memref to verify step 2.
|
||||
call @transfer_read_3d(%A, %c0, %c0, %c0, %c0)
|
||||
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
|
||||
// CHECK: ( ( ( 0, 0, -42 ), ( 2, -1, -42 ), ( 4, -1, -42 ), ( 6, -1, -42 ), ( -42, -42, -42 ) ), ( ( 20, 30, -42 ), ( 22, -1, -42 ), ( 24, -1, -42 ), ( 26, -1, -42 ), ( -42, -42, -42 ) ) )
|
||||
|
||||
// 4. Read 3D vector from 4D memref and transpose vector.
|
||||
call @transfer_read_3d_transposed(%A, %c0, %c0, %c0, %c0)
|
||||
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
|
||||
// CHECK: ( ( ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ) ), ( ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ) ), ( ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ) ) )
|
||||
|
||||
// 5. Read 1D vector from 4D memref and broadcast vector to 3D.
|
||||
call @transfer_read_3d_broadcast(%A, %c0, %c0, %c0, %c0)
|
||||
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
|
||||
// CHECK: ( ( ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ) ), ( ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ) ) )
|
||||
|
||||
// 6. Read 1D vector from 4D memref with mask and broadcast vector to 3D.
|
||||
call @transfer_read_3d_mask_broadcast(%A, %c0, %c0, %c0, %c0)
|
||||
: (memref<?x?x?x?xf32>, index, index, index, index) -> ()
|
||||
// CHECK: ( ( ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ) ), ( ( 20, 20, 20 ), ( 20, 20, 20 ), ( 20, 20, 20 ), ( 20, 20, 20 ), ( 20, 20, 20 ) ) )
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// CHECK: ( ( ( 0, 0, -42 ), ( 2, 3, -42 ), ( 4, 6, -42 ), ( 6, 9, -42 ), ( -42, -42, -42 ) ), ( ( 20, 30, -42 ), ( 22, 33, -42 ), ( 24, 36, -42 ), ( 26, 39, -42 ), ( -42, -42, -42 ) ) )
|
||||
// CHECK: ( ( ( 0, 0, -42 ), ( 2, -1, -42 ), ( 4, -1, -42 ), ( 6, -1, -42 ), ( -42, -42, -42 ) ), ( ( 20, 30, -42 ), ( 22, -1, -42 ), ( 24, -1, -42 ), ( 26, -1, -42 ), ( -42, -42, -42 ) ) )
|
||||
// CHECK: ( ( ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ), ( 0, 20, 40 ) ), ( ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ), ( 0, 30, 60 ) ), ( ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ), ( -42, -42, -42 ) ) )
|
||||
// CHECK: ( ( ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ), ( 0, 0, -42 ) ), ( ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ), ( 20, 30, -42 ) ) )
|
||||
|
|
Loading…
Reference in New Issue