forked from OSchip/llvm-project
libclc/asin: Switch to amd builtins version of asin
Fixes a wimpy-mode CTS failure for asin(float). Passes non-wimpy for both float/double on RX580. Signed-off-by: Aaron Watry <awatry@gmail.com> Tested-by: Jan Vesely <jan.vesely@rutgers.edu> Reviewed-by: Jan Vesely <jan.vesely@rutgers.edu>
This commit is contained in:
parent
23b76096b7
commit
64a8e1b83e
|
@ -1,4 +1,167 @@
|
|||
/*
|
||||
* Copyright (c) 2014 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <clc/clc.h>
|
||||
|
||||
#define __CLC_BODY <asin.inc>
|
||||
#include <clc/math/gentype.inc>
|
||||
#include "math.h"
|
||||
#include "../clcmacro.h"
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF float asin(float x) {
|
||||
// Computes arcsin(x).
|
||||
// The argument is first reduced by noting that arcsin(x)
|
||||
// is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
|
||||
// For denormal and small arguments arcsin(x) = x to machine
|
||||
// accuracy. Remaining argument ranges are handled as follows.
|
||||
// For abs(x) <= 0.5 use
|
||||
// arcsin(x) = x + x^3*R(x^2)
|
||||
// where R(x^2) is a rational minimax approximation to
|
||||
// (arcsin(x) - x)/x^3.
|
||||
// For abs(x) > 0.5 exploit the identity:
|
||||
// arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
|
||||
// together with the above rational approximation, and
|
||||
// reconstruct the terms carefully.
|
||||
|
||||
const float piby2_tail = 7.5497894159e-08F; /* 0x33a22168 */
|
||||
const float hpiby2_head = 7.8539812565e-01F; /* 0x3f490fda */
|
||||
const float piby2 = 1.5707963705e+00F; /* 0x3fc90fdb */
|
||||
|
||||
uint ux = as_uint(x);
|
||||
uint aux = ux & EXSIGNBIT_SP32;
|
||||
uint xs = ux ^ aux;
|
||||
float spiby2 = as_float(xs | as_uint(piby2));
|
||||
int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
|
||||
float y = as_float(aux);
|
||||
|
||||
// abs(x) >= 0.5
|
||||
int transform = xexp >= -1;
|
||||
|
||||
float y2 = y * y;
|
||||
float rt = 0.5f * (1.0f - y);
|
||||
float r = transform ? rt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
float a = mad(r,
|
||||
mad(r,
|
||||
mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
|
||||
-0.0565298683201845211985026327361F),
|
||||
0.184161606965100694821398249421F);
|
||||
|
||||
float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
|
||||
float u = r * MATH_DIVIDE(a, b);
|
||||
|
||||
float s = MATH_SQRT(r);
|
||||
float s1 = as_float(as_uint(s) & 0xffff0000);
|
||||
float c = MATH_DIVIDE(mad(-s1, s1, r), s + s1);
|
||||
float p = mad(2.0f*s, u, -mad(c, -2.0f, piby2_tail));
|
||||
float q = mad(s1, -2.0f, hpiby2_head);
|
||||
float vt = hpiby2_head - (p - q);
|
||||
float v = mad(y, u, y);
|
||||
v = transform ? vt : v;
|
||||
|
||||
float ret = as_float(xs | as_uint(v));
|
||||
ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
|
||||
ret = aux == 0x3f800000U ? spiby2 : ret;
|
||||
ret = xexp < -14 ? x : ret;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asin, float);
|
||||
|
||||
#ifdef cl_khr_fp64
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF double asin(double x) {
|
||||
// Computes arcsin(x).
|
||||
// The argument is first reduced by noting that arcsin(x)
|
||||
// is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
|
||||
// For denormal and small arguments arcsin(x) = x to machine
|
||||
// accuracy. Remaining argument ranges are handled as follows.
|
||||
// For abs(x) <= 0.5 use
|
||||
// arcsin(x) = x + x^3*R(x^2)
|
||||
// where R(x^2) is a rational minimax approximation to
|
||||
// (arcsin(x) - x)/x^3.
|
||||
// For abs(x) > 0.5 exploit the identity:
|
||||
// arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
|
||||
// together with the above rational approximation, and
|
||||
// reconstruct the terms carefully.
|
||||
|
||||
const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
|
||||
const double hpiby2_head = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */
|
||||
const double piby2 = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
|
||||
|
||||
double y = fabs(x);
|
||||
int xneg = as_int2(x).hi < 0;
|
||||
int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
|
||||
|
||||
// abs(x) >= 0.5
|
||||
int transform = xexp >= -1;
|
||||
|
||||
double rt = 0.5 * (1.0 - y);
|
||||
double y2 = y * y;
|
||||
double r = transform ? rt : y2;
|
||||
|
||||
// Use a rational approximation for [0.0, 0.5]
|
||||
|
||||
double un = fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r, 0.0000482901920344786991880522822991,
|
||||
0.00109242697235074662306043804220),
|
||||
-0.0549989809235685841612020091328),
|
||||
0.275558175256937652532686256258),
|
||||
-0.445017216867635649900123110649),
|
||||
0.227485835556935010735943483075);
|
||||
|
||||
double ud = fma(r,
|
||||
fma(r,
|
||||
fma(r,
|
||||
fma(r, 0.105869422087204370341222318533,
|
||||
-0.943639137032492685763471240072),
|
||||
2.76568859157270989520376345954),
|
||||
-3.28431505720958658909889444194),
|
||||
1.36491501334161032038194214209);
|
||||
|
||||
double u = r * MATH_DIVIDE(un, ud);
|
||||
|
||||
// Reconstruct asin carefully in transformed region
|
||||
double s = sqrt(r);
|
||||
double sh = as_double(as_ulong(s) & 0xffffffff00000000UL);
|
||||
double c = MATH_DIVIDE(fma(-sh, sh, r), s + sh);
|
||||
double p = fma(2.0*s, u, -fma(-2.0, c, piby2_tail));
|
||||
double q = fma(-2.0, sh, hpiby2_head);
|
||||
double vt = hpiby2_head - (p - q);
|
||||
double v = fma(y, u, y);
|
||||
v = transform ? vt : v;
|
||||
|
||||
v = xexp < -28 ? y : v;
|
||||
v = xexp >= 0 ? as_double(QNANBITPATT_DP64) : v;
|
||||
v = y == 1.0 ? piby2 : v;
|
||||
|
||||
return xneg ? -v : v;
|
||||
}
|
||||
|
||||
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asin, double);
|
||||
|
||||
#endif // cl_khr_fp64
|
||||
|
|
|
@ -1,18 +0,0 @@
|
|||
// TODO: Enable half precision when atan2 is implemented
|
||||
#if __CLC_FPSIZE > 16
|
||||
|
||||
#if __CLC_FPSIZE == 64
|
||||
#define __CLC_CONST(x) x
|
||||
#elif __CLC_FPSIZE == 32
|
||||
#define __CLC_CONST(x) x ## f
|
||||
#elif __CLC_FPSIZE == 16
|
||||
#define __CLC_CONST(x) x ## h
|
||||
#endif
|
||||
|
||||
_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE asin(__CLC_GENTYPE x) {
|
||||
return atan2(x, sqrt( (__CLC_GENTYPE)__CLC_CONST(1.0) - (x*x) ));
|
||||
}
|
||||
|
||||
#undef __CLC_CONST
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue