Revert "[MLIR][Presburger] Improve unittest parsing"

This reverts commit 84d07d0213.

Reverted to fix a compilation issue on gcc8.
This commit is contained in:
Groverkss 2022-09-15 18:30:57 +01:00
parent a53b56e4c4
commit 644dfbac64
17 changed files with 1008 additions and 881 deletions

View File

@ -76,13 +76,14 @@ Type parseType(llvm::StringRef typeStr, MLIRContext *context);
/// returned in `numRead`.
Type parseType(llvm::StringRef typeStr, MLIRContext *context, size_t &numRead);
/// This parses a single IntegerSet/AffineMap to an MLIR context if it was
/// valid. If not, an error message is emitted through a new
/// SourceMgrDiagnosticHandler constructed from a new SourceMgr with a single
/// MemoryBuffer wrapping `str`. If the passed `str` has additional tokens that
/// were not part of the IntegerSet/AffineMap, a failure is returned.
AffineMap parseAffineMap(llvm::StringRef str, MLIRContext *context);
IntegerSet parseIntegerSet(llvm::StringRef str, MLIRContext *context);
/// This parses a single IntegerSet to an MLIR context if it was valid. If not,
/// an error message is emitted through a new SourceMgrDiagnosticHandler
/// constructed from a new SourceMgr with a single MemoryBuffer wrapping
/// `str`. If the passed `str` has additional tokens that were not part of the
/// IntegerSet, a failure is returned. Diagnostics are printed on failure if
/// `printDiagnosticInfo` is true.
IntegerSet parseIntegerSet(llvm::StringRef str, MLIRContext *context,
bool printDiagnosticInfo = true);
} // namespace mlir

View File

@ -32,10 +32,6 @@ class Value;
class MemRefType;
struct MutableAffineMap;
namespace presburger {
class MultiAffineFunction;
} // namespace presburger
/// FlatAffineValueConstraints represents an extension of IntegerPolyhedron
/// where each non-local variable can have an SSA Value attached to it.
class FlatAffineValueConstraints : public presburger::IntegerPolyhedron {
@ -619,10 +615,6 @@ getFlattenedAffineExprs(IntegerSet set,
std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineValueConstraints *cst = nullptr);
LogicalResult
getMultiAffineFunctionFromMap(AffineMap map,
presburger::MultiAffineFunction &multiAff);
/// Re-indexes the dimensions and symbols of an affine map with given `operands`
/// values to align with `dims` and `syms` values.
///

View File

@ -734,8 +734,8 @@ Parser::parseAffineExprOfSSAIds(AffineExpr &expr,
.parseAffineExprOfSSAIds(expr);
}
static void parseAffineMapOrIntegerSet(StringRef inputStr, MLIRContext *context,
AffineMap &map, IntegerSet &set) {
IntegerSet mlir::parseIntegerSet(StringRef inputStr, MLIRContext *context,
bool printDiagnosticInfo) {
llvm::SourceMgr sourceMgr;
auto memBuffer = llvm::MemoryBuffer::getMemBuffer(
inputStr, /*BufferName=*/"<mlir_parser_buffer>",
@ -747,31 +747,17 @@ static void parseAffineMapOrIntegerSet(StringRef inputStr, MLIRContext *context,
/*codeCompleteContext=*/nullptr);
Parser parser(state);
SourceMgrDiagnosticHandler handler(sourceMgr, context, llvm::errs());
if (parser.parseAffineMapOrIntegerSetReference(map, set))
return;
raw_ostream &os = printDiagnosticInfo ? llvm::errs() : llvm::nulls();
SourceMgrDiagnosticHandler handler(sourceMgr, context, os);
IntegerSet set;
if (parser.parseIntegerSetReference(set))
return IntegerSet();
Token endTok = parser.getToken();
if (endTok.isNot(Token::eof)) {
parser.emitError(endTok.getLoc(), "encountered unexpected token");
return;
return IntegerSet();
}
}
AffineMap mlir::parseAffineMap(StringRef inputStr, MLIRContext *context) {
AffineMap map;
IntegerSet set;
parseAffineMapOrIntegerSet(inputStr, context, map, set);
assert(!set &&
"expected string to represent AffineMap, but got IntegerSet instead");
return map;
}
IntegerSet mlir::parseIntegerSet(StringRef inputStr, MLIRContext *context) {
AffineMap map;
IntegerSet set;
parseAffineMapOrIntegerSet(inputStr, context, map, set);
assert(!map &&
"expected string to represent IntegerSet, but got AffineMap instead");
return set;
}

View File

@ -1801,31 +1801,3 @@ LogicalResult mlir::getRelationFromMap(const AffineValueMap &map,
return success();
}
LogicalResult
mlir::getMultiAffineFunctionFromMap(AffineMap map,
MultiAffineFunction &multiAff) {
FlatAffineValueConstraints cst;
std::vector<SmallVector<int64_t, 8>> flattenedExprs;
LogicalResult result = getFlattenedAffineExprs(map, &flattenedExprs, &cst);
if (result.failed())
return failure();
DivisionRepr divs = cst.getLocalReprs();
assert(divs.hasAllReprs() &&
"AffineMap cannot produce divs without local representation");
// TODO: We shouldn't have to do this conversion.
Matrix mat(map.getNumResults(), map.getNumInputs() + divs.getNumDivs() + 1);
for (unsigned i = 0, e = flattenedExprs.size(); i < e; ++i)
for (unsigned j = 0, f = flattenedExprs[i].size(); j < f; ++j)
mat(i, j) = flattenedExprs[i][j];
multiAff = MultiAffineFunction(
PresburgerSpace::getRelationSpace(map.getNumDims(), map.getNumResults(),
map.getNumSymbols(), divs.getNumDivs()),
mat, divs);
return success();
}

View File

@ -4,12 +4,11 @@ add_mlir_unittest(MLIRPresburgerTests
LinearTransformTest.cpp
MatrixTest.cpp
MPIntTest.cpp
Parser.h
ParserTest.cpp
PresburgerSetTest.cpp
PresburgerSpaceTest.cpp
PWMAFunctionTest.cpp
SimplexTest.cpp
../../Dialect/Affine/Analysis/AffineStructuresParser.cpp
)
target_link_libraries(MLIRPresburgerTests

View File

@ -6,8 +6,7 @@
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "Utils.h"
#include "./Utils.h"
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/Simplex.h"
@ -201,53 +200,46 @@ TEST(IntegerPolyhedronTest, removeIdRange) {
TEST(IntegerPolyhedronTest, FindSampleTest) {
// Bounded sets with only inequalities.
// 0 <= 7x <= 5
checkSample(true,
parseIntegerPolyhedron("(x) : (7 * x >= 0, -7 * x + 5 >= 0)"));
checkSample(true, parsePoly("(x) : (7 * x >= 0, -7 * x + 5 >= 0)"));
// 1 <= 5x and 5x <= 4 (no solution).
checkSample(
false, parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)"));
checkSample(false, parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)"));
// 1 <= 5x and 5x <= 9 (solution: x = 1).
checkSample(
true, parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)"));
checkSample(true, parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)"));
// Bounded sets with equalities.
// x >= 8 and 40 >= y and x = y.
checkSample(true, parseIntegerPolyhedron(
"(x,y) : (x - 8 >= 0, -y + 40 >= 0, x - y == 0)"));
checkSample(true,
parsePoly("(x,y) : (x - 8 >= 0, -y + 40 >= 0, x - y == 0)"));
// x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z.
// solution: x = y = z = 10.
checkSample(true,
parseIntegerPolyhedron("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
"z - 10 >= 0, x + 2 * y - 3 * z == 0)"));
checkSample(true, parsePoly("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
"z - 10 >= 0, x + 2 * y - 3 * z == 0)"));
// x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z.
// This implies x + 2y >= 33 and x + 2y <= 30, which has no solution.
checkSample(false,
parseIntegerPolyhedron("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
"z - 11 >= 0, x + 2 * y - 3 * z == 0)"));
checkSample(false, parsePoly("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
"z - 11 >= 0, x + 2 * y - 3 * z == 0)"));
// 0 <= r and r <= 3 and 4q + r = 7.
// Solution: q = 1, r = 3.
checkSample(true, parseIntegerPolyhedron(
"(q,r) : (r >= 0, -r + 3 >= 0, 4 * q + r - 7 == 0)"));
checkSample(true,
parsePoly("(q,r) : (r >= 0, -r + 3 >= 0, 4 * q + r - 7 == 0)"));
// 4q + r = 7 and r = 0.
// Solution: q = 1, r = 3.
checkSample(false,
parseIntegerPolyhedron("(q,r) : (4 * q + r - 7 == 0, r == 0)"));
checkSample(false, parsePoly("(q,r) : (4 * q + r - 7 == 0, r == 0)"));
// The next two sets are large sets that should take a long time to sample
// with a naive branch and bound algorithm but can be sampled efficiently with
// the GBR algorithm.
//
// This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000).
checkSample(
true, parseIntegerPolyhedron("(x,y) : (y >= 0, "
"300000 * x - 299999 * y - 100000 >= 0, "
"-300000 * x + 299998 * y + 200000 >= 0)"));
checkSample(true, parsePoly("(x,y) : (y >= 0, "
"300000 * x - 299999 * y - 100000 >= 0, "
"-300000 * x + 299998 * y + 200000 >= 0)"));
// This is a tetrahedron with vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
@ -265,12 +257,12 @@ TEST(IntegerPolyhedronTest, FindSampleTest) {
{});
// Same thing with some spurious extra dimensions equated to constants.
checkSample(true,
parseIntegerPolyhedron(
"(a,b,c,d,e) : (b + d - e >= 0, -b + c - d + e >= 0, "
"300000 * a - 299998 * b - c - 9 * d + 21 * e - 112000 >= 0, "
"-150000 * a + 149999 * b - 15 * d + 47 * e + 68000 >= 0, "
"d - e == 0, d + e - 2000 == 0)"));
checkSample(
true,
parsePoly("(a,b,c,d,e) : (b + d - e >= 0, -b + c - d + e >= 0, "
"300000 * a - 299998 * b - c - 9 * d + 21 * e - 112000 >= 0, "
"-150000 * a + 149999 * b - 15 * d + 47 * e + 68000 >= 0, "
"d - e == 0, d + e - 2000 == 0)"));
// This is a tetrahedron with vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100).
@ -287,24 +279,22 @@ TEST(IntegerPolyhedronTest, FindSampleTest) {
// empty.
// This is a line segment from (0, 1/3) to (100, 100 + 1/3).
checkSample(false,
parseIntegerPolyhedron(
"(x,y) : (x >= 0, -x + 100 >= 0, 3 * x - 3 * y + 1 == 0)"));
checkSample(
false,
parsePoly("(x,y) : (x >= 0, -x + 100 >= 0, 3 * x - 3 * y + 1 == 0)"));
// A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3.
checkSample(false, parseIntegerPolyhedron(
"(x,y) : (x >= 0, -x + 100 >= 0, "
"3 * x - 3 * y + 2 >= 0, -3 * x + 3 * y - 1 >= 0)"));
checkSample(false,
parsePoly("(x,y) : (x >= 0, -x + 100 >= 0, "
"3 * x - 3 * y + 2 >= 0, -3 * x + 3 * y - 1 >= 0)"));
checkSample(true,
parseIntegerPolyhedron("(x,y) : (2 * x >= 0, -2 * x + 99 >= 0, "
"2 * y >= 0, -2 * y + 99 >= 0)"));
checkSample(true, parsePoly("(x,y) : (2 * x >= 0, -2 * x + 99 >= 0, "
"2 * y >= 0, -2 * y + 99 >= 0)"));
// 2D cone with apex at (10000, 10000) and
// edges passing through (1/3, 0) and (2/3, 0).
checkSample(true, parseIntegerPolyhedron(
"(x,y) : (300000 * x - 299999 * y - 100000 >= 0, "
"-300000 * x + 299998 * y + 200000 >= 0)"));
checkSample(true, parsePoly("(x,y) : (300000 * x - 299999 * y - 100000 >= 0, "
"-300000 * x + 299998 * y + 200000 >= 0)"));
// Cartesian product of a tetrahedron and a 2D cone.
// The tetrahedron has vertices at
@ -417,68 +407,70 @@ TEST(IntegerPolyhedronTest, FindSampleTest) {
},
{});
checkSample(true, parseIntegerPolyhedron(
"(x, y, z) : (2 * x - 1 >= 0, x - y - 1 == 0, "
"y - z == 0)"));
checkSample(true, parsePoly("(x, y, z) : (2 * x - 1 >= 0, x - y - 1 == 0, "
"y - z == 0)"));
// Test with a local id.
checkSample(true, parseIntegerPolyhedron("(x) : (x == 5*(x floordiv 2))"));
checkSample(true, parsePoly("(x) : (x == 5*(x floordiv 2))"));
// Regression tests for the computation of dual coefficients.
checkSample(false, parseIntegerPolyhedron("(x, y, z) : ("
"6*x - 4*y + 9*z + 2 >= 0,"
"x + 5*y + z + 5 >= 0,"
"-4*x + y + 2*z - 1 >= 0,"
"-3*x - 2*y - 7*z - 1 >= 0,"
"-7*x - 5*y - 9*z - 1 >= 0)"));
checkSample(true, parseIntegerPolyhedron("(x, y, z) : ("
"3*x + 3*y + 3 >= 0,"
"-4*x - 8*y - z + 4 >= 0,"
"-7*x - 4*y + z + 1 >= 0,"
"2*x - 7*y - 8*z - 7 >= 0,"
"9*x + 8*y - 9*z - 7 >= 0)"));
checkSample(false, parsePoly("(x, y, z) : ("
"6*x - 4*y + 9*z + 2 >= 0,"
"x + 5*y + z + 5 >= 0,"
"-4*x + y + 2*z - 1 >= 0,"
"-3*x - 2*y - 7*z - 1 >= 0,"
"-7*x - 5*y - 9*z - 1 >= 0)"));
checkSample(true, parsePoly("(x, y, z) : ("
"3*x + 3*y + 3 >= 0,"
"-4*x - 8*y - z + 4 >= 0,"
"-7*x - 4*y + z + 1 >= 0,"
"2*x - 7*y - 8*z - 7 >= 0,"
"9*x + 8*y - 9*z - 7 >= 0)"));
checkSample(
true,
parsePoly(
"(x) : (1152921504606846977*(x floordiv 1152921504606846977) == x, "
"1152921504606846976*(x floordiv 1152921504606846976) == x)"));
}
TEST(IntegerPolyhedronTest, IsIntegerEmptyTest) {
// 1 <= 5x and 5x <= 4 (no solution).
EXPECT_TRUE(parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)")
.isIntegerEmpty());
EXPECT_TRUE(
parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)").isIntegerEmpty());
// 1 <= 5x and 5x <= 9 (solution: x = 1).
EXPECT_FALSE(parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)")
.isIntegerEmpty());
EXPECT_FALSE(
parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)").isIntegerEmpty());
// Unbounded sets.
EXPECT_TRUE(
parseIntegerPolyhedron("(x,y,z) : (2 * y - 1 >= 0, -2 * y + 1 >= 0, "
"2 * z - 1 >= 0, 2 * x - 1 == 0)")
EXPECT_TRUE(parsePoly("(x,y,z) : (2 * y - 1 >= 0, -2 * y + 1 >= 0, "
"2 * z - 1 >= 0, 2 * x - 1 == 0)")
.isIntegerEmpty());
EXPECT_FALSE(parsePoly("(x,y,z) : (2 * x - 1 >= 0, -3 * x + 3 >= 0, "
"5 * z - 6 >= 0, -7 * z + 17 >= 0, 3 * y - 2 >= 0)")
.isIntegerEmpty());
EXPECT_FALSE(
parsePoly("(x,y,z) : (2 * x - 1 >= 0, x - y - 1 == 0, y - z == 0)")
.isIntegerEmpty());
EXPECT_FALSE(parseIntegerPolyhedron(
"(x,y,z) : (2 * x - 1 >= 0, -3 * x + 3 >= 0, "
"5 * z - 6 >= 0, -7 * z + 17 >= 0, 3 * y - 2 >= 0)")
.isIntegerEmpty());
EXPECT_FALSE(parseIntegerPolyhedron(
"(x,y,z) : (2 * x - 1 >= 0, x - y - 1 == 0, y - z == 0)")
.isIntegerEmpty());
// IntegerPolyhedron::isEmpty() does not detect the following sets to be
// empty.
// 3x + 7y = 1 and 0 <= x, y <= 10.
// Since x and y are non-negative, 3x + 7y can never be 1.
EXPECT_TRUE(parseIntegerPolyhedron(
"(x,y) : (x >= 0, -x + 10 >= 0, y >= 0, -y + 10 >= 0, "
"3 * x + 7 * y - 1 == 0)")
EXPECT_TRUE(parsePoly("(x,y) : (x >= 0, -x + 10 >= 0, y >= 0, -y + 10 >= 0, "
"3 * x + 7 * y - 1 == 0)")
.isIntegerEmpty());
// 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100.
// Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2.
// Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty.
EXPECT_TRUE(parseIntegerPolyhedron(
"(x,y,z) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, "
"2 * x - 3 * y == 0, x - y - 1 == 0, x + y - 6 * z - 2 == 0)")
.isIntegerEmpty());
EXPECT_TRUE(
parsePoly("(x,y,z) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, "
"2 * x - 3 * y == 0, x - y - 1 == 0, x + y - 6 * z - 2 == 0)")
.isIntegerEmpty());
// 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100.
// 2x = 3y implies x is a multiple of 3 and y is even.
@ -486,19 +478,18 @@ TEST(IntegerPolyhedronTest, IsIntegerEmptyTest) {
// y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying
// x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty.
EXPECT_TRUE(
parseIntegerPolyhedron(
parsePoly(
"(x,y,z,q) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, "
"2 * x - 3 * y == 0, x - y + 6 * z - 1 == 0, x + y - 6 * q - 2 == 0)")
.isIntegerEmpty());
// Set with symbols.
EXPECT_FALSE(parseIntegerPolyhedron("(x)[s] : (x + s >= 0, x - s == 0)")
.isIntegerEmpty());
EXPECT_FALSE(parsePoly("(x)[s] : (x + s >= 0, x - s == 0)").isIntegerEmpty());
}
TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
IntegerPolyhedron poly =
parseIntegerPolyhedron("(x) : (x - 2 >= 0, -x + 2 >= 0, x - 2 == 0)");
parsePoly("(x) : (x - 2 >= 0, -x + 2 >= 0, x - 2 == 0)");
poly.removeRedundantConstraints();
// Both inequalities are redundant given the equality. Both have been removed.
@ -506,7 +497,7 @@ TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
EXPECT_EQ(poly.getNumEqualities(), 1u);
IntegerPolyhedron poly2 =
parseIntegerPolyhedron("(x,y) : (x - 3 >= 0, y - 2 >= 0, x - y == 0)");
parsePoly("(x,y) : (x - 3 >= 0, y - 2 >= 0, x - y == 0)");
poly2.removeRedundantConstraints();
// The second inequality is redundant and should have been removed. The
@ -516,52 +507,52 @@ TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
EXPECT_EQ(poly2.getNumEqualities(), 1u);
IntegerPolyhedron poly3 =
parseIntegerPolyhedron("(x,y,z) : (x - y == 0, x - z == 0, y - z == 0)");
parsePoly("(x,y,z) : (x - y == 0, x - z == 0, y - z == 0)");
poly3.removeRedundantConstraints();
// One of the three equalities can be removed.
EXPECT_EQ(poly3.getNumInequalities(), 0u);
EXPECT_EQ(poly3.getNumEqualities(), 2u);
IntegerPolyhedron poly4 = parseIntegerPolyhedron(
"(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) : ("
"b - 1 >= 0,"
"-b + 500 >= 0,"
"-16 * d + f >= 0,"
"f - 1 >= 0,"
"-f + 998 >= 0,"
"16 * d - f + 15 >= 0,"
"-16 * e + g >= 0,"
"g - 1 >= 0,"
"-g + 998 >= 0,"
"16 * e - g + 15 >= 0,"
"h >= 0,"
"-h + 1 >= 0,"
"j - 1 >= 0,"
"-j + 500 >= 0,"
"-f + 16 * l + 15 >= 0,"
"f - 16 * l >= 0,"
"-16 * m + o >= 0,"
"o - 1 >= 0,"
"-o + 998 >= 0,"
"16 * m - o + 15 >= 0,"
"p >= 0,"
"-p + 1 >= 0,"
"-g - h + 8 * q + 8 >= 0,"
"-o - p + 8 * q + 8 >= 0,"
"o + p - 8 * q - 1 >= 0,"
"g + h - 8 * q - 1 >= 0,"
"-f + n >= 0,"
"f - n >= 0,"
"k - 10 >= 0,"
"-k + 10 >= 0,"
"i - 13 >= 0,"
"-i + 13 >= 0,"
"c - 10 >= 0,"
"-c + 10 >= 0,"
"a - 13 >= 0,"
"-a + 13 >= 0"
")");
IntegerPolyhedron poly4 =
parsePoly("(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) : ("
"b - 1 >= 0,"
"-b + 500 >= 0,"
"-16 * d + f >= 0,"
"f - 1 >= 0,"
"-f + 998 >= 0,"
"16 * d - f + 15 >= 0,"
"-16 * e + g >= 0,"
"g - 1 >= 0,"
"-g + 998 >= 0,"
"16 * e - g + 15 >= 0,"
"h >= 0,"
"-h + 1 >= 0,"
"j - 1 >= 0,"
"-j + 500 >= 0,"
"-f + 16 * l + 15 >= 0,"
"f - 16 * l >= 0,"
"-16 * m + o >= 0,"
"o - 1 >= 0,"
"-o + 998 >= 0,"
"16 * m - o + 15 >= 0,"
"p >= 0,"
"-p + 1 >= 0,"
"-g - h + 8 * q + 8 >= 0,"
"-o - p + 8 * q + 8 >= 0,"
"o + p - 8 * q - 1 >= 0,"
"g + h - 8 * q - 1 >= 0,"
"-f + n >= 0,"
"f - n >= 0,"
"k - 10 >= 0,"
"-k + 10 >= 0,"
"i - 13 >= 0,"
"-i + 13 >= 0,"
"c - 10 >= 0,"
"-c + 10 >= 0,"
"a - 13 >= 0,"
"-a + 13 >= 0"
")");
// The above is a large set of constraints without any redundant constraints,
// as verified by the Fourier-Motzkin based removeRedundantInequalities.
@ -576,7 +567,7 @@ TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
EXPECT_EQ(poly4.getNumInequalities(), nIneq);
EXPECT_EQ(poly4.getNumEqualities(), nEq);
IntegerPolyhedron poly5 = parseIntegerPolyhedron(
IntegerPolyhedron poly5 = parsePoly(
"(x,y) : (128 * x + 127 >= 0, -x + 7 >= 0, -128 * x + y >= 0, y >= 0)");
// 128x + 127 >= 0 implies that 128x >= 0, since x has to be an integer.
// (This should be caught by GCDTightenInqualities().)
@ -704,7 +695,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprRecursive) {
TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) {
{
IntegerPolyhedron poly = parseIntegerPolyhedron("(i) : (i mod 3 - 1 >= 0)");
IntegerPolyhedron poly = parsePoly("(i) : (i mod 3 - 1 >= 0)");
// The set formed by the poly is:
// 3q - i + 2 >= 0 <-- Division lower bound
@ -724,8 +715,8 @@ TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) {
}
{
IntegerPolyhedron poly = parseIntegerPolyhedron(
"(i, j, q) : (4*q - i - j + 2 >= 0, -4*q + i + j >= 0)");
IntegerPolyhedron poly =
parsePoly("(i, j, q) : (4*q - i - j + 2 >= 0, -4*q + i + j >= 0)");
// Convert `q` to a local variable.
poly.convertToLocal(VarKind::SetDim, 2, 3);
@ -739,8 +730,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) {
TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
{
IntegerPolyhedron poly =
parseIntegerPolyhedron("(i, j, q) : (-4*q + i + j == 0)");
IntegerPolyhedron poly = parsePoly("(i, j, q) : (-4*q + i + j == 0)");
// Convert `q` to a local variable.
poly.convertToLocal(VarKind::SetDim, 2, 3);
@ -750,8 +740,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
checkDivisionRepresentation(poly, divisions, denoms);
}
{
IntegerPolyhedron poly =
parseIntegerPolyhedron("(i, j, q) : (4*q - i - j == 0)");
IntegerPolyhedron poly = parsePoly("(i, j, q) : (4*q - i - j == 0)");
// Convert `q` to a local variable.
poly.convertToLocal(VarKind::SetDim, 2, 3);
@ -761,8 +750,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
checkDivisionRepresentation(poly, divisions, denoms);
}
{
IntegerPolyhedron poly =
parseIntegerPolyhedron("(i, j, q) : (3*q + i + j - 2 == 0)");
IntegerPolyhedron poly = parsePoly("(i, j, q) : (3*q + i + j - 2 == 0)");
// Convert `q` to a local variable.
poly.convertToLocal(VarKind::SetDim, 2, 3);
@ -776,8 +764,8 @@ TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
TEST(IntegerPolyhedronTest, computeLocalReprFromEqualityAndInequality) {
{
IntegerPolyhedron poly =
parseIntegerPolyhedron("(i, j, q, k) : (-3*k + i + j == 0, 4*q - "
"i - j + 2 >= 0, -4*q + i + j >= 0)");
parsePoly("(i, j, q, k) : (-3*k + i + j == 0, 4*q - "
"i - j + 2 >= 0, -4*q + i + j >= 0)");
// Convert `q` and `k` to local variables.
poly.convertToLocal(VarKind::SetDim, 2, 4);
@ -791,7 +779,7 @@ TEST(IntegerPolyhedronTest, computeLocalReprFromEqualityAndInequality) {
TEST(IntegerPolyhedronTest, computeLocalReprNoRepr) {
IntegerPolyhedron poly =
parseIntegerPolyhedron("(x, q) : (x - 3 * q >= 0, -x + 3 * q + 3 >= 0)");
parsePoly("(x, q) : (x - 3 * q >= 0, -x + 3 * q + 3 >= 0)");
// Convert q to a local variable.
poly.convertToLocal(VarKind::SetDim, 1, 2);
@ -803,8 +791,8 @@ TEST(IntegerPolyhedronTest, computeLocalReprNoRepr) {
}
TEST(IntegerPolyhedronTest, computeLocalReprNegConstNormalize) {
IntegerPolyhedron poly = parseIntegerPolyhedron(
"(x, q) : (-1 - 3*x - 6 * q >= 0, 6 + 3*x + 6*q >= 0)");
IntegerPolyhedron poly =
parsePoly("(x, q) : (-1 - 3*x - 6 * q >= 0, 6 + 3*x + 6*q >= 0)");
// Convert q to a local variable.
poly.convertToLocal(VarKind::SetDim, 1, 2);
@ -1099,36 +1087,32 @@ void expectNoRationalLexMin(OptimumKind kind, const IntegerPolyhedron &poly) {
TEST(IntegerPolyhedronTest, findRationalLexMin) {
expectRationalLexMin(
parseIntegerPolyhedron(
"(x, y, z) : (x + 10 >= 0, y + 40 >= 0, z + 30 >= 0)"),
parsePoly("(x, y, z) : (x + 10 >= 0, y + 40 >= 0, z + 30 >= 0)"),
{{-10, 1}, {-40, 1}, {-30, 1}});
expectRationalLexMin(
parseIntegerPolyhedron(
parsePoly(
"(x, y, z) : (2*x + 7 >= 0, 3*y - 5 >= 0, 8*z + 10 >= 0, 9*z >= 0)"),
{{-7, 2}, {5, 3}, {0, 1}});
expectRationalLexMin(
parseIntegerPolyhedron("(x, y) : (3*x + 2*y + 10 >= 0, -3*y + 10 >= "
"0, 4*x - 7*y - 10 >= 0)"),
{{-50, 29}, {-70, 29}});
expectRationalLexMin(parsePoly("(x, y) : (3*x + 2*y + 10 >= 0, -3*y + 10 >= "
"0, 4*x - 7*y - 10 >= 0)"),
{{-50, 29}, {-70, 29}});
// Test with some locals. This is basically x >= 11, 0 <= x - 2e <= 1.
// It'll just choose x = 11, e = 5.5 since it's rational lexmin.
expectRationalLexMin(
parseIntegerPolyhedron(
parsePoly(
"(x, y) : (x - 2*(x floordiv 2) == 0, y - 2*x >= 0, x - 11 >= 0)"),
{{11, 1}, {22, 1}});
expectRationalLexMin(
parseIntegerPolyhedron("(x, y) : (3*x + 2*y + 10 >= 0,"
"-4*x + 7*y + 10 >= 0, -3*y + 10 >= 0)"),
{{-50, 9}, {10, 3}});
expectRationalLexMin(parsePoly("(x, y) : (3*x + 2*y + 10 >= 0,"
"-4*x + 7*y + 10 >= 0, -3*y + 10 >= 0)"),
{{-50, 9}, {10, 3}});
// Cartesian product of above with itself.
expectRationalLexMin(
parseIntegerPolyhedron(
"(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
"-3*y + 10 >= 0, 3*z + 2*w + 10 >= 0, -4*z + 7*w + 10 >= 0,"
"-3*w + 10 >= 0)"),
parsePoly("(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
"-3*y + 10 >= 0, 3*z + 2*w + 10 >= 0, -4*z + 7*w + 10 >= 0,"
"-3*w + 10 >= 0)"),
{{-50, 9}, {10, 3}, {-50, 9}, {10, 3}});
// Same as above but for the constraints on z and w, we express "10" in terms
@ -1137,7 +1121,7 @@ TEST(IntegerPolyhedronTest, findRationalLexMin) {
// minimized first. Accordingly, the values -9x - 12y, -9x - 0y - 10,
// and -9x - 15y + 10 are all equal to 10.
expectRationalLexMin(
parseIntegerPolyhedron(
parsePoly(
"(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0, "
"-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0,"
"-4*z + 7*w + - 9*x - 9*y - 10 >= 0, -3*w - 9*x - 15*y + 10 >= 0)"),
@ -1146,22 +1130,19 @@ TEST(IntegerPolyhedronTest, findRationalLexMin) {
// Same as above with one constraint removed, making the lexmin unbounded.
expectNoRationalLexMin(
OptimumKind::Unbounded,
parseIntegerPolyhedron(
"(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
"-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0,"
"-4*z + 7*w + - 9*x - 9*y - 10>= 0)"));
parsePoly("(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
"-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0,"
"-4*z + 7*w + - 9*x - 9*y - 10>= 0)"));
// Again, the lexmin is unbounded.
expectNoRationalLexMin(
OptimumKind::Unbounded,
parseIntegerPolyhedron(
"(x, y, z) : (2*x + 5*y + 8*z - 10 >= 0,"
"2*x + 10*y + 8*z - 10 >= 0, 2*x + 5*y + 10*z - 10 >= 0)"));
parsePoly("(x, y, z) : (2*x + 5*y + 8*z - 10 >= 0,"
"2*x + 10*y + 8*z - 10 >= 0, 2*x + 5*y + 10*z - 10 >= 0)"));
// The set is empty.
expectNoRationalLexMin(
OptimumKind::Empty,
parseIntegerPolyhedron("(x) : (2*x >= 0, -x - 1 >= 0)"));
expectNoRationalLexMin(OptimumKind::Empty,
parsePoly("(x) : (2*x >= 0, -x - 1 >= 0)"));
}
void expectIntegerLexMin(const IntegerPolyhedron &poly, ArrayRef<int64_t> min) {
@ -1177,99 +1158,108 @@ void expectNoIntegerLexMin(OptimumKind kind, const IntegerPolyhedron &poly) {
}
TEST(IntegerPolyhedronTest, findIntegerLexMin) {
expectIntegerLexMin(
parseIntegerPolyhedron("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 >= "
"0, 11*z + 5*y - 3*x + 7 >= 0)"),
{-6, -4, 0});
expectIntegerLexMin(parsePoly("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 >= "
"0, 11*z + 5*y - 3*x + 7 >= 0)"),
{-6, -4, 0});
// Similar to above but no lower bound on z.
expectNoIntegerLexMin(
OptimumKind::Unbounded,
parseIntegerPolyhedron("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 "
">= 0, -11*z + 5*y - 3*x + 7 >= 0)"));
expectNoIntegerLexMin(OptimumKind::Unbounded,
parsePoly("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 "
">= 0, -11*z + 5*y - 3*x + 7 >= 0)"));
}
void expectSymbolicIntegerLexMin(
StringRef polyStr,
ArrayRef<std::pair<StringRef, StringRef>> expectedLexminRepr,
ArrayRef<std::pair<StringRef, SmallVector<SmallVector<int64_t, 8>, 8>>>
expectedLexminRepr,
ArrayRef<StringRef> expectedUnboundedDomainRepr) {
IntegerPolyhedron poly = parseIntegerPolyhedron(polyStr);
IntegerPolyhedron poly = parsePoly(polyStr);
ASSERT_NE(poly.getNumDimVars(), 0u);
ASSERT_NE(poly.getNumSymbolVars(), 0u);
PWMAFunction expectedLexmin =
parsePWMAF(/*numInputs=*/0,
/*numOutputs=*/poly.getNumDimVars(), expectedLexminRepr,
/*numSymbols=*/poly.getNumSymbolVars());
PresburgerSet expectedUnboundedDomain = parsePresburgerSetFromPolyStrings(
/*numDims=*/0, expectedUnboundedDomainRepr, poly.getNumSymbolVars());
SymbolicLexMin result = poly.findSymbolicIntegerLexMin();
if (expectedLexminRepr.empty()) {
EXPECT_TRUE(result.lexmin.getDomain().isIntegerEmpty());
} else {
PWMAFunction expectedLexmin = parsePWMAF(expectedLexminRepr);
EXPECT_TRUE(result.lexmin.isEqual(expectedLexmin));
EXPECT_TRUE(result.lexmin.isEqual(expectedLexmin));
if (!result.lexmin.isEqual(expectedLexmin)) {
llvm::errs() << "got:\n";
result.lexmin.dump();
llvm::errs() << "expected:\n";
expectedLexmin.dump();
}
if (expectedUnboundedDomainRepr.empty()) {
EXPECT_TRUE(result.unboundedDomain.isIntegerEmpty());
} else {
PresburgerSet expectedUnboundedDomain =
parsePresburgerSet(expectedUnboundedDomainRepr);
EXPECT_TRUE(result.unboundedDomain.isEqual(expectedUnboundedDomain));
}
EXPECT_TRUE(result.unboundedDomain.isEqual(expectedUnboundedDomain));
if (!result.unboundedDomain.isEqual(expectedUnboundedDomain))
result.unboundedDomain.dump();
}
void expectSymbolicIntegerLexMin(
StringRef polyStr, ArrayRef<std::pair<StringRef, StringRef>> result) {
StringRef polyStr,
ArrayRef<std::pair<StringRef, SmallVector<SmallVector<int64_t, 8>, 8>>>
result) {
expectSymbolicIntegerLexMin(polyStr, result, {});
}
TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
expectSymbolicIntegerLexMin("(x)[a] : (x - a >= 0)",
{
{"()[a] : ()", "()[a] -> (a)"},
{"()[a] : ()", {{1, 0}}}, // a
});
expectSymbolicIntegerLexMin(
"(x)[a, b] : (x - a >= 0, x - b >= 0)",
{
{"()[a, b] : (a - b >= 0)", "()[a, b] -> (a)"},
{"()[a, b] : (b - a - 1 >= 0)", "()[a, b] -> (b)"},
{"()[a, b] : (a - b >= 0)", {{1, 0, 0}}}, // a
{"()[a, b] : (b - a - 1 >= 0)", {{0, 1, 0}}}, // b
});
expectSymbolicIntegerLexMin(
"(x)[a, b, c] : (x -a >= 0, x - b >= 0, x - c >= 0)",
{
{"()[a, b, c] : (a - b >= 0, a - c >= 0)", "()[a, b, c] -> (a)"},
{"()[a, b, c] : (b - a - 1 >= 0, b - c >= 0)", "()[a, b, c] -> (b)"},
{"()[a, b, c] : (a - b >= 0, a - c >= 0)", {{1, 0, 0, 0}}}, // a
{"()[a, b, c] : (b - a - 1 >= 0, b - c >= 0)", {{0, 1, 0, 0}}}, // b
{"()[a, b, c] : (c - a - 1 >= 0, c - b - 1 >= 0)",
"()[a, b, c] -> (c)"},
{{0, 0, 1, 0}}}, // c
});
expectSymbolicIntegerLexMin("(x, y)[a] : (x - a >= 0, x + y >= 0)",
{
{"()[a] : ()", "()[a] -> (a, -a)"},
{"()[a] : ()", {{1, 0}, {-1, 0}}}, // (a, -a)
});
expectSymbolicIntegerLexMin("(x, y)[a] : (x - a >= 0, x + y >= 0, y >= 0)",
{
{"()[a] : (a >= 0)", "()[a] -> (a, 0)"},
{"()[a] : (-a - 1 >= 0)", "()[a] -> (a, -a)"},
});
expectSymbolicIntegerLexMin(
"(x, y)[a] : (x - a >= 0, x + y >= 0, y >= 0)",
{
{"()[a] : (a >= 0)", {{1, 0}, {0, 0}}}, // (a, 0)
{"()[a] : (-a - 1 >= 0)", {{1, 0}, {-1, 0}}}, // (a, -a)
});
expectSymbolicIntegerLexMin(
"(x, y)[a, b, c] : (x - a >= 0, y - b >= 0, c - x - y >= 0)",
{
{"()[a, b, c] : (c - a - b >= 0)", "()[a, b, c] -> (a, b)"},
{"()[a, b, c] : (c - a - b >= 0)",
{{1, 0, 0, 0}, {0, 1, 0, 0}}}, // (a, b)
});
expectSymbolicIntegerLexMin(
"(x, y, z)[a, b, c] : (c - z >= 0, b - y >= 0, x + y + z - a == 0)",
{
{"()[a, b, c] : ()", "()[a, b, c] -> (a - b - c, b, c)"},
{"()[a, b, c] : ()",
{{1, -1, -1, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}}, // (a - b - c, b, c)
});
expectSymbolicIntegerLexMin(
"(x)[a, b] : (a >= 0, b >= 0, x >= 0, a + b + x - 1 >= 0)",
{
{"()[a, b] : (a >= 0, b >= 0, a + b - 1 >= 0)", "()[a, b] -> (0)"},
{"()[a, b] : (a == 0, b == 0)", "()[a, b] -> (1)"},
{"()[a, b] : (a >= 0, b >= 0, a + b - 1 >= 0)", {{0, 0, 0}}}, // 0
{"()[a, b] : (a == 0, b == 0)", {{0, 0, 1}}}, // 1
});
expectSymbolicIntegerLexMin(
@ -1278,8 +1268,8 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
{
{"()[a, b] : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, a + b - 1 >= "
"0)",
"()[a, b] -> (0)"},
{"()[a, b] : (a == 0, b == 0)", "()[a, b] -> (1)"},
{{0, 0, 0}}}, // 0
{"()[a, b] : (a == 0, b == 0)", {{0, 0, 1}}}, // 1
});
expectSymbolicIntegerLexMin(
@ -1287,51 +1277,50 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
"y + z - 1 >= 0)",
{
{"()[a, b] : (a >= 0, b >= 0, 1 - a - b >= 0)",
"()[a, b] -> (a, b, 1 - a - b)"},
{{1, 0, 0}, {0, 1, 0}, {-1, -1, 1}}}, // (a, b, 1 - a - b)
{"()[a, b] : (a >= 0, b >= 0, a + b - 2 >= 0)",
"()[a, b] -> (a, b, 0)"},
{{1, 0, 0}, {0, 1, 0}, {0, 0, 0}}}, // (a, b, 0)
});
expectSymbolicIntegerLexMin(
"(x)[a, b] : (x - a == 0, x - b >= 0)",
{
{"()[a, b] : (a - b >= 0)", "()[a, b] -> (a)"},
});
expectSymbolicIntegerLexMin("(x)[a, b] : (x - a == 0, x - b >= 0)",
{
{"()[a, b] : (a - b >= 0)", {{1, 0, 0}}}, // a
});
expectSymbolicIntegerLexMin(
"(q)[a] : (a - 1 - 3*q == 0, q >= 0)",
{
{"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
"()[a] -> (a floordiv 3)"},
{{0, 1, 0}}}, // a floordiv 3
});
expectSymbolicIntegerLexMin(
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, 1 - r >= 0, r >= 0)",
{
{"()[a] : (a - 0 - 3*(a floordiv 3) == 0, a >= 0)",
"()[a] -> (0, a floordiv 3)"},
{{0, 0, 0}, {0, 1, 0}}}, // (0, a floordiv 3)
{"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
"()[a] -> (1, a floordiv 3)"}, // (1 a floordiv 3)
{{0, 0, 1}, {0, 1, 0}}}, // (1 a floordiv 3)
});
expectSymbolicIntegerLexMin(
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, 2 - r >= 0, r - 1 >= 0)",
{
{"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
"()[a] -> (1, a floordiv 3)"},
{{0, 0, 1}, {0, 1, 0}}}, // (1, a floordiv 3)
{"()[a] : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)",
"()[a] -> (2, a floordiv 3)"},
{{0, 0, 2}, {0, 1, 0}}}, // (2, a floordiv 3)
});
expectSymbolicIntegerLexMin(
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, r >= 0)",
{
{"()[a] : (a - 3*(a floordiv 3) == 0, a >= 0)",
"()[a] -> (0, a floordiv 3)"},
{{0, 0, 0}, {0, 1, 0}}}, // (0, a floordiv 3)
{"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
"()[a] -> (1, a floordiv 3)"},
{{0, 0, 1}, {0, 1, 0}}}, // (1, a floordiv 3)
{"()[a] : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)",
"()[a] -> (2, a floordiv 3)"},
{{0, 0, 2}, {0, 1, 0}}}, // (2, a floordiv 3)
});
expectSymbolicIntegerLexMin(
@ -1346,9 +1335,12 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
// What's the lexmin solution using exactly g true vars?
"g - x - y - z - w == 0)",
{
{"()[g] : (g - 1 == 0)", "()[g] -> (0, 1, 0, 0)"},
{"()[g] : (g - 2 == 0)", "()[g] -> (0, 0, 1, 1)"},
{"()[g] : (g - 3 == 0)", "()[g] -> (0, 1, 1, 1)"},
{"()[g] : (g - 1 == 0)",
{{0, 0}, {0, 1}, {0, 0}, {0, 0}}}, // (0, 1, 0, 0)
{"()[g] : (g - 2 == 0)",
{{0, 0}, {0, 0}, {0, 1}, {0, 1}}}, // (0, 0, 1, 1)
{"()[g] : (g - 3 == 0)",
{{0, 0}, {0, 1}, {0, 1}, {0, 1}}}, // (0, 1, 1, 1)
});
// Bezout's lemma: if a, b are constants,
@ -1373,7 +1365,7 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
"(b, c)[a] : (a - 4*b + 2*c == 0, c - b >= 0)",
{
{"()[a] : (a - 2*(a floordiv 2) == 0)",
"()[a] -> (a floordiv 2, a floordiv 2)"},
{{0, 1, 0}, {0, 1, 0}}}, // (a floordiv 2, a floordiv 2)
});
expectSymbolicIntegerLexMin(
@ -1385,7 +1377,7 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
{"()[a] : (255 - (a floordiv 512) >= 0, a >= 0, a - 512*(a floordiv "
"512) - 1 >= 0, 512*(a floordiv 512) - a + 509 >= 0, (a floordiv "
"512) + 7 - 16*((8 + (a floordiv 512)) floordiv 16) >= 0)",
"()[a] -> (a floordiv 512)"},
{{0, 1, 0, 0}}}, // (a floordiv 2, a floordiv 2)
});
expectSymbolicIntegerLexMin(
@ -1394,11 +1386,12 @@ TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
"N >= 0, 2*N - 4 - a >= 0,"
"2*N - 3*K + a - b >= 0, 4*N - K + 1 - 3*b >= 0, b - N >= 0, a - x - 1 "
">= 0)",
{
{"()[K, N, x, y] : (x + 6 - 2*N >= 0, 2*N - 5 - x >= 0, x + 1 -3*K + "
"N >= 0, N + K - 2 - x >= 0, x - 4 >= 0)",
"()[K, N, x, y] -> (1 + x, N)"},
});
{{
"()[K, N, x, y] : (x + 6 - 2*N >= 0, 2*N - 5 - x >= 0, x + 1 -3*K + "
"N "
">= 0, N + K - 2 - x >= 0, x - 4 >= 0)",
{{0, 0, 1, 0, 1}, {0, 1, 0, 0, 0}} // (1 + x, N)
}});
}
static void
@ -1414,32 +1407,29 @@ TEST(IntegerPolyhedronTest, computeVolume) {
// i.e. 0 <= x <= 3, -5 <= y <= 2, 3 <= z <= 3 + 1/4.
// So volume is 4 * 8 * 1 = 32.
expectComputedVolumeIsValidOverapprox(
parseIntegerPolyhedron(
"(x, y, z) : (x >= 0, -3*x + 10 >= 0, 2*y + 11 >= 0,"
"-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
parsePoly("(x, y, z) : (x >= 0, -3*x + 10 >= 0, 2*y + 11 >= 0,"
"-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
/*trueVolume=*/32ull, /*resultBound=*/32ull);
// Same as above but y has bounds 2 + 1/5 <= y <= 2 + 3/5. So the volume is
// zero.
expectComputedVolumeIsValidOverapprox(
parseIntegerPolyhedron(
"(x, y, z) : (x >= 0, -3*x + 10 >= 0, 5*y - 11 >= 0,"
"-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
parsePoly("(x, y, z) : (x >= 0, -3*x + 10 >= 0, 5*y - 11 >= 0,"
"-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
/*trueVolume=*/0ull, /*resultBound=*/0ull);
// Now x is unbounded below but y still has no integer values.
expectComputedVolumeIsValidOverapprox(
parseIntegerPolyhedron("(x, y, z) : (-3*x + 10 >= 0, 5*y - 11 >= 0,"
"-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
parsePoly("(x, y, z) : (-3*x + 10 >= 0, 5*y - 11 >= 0,"
"-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
/*trueVolume=*/0ull, /*resultBound=*/0ull);
// A diamond shape, 0 <= x + y <= 10, 0 <= x - y <= 10,
// with vertices at (0, 0), (5, 5), (5, 5), (10, 0).
// x and y can take 11 possible values so result computed is 11*11 = 121.
expectComputedVolumeIsValidOverapprox(
parseIntegerPolyhedron(
"(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0,"
"-x + y + 10 >= 0)"),
parsePoly("(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0,"
"-x + y + 10 >= 0)"),
/*trueVolume=*/61ull, /*resultBound=*/121ull);
// Effectively the same diamond as above; constrain the variables to be even
@ -1448,15 +1438,14 @@ TEST(IntegerPolyhedronTest, computeVolume) {
// computing that x and y can take 21 possible values so result is 21*21 =
// 441.
expectComputedVolumeIsValidOverapprox(
parseIntegerPolyhedron(
"(x, y) : (x + y >= 0, -x - y + 20 >= 0, x - y >= 0,"
" -x + y + 20 >= 0, x - 2*(x floordiv 2) == 0,"
"y - 2*(y floordiv 2) == 0)"),
parsePoly("(x, y) : (x + y >= 0, -x - y + 20 >= 0, x - y >= 0,"
" -x + y + 20 >= 0, x - 2*(x floordiv 2) == 0,"
"y - 2*(y floordiv 2) == 0)"),
/*trueVolume=*/61ull, /*resultBound=*/441ull);
// Unbounded polytope.
expectComputedVolumeIsValidOverapprox(
parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"),
parsePoly("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"),
/*trueVolume=*/{}, /*resultBound=*/{});
}
@ -1466,18 +1455,16 @@ bool containsPointNoLocal(const IntegerPolyhedron &poly,
}
TEST(IntegerPolyhedronTest, containsPointNoLocal) {
IntegerPolyhedron poly1 =
parseIntegerPolyhedron("(x) : ((x floordiv 2) - x == 0)");
EXPECT_TRUE(poly1.containsPointNoLocal({0}));
EXPECT_FALSE(poly1.containsPointNoLocal({1}));
IntegerPolyhedron poly1 = parsePoly("(x) : ((x floordiv 2) - x == 0)");
EXPECT_TRUE(containsPointNoLocal(poly1, {0}));
EXPECT_FALSE(containsPointNoLocal(poly1, {1}));
IntegerPolyhedron poly2 = parseIntegerPolyhedron(
IntegerPolyhedron poly2 = parsePoly(
"(x) : (x - 2*(x floordiv 2) == 0, x - 4*(x floordiv 4) - 2 == 0)");
EXPECT_TRUE(containsPointNoLocal(poly2, {6}));
EXPECT_FALSE(containsPointNoLocal(poly2, {4}));
IntegerPolyhedron poly3 =
parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)");
IntegerPolyhedron poly3 = parsePoly("(x, y) : (2*x - y >= 0, y - 3*x >= 0)");
// -0 instead of 0 to prevent unwanted conversion to pointer types,
// which would lead to ambiguity in overload resolution.

View File

@ -7,7 +7,7 @@
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "Parser.h"
#include "./Utils.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include <gmock/gmock.h>
@ -17,7 +17,7 @@ using namespace mlir;
using namespace presburger;
static IntegerRelation parseRelationFromSet(StringRef set, unsigned numDomain) {
IntegerRelation rel = parseIntegerPolyhedron(set);
IntegerRelation rel = parsePoly(set);
rel.convertVarKind(VarKind::SetDim, 0, numDomain, VarKind::Domain);
@ -31,14 +31,14 @@ TEST(IntegerRelationTest, getDomainAndRangeSet) {
IntegerPolyhedron domainSet = rel.getDomainSet();
IntegerPolyhedron expectedDomainSet =
parseIntegerPolyhedron("(x)[N] : (x + 10 >= 0, N - x - 10 >= 0)");
parsePoly("(x)[N] : (x + 10 >= 0, N - x - 10 >= 0)");
EXPECT_TRUE(domainSet.isEqual(expectedDomainSet));
IntegerPolyhedron rangeSet = rel.getRangeSet();
IntegerPolyhedron expectedRangeSet =
parseIntegerPolyhedron("(x)[N] : (x >= 0, N - x >= 0)");
parsePoly("(x)[N] : (x >= 0, N - x >= 0)");
EXPECT_TRUE(rangeSet.isEqual(expectedRangeSet));
}
@ -66,8 +66,7 @@ TEST(IntegerRelationTest, intersectDomainAndRange) {
1);
{
IntegerPolyhedron poly =
parseIntegerPolyhedron("(x)[N, M] : (x >= 0, M - x - 1 >= 0)");
IntegerPolyhedron poly = parsePoly("(x)[N, M] : (x >= 0, M - x - 1 >= 0)");
IntegerRelation expectedRel = parseRelationFromSet(
"(x, y, z)[N, M]: (y floordiv 2 - N >= 0, z floordiv 5 - M"
@ -80,8 +79,8 @@ TEST(IntegerRelationTest, intersectDomainAndRange) {
}
{
IntegerPolyhedron poly = parseIntegerPolyhedron(
"(y, z)[N, M] : (y >= 0, M - y - 1 >= 0, y + z == 0)");
IntegerPolyhedron poly =
parsePoly("(y, z)[N, M] : (y >= 0, M - y - 1 >= 0, y + z == 0)");
IntegerRelation expectedRel = parseRelationFromSet(
"(x, y, z)[N, M]: (y floordiv 2 - N >= 0, z floordiv 5 - M"
@ -130,10 +129,14 @@ TEST(IntegerRelationTest, symbolicLexmin) {
parseRelationFromSet("(a, x)[b] : (x - a >= 0, x - b >= 0)", 1)
.findSymbolicIntegerLexMin();
PWMAFunction expectedLexmin = parsePWMAF({
{"(a)[b] : (a - b >= 0)", "(a)[b] -> (a)"}, // a
{"(a)[b] : (b - a - 1 >= 0)", "(a)[b] -> (b)"}, // b
});
PWMAFunction expectedLexmin =
parsePWMAF(/*numInputs=*/1,
/*numOutputs=*/1,
{
{"(a)[b] : (a - b >= 0)", {{1, 0, 0}}}, // a
{"(a)[b] : (b - a - 1 >= 0)", {{0, 1, 0}}}, // b
},
/*numSymbols=*/1);
EXPECT_TRUE(lexmin.unboundedDomain.isIntegerEmpty());
EXPECT_TRUE(lexmin.lexmin.isEqual(expectedLexmin));
}

View File

@ -10,7 +10,7 @@
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "./Utils.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
@ -27,50 +27,69 @@ using testing::ElementsAre;
TEST(PWAFunctionTest, isEqual) {
// The output expressions are different but it doesn't matter because they are
// equal in this domain.
PWMAFunction idAtZeros =
parsePWMAF({{"(x, y) : (y == 0)", "(x, y) -> (x, y)"},
{"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (x, y)"},
{"(x, y) : (-y - 1 >= 0, x == 0)", "(x, y) -> (x, y)"}});
PWMAFunction idAtZeros2 =
parsePWMAF({{"(x, y) : (y == 0)", "(x, y) -> (x, 20*y)"},
{"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (30*x, y)"},
{"(x, y) : (-y - 1 > =0, x == 0)", "(x, y) -> (30*x, y)"}});
PWMAFunction idAtZeros = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (y == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
{"(x, y) : (y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
{"(x, y) : (-y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 1, 0}}} // (x, y).
});
PWMAFunction idAtZeros2 = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (y == 0)", {{1, 0, 0}, {0, 20, 0}}}, // (x, 20y).
{"(x, y) : (y - 1 >= 0, x == 0)", {{30, 0, 0}, {0, 1, 0}}}, //(30x, y)
{"(x, y) : (-y - 1 > =0, x == 0)", {{30, 0, 0}, {0, 1, 0}}} //(30x, y)
});
EXPECT_TRUE(idAtZeros.isEqual(idAtZeros2));
PWMAFunction notIdAtZeros = parsePWMAF({
{"(x, y) : (y == 0)", "(x, y) -> (x, y)"},
{"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (x, 2*y)"},
{"(x, y) : (-y - 1 >= 0, x == 0)", "(x, y) -> (x, 2*y)"},
});
PWMAFunction notIdAtZeros = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (y == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
{"(x, y) : (y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 2, 0}}}, // (x, 2y)
{"(x, y) : (-y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 2, 0}}}, // (x, 2y)
});
EXPECT_FALSE(idAtZeros.isEqual(notIdAtZeros));
// These match at their intersection but one has a bigger domain.
PWMAFunction idNoNegNegQuadrant =
parsePWMAF({{"(x, y) : (x >= 0)", "(x, y) -> (x, y)"},
{"(x, y) : (-x - 1 >= 0, y >= 0)", "(x, y) -> (x, y)"}});
PWMAFunction idOnlyPosX = parsePWMAF({
{"(x, y) : (x >= 0)", "(x, y) -> (x, y)"},
});
PWMAFunction idNoNegNegQuadrant = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x >= 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
{"(x, y) : (-x - 1 >= 0, y >= 0)", {{1, 0, 0}, {0, 1, 0}}} // (x, y).
});
PWMAFunction idOnlyPosX =
parsePWMAF(/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x >= 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y).
});
EXPECT_FALSE(idNoNegNegQuadrant.isEqual(idOnlyPosX));
// Different representations of the same domain.
PWMAFunction sumPlusOne = parsePWMAF({
{"(x, y) : (x >= 0)", "(x, y) -> (x + y + 1)"},
{"(x, y) : (-x - 1 >= 0, -y - 1 >= 0)", "(x, y) -> (x + y + 1)"},
{"(x, y) : (-x - 1 >= 0, y >= 0)", "(x, y) -> (x + y + 1)"},
});
PWMAFunction sumPlusOne2 = parsePWMAF({
{"(x, y) : ()", "(x, y) -> (x + y + 1)"},
});
PWMAFunction sumPlusOne = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/1,
{
{"(x, y) : (x >= 0)", {{1, 1, 1}}}, // x + y + 1.
{"(x, y) : (-x - 1 >= 0, -y - 1 >= 0)", {{1, 1, 1}}}, // x + y + 1.
{"(x, y) : (-x - 1 >= 0, y >= 0)", {{1, 1, 1}}} // x + y + 1.
});
PWMAFunction sumPlusOne2 =
parsePWMAF(/*numInputs=*/2, /*numOutputs=*/1,
{
{"(x, y) : ()", {{1, 1, 1}}}, // x + y + 1.
});
EXPECT_TRUE(sumPlusOne.isEqual(sumPlusOne2));
// Functions with zero input dimensions.
PWMAFunction noInputs1 = parsePWMAF({
{"() : ()", "() -> (1)"},
});
PWMAFunction noInputs2 = parsePWMAF({
{"() : ()", "() -> (2)"},
});
PWMAFunction noInputs1 = parsePWMAF(/*numInputs=*/0, /*numOutputs=*/1,
{
{"() : ()", {{1}}}, // 1.
});
PWMAFunction noInputs2 = parsePWMAF(/*numInputs=*/0, /*numOutputs=*/1,
{
{"() : ()", {{2}}}, // 1.
});
EXPECT_TRUE(noInputs1.isEqual(noInputs1));
EXPECT_FALSE(noInputs1.isEqual(noInputs2));
@ -81,41 +100,53 @@ TEST(PWAFunctionTest, isEqual) {
// Divisions.
// Domain is only multiples of 6; x = 6k for some k.
// x + 4(x/2) + 4(x/3) == 26k.
PWMAFunction mul2AndMul3 = parsePWMAF({
{"(x) : (x - 2*(x floordiv 2) == 0, x - 3*(x floordiv 3) == 0)",
"(x) -> (x + 4 * (x floordiv 2) + 4 * (x floordiv 3))"},
});
PWMAFunction mul6 = parsePWMAF({
{"(x) : (x - 6*(x floordiv 6) == 0)", "(x) -> (26 * (x floordiv 6))"},
});
PWMAFunction mul2AndMul3 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x - 2*(x floordiv 2) == 0, x - 3*(x floordiv 3) == 0)",
{{1, 4, 4, 0}}}, // x + 4(x/2) + 4(x/3).
});
PWMAFunction mul6 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x - 6*(x floordiv 6) == 0)", {{0, 26, 0}}}, // 26(x/6).
});
EXPECT_TRUE(mul2AndMul3.isEqual(mul6));
PWMAFunction mul6diff = parsePWMAF({
{"(x) : (x - 5*(x floordiv 5) == 0)", "(x) -> (52 * (x floordiv 6))"},
});
PWMAFunction mul6diff = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x - 5*(x floordiv 5) == 0)", {{0, 52, 0}}}, // 52(x/6).
});
EXPECT_FALSE(mul2AndMul3.isEqual(mul6diff));
PWMAFunction mul5 = parsePWMAF({
{"(x) : (x - 5*(x floordiv 5) == 0)", "(x) -> (26 * (x floordiv 5))"},
});
PWMAFunction mul5 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x - 5*(x floordiv 5) == 0)", {{0, 26, 0}}}, // 26(x/5).
});
EXPECT_FALSE(mul2AndMul3.isEqual(mul5));
}
TEST(PWMAFunction, valueAt) {
PWMAFunction nonNegPWMAF = parsePWMAF(
{{"(x, y) : (x >= 0)", "(x, y) -> (x + 2*y + 3, 3*x + 4*y + 5)"},
{"(x, y) : (y >= 0, -x - 1 >= 0)",
"(x, y) -> (-x + 2*y + 3, -3*x + 4*y + 5)"}});
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x >= 0)", {{1, 2, 3}, {3, 4, 5}}}, // (x, y).
{"(x, y) : (y >= 0, -x - 1 >= 0)", {{-1, 2, 3}, {-3, 4, 5}}} // (x, y)
});
EXPECT_THAT(*nonNegPWMAF.valueAt({2, 3}), ElementsAre(11, 23));
EXPECT_THAT(*nonNegPWMAF.valueAt({-2, 3}), ElementsAre(11, 23));
EXPECT_THAT(*nonNegPWMAF.valueAt({2, -3}), ElementsAre(-1, -1));
EXPECT_FALSE(nonNegPWMAF.valueAt({-2, -3}).has_value());
PWMAFunction divPWMAF = parsePWMAF(
{{"(x, y) : (x >= 0, x - 2*(x floordiv 2) == 0)",
"(x, y) -> (2*y + (x floordiv 2) + 3, 4*y + 3*(x floordiv 2) + 5)"},
{"(x, y) : (y >= 0, -x - 1 >= 0)",
"(x, y) -> (-x + 2*y + 3, -3*x + 4*y + 5)"}});
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x >= 0, x - 2*(x floordiv 2) == 0)",
{{0, 2, 1, 3}, {0, 4, 3, 5}}}, // (x, y).
{"(x, y) : (y >= 0, -x - 1 >= 0)", {{-1, 2, 3}, {-3, 4, 5}}} // (x, y)
});
EXPECT_THAT(*divPWMAF.valueAt({4, 3}), ElementsAre(11, 23));
EXPECT_THAT(*divPWMAF.valueAt({4, -3}), ElementsAre(-1, -1));
EXPECT_FALSE(divPWMAF.valueAt({3, 3}).has_value());
@ -126,40 +157,53 @@ TEST(PWMAFunction, valueAt) {
}
TEST(PWMAFunction, removeIdRangeRegressionTest) {
PWMAFunction pwmafA = parsePWMAF({
{"(x, y) : (x == 0, y == 0, x - 2*(x floordiv 2) == 0, y - 2*(y floordiv "
"2) == 0)",
"(x, y) -> (0, 0)"},
});
PWMAFunction pwmafB = parsePWMAF({
{"(x, y) : (x - 11*y == 0, 11*x - y == 0, x - 2*(x floordiv 2) == 0, "
"y - 2*(y floordiv 2) == 0)",
"(x, y) -> (0, 0)"},
});
PWMAFunction pwmafA = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/1,
{
{"(x, y) : (x == 0, y == 0, x - 2*(x floordiv 2) == 0, y - 2*(y "
"floordiv 2) == 0)",
{{0, 0, 0, 0, 0}}} // (0, 0)
});
PWMAFunction pwmafB = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/1,
{
{"(x, y) : (x - 11*y == 0, 11*x - y == 0, x - 2*(x floordiv 2) == 0, "
"y - 2*(y floordiv 2) == 0)",
{{0, 0, 0, 0, 0}}} // (0, 0)
});
EXPECT_TRUE(pwmafA.isEqual(pwmafB));
}
TEST(PWMAFunction, eliminateRedundantLocalIdRegressionTest) {
PWMAFunction pwmafA = parsePWMAF({
{"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)", "(x, y) -> (y)"},
});
PWMAFunction pwmafB = parsePWMAF({
{"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)",
"(x, y) -> (x - y)"},
});
PWMAFunction pwmafA = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/1,
{
{"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)",
{{0, 1, 0, 0}}} // (0, 0)
});
PWMAFunction pwmafB = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/1,
{
{"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)",
{{1, -1, 0, 0}}} // (0, 0)
});
EXPECT_TRUE(pwmafA.isEqual(pwmafB));
}
TEST(PWMAFunction, unionLexMaxSimple) {
// func2 is better than func1, but func2's domain is empty.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (1)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : ()", {{0, 1}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (1 == 0)", "(x) -> (2)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (1 == 0)", {{0, 2}}},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(func1));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(func1));
@ -167,19 +211,25 @@ TEST(PWMAFunction, unionLexMaxSimple) {
// func2 is better than func1 on a subset of func1.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (1)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : ()", {{0, 1}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (2)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x >= 0, 10 - x >= 0)", {{0, 2}}},
});
PWMAFunction result = parsePWMAF({
{"(x) : (-1 - x >= 0)", "(x) -> (1)"},
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (2)"},
{"(x) : (x - 11 >= 0)", "(x) -> (1)"},
});
PWMAFunction result = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (-1 - x >= 0)", {{0, 1}}},
{"(x) : (x >= 0, 10 - x >= 0)", {{0, 2}}},
{"(x) : (x - 11 >= 0)", {{0, 1}}},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
@ -187,18 +237,24 @@ TEST(PWMAFunction, unionLexMaxSimple) {
// func1 and func2 are defined over the whole domain with different outputs.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (x)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : ()", {{1, 0}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : ()", "(x) -> (-x)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : ()", {{-1, 0}}},
});
PWMAFunction result = parsePWMAF({
{"(x) : (x >= 0)", "(x) -> (x)"},
{"(x) : (-1 - x >= 0)", "(x) -> (-x)"},
});
PWMAFunction result = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x >= 0)", {{1, 0}}},
{"(x) : (-1 - x >= 0)", {{-1, 0}}},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
@ -206,22 +262,28 @@ TEST(PWMAFunction, unionLexMaxSimple) {
// func1 and func2 have disjoint domains.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (1)"},
{"(x) : (x - 71 >= 0, 80 - x >= 0)", "(x) -> (1)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x >= 0, 10 - x >= 0)", {{0, 1}}},
{"(x) : (x - 71 >= 0, 80 - x >= 0)", {{0, 1}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (x - 20 >= 0, 41 - x >= 0)", "(x) -> (2)"},
{"(x) : (x - 101 >= 0, 120 - x >= 0)", "(x) -> (2)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x - 20 >= 0, 41 - x >= 0)", {{0, 2}}},
{"(x) : (x - 101 >= 0, 120 - x >= 0)", {{0, 2}}},
});
PWMAFunction result = parsePWMAF({
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (1)"},
{"(x) : (x - 71 >= 0, 80 - x >= 0)", "(x) -> (1)"},
{"(x) : (x - 20 >= 0, 41 - x >= 0)", "(x) -> (2)"},
{"(x) : (x - 101 >= 0, 120 - x >= 0)", "(x) -> (2)"},
});
PWMAFunction result = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x >= 0, 10 - x >= 0)", {{0, 1}}},
{"(x) : (x - 71 >= 0, 80 - x >= 0)", {{0, 1}}},
{"(x) : (x - 20 >= 0, 41 - x >= 0)", {{0, 2}}},
{"(x) : (x - 101 >= 0, 120 - x >= 0)", {{0, 2}}},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
@ -231,13 +293,17 @@ TEST(PWMAFunction, unionLexMaxSimple) {
TEST(PWMAFunction, unionLexMinSimple) {
// func2 is better than func1, but func2's domain is empty.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (-1)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : ()", {{0, -1}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (1 == 0)", "(x) -> (-2)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (1 == 0)", {{0, -2}}},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(func1));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(func1));
@ -245,19 +311,25 @@ TEST(PWMAFunction, unionLexMinSimple) {
// func2 is better than func1 on a subset of func1.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (-1)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : ()", {{0, -1}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (-2)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x >= 0, 10 - x >= 0)", {{0, -2}}},
});
PWMAFunction result = parsePWMAF({
{"(x) : (-1 - x >= 0)", "(x) -> (-1)"},
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (-2)"},
{"(x) : (x - 11 >= 0)", "(x) -> (-1)"},
});
PWMAFunction result = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (-1 - x >= 0)", {{0, -1}}},
{"(x) : (x >= 0, 10 - x >= 0)", {{0, -2}}},
{"(x) : (x - 11 >= 0)", {{0, -1}}},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
@ -265,18 +337,24 @@ TEST(PWMAFunction, unionLexMinSimple) {
// func1 and func2 are defined over the whole domain with different outputs.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (-x)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : ()", {{-1, 0}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : ()", "(x) -> (x)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : ()", {{1, 0}}},
});
PWMAFunction result = parsePWMAF({
{"(x) : (x >= 0)", "(x) -> (-x)"},
{"(x) : (-1 - x >= 0)", "(x) -> (x)"},
});
PWMAFunction result = parsePWMAF(
/*numInputs=*/1, /*numOutputs=*/1,
{
{"(x) : (x >= 0)", {{-1, 0}}},
{"(x) : (-1 - x >= 0)", {{1, 0}}},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
@ -291,20 +369,35 @@ TEST(PWMAFunction, unionLexMaxComplex) {
// 10 <= x <= 20, y > 0 --> func1 (x + y > x - y for y > 0)
// 10 <= x <= 20, y <= 0 --> func2 (x + y <= x - y for y <= 0)
{
PWMAFunction func1 = parsePWMAF({
{"(x, y) : (x >= 10)", "(x, y) -> (x + y)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/1,
{
{"(x, y) : (x >= 10)", {{1, 1, 0}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x, y) : (x <= 20)", "(x, y) -> (x - y)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/1,
{
{"(x, y) : (x <= 20)", {{1, -1, 0}}},
});
PWMAFunction result = parsePWMAF({
{"(x, y) : (x >= 10, x <= 20, y >= 1)", "(x, y) -> (x + y)"},
{"(x, y) : (x >= 21)", "(x, y) -> (x + y)"},
{"(x, y) : (x <= 9)", "(x, y) -> (x - y)"},
{"(x, y) : (x >= 10, x <= 20, y <= 0)", "(x, y) -> (x - y)"},
});
PWMAFunction result = parsePWMAF(/*numInputs=*/2, /*numOutputs=*/1,
{{"(x, y) : (x >= 10, x <= 20, y >= 1)",
{
{1, 1, 0},
}},
{"(x, y) : (x >= 21)",
{
{1, 1, 0},
}},
{"(x, y) : (x <= 9)",
{
{1, -1, 0},
}},
{"(x, y) : (x >= 10, x <= 20, y <= 0)",
{
{1, -1, 0},
}}});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
}
@ -318,19 +411,34 @@ TEST(PWMAFunction, unionLexMaxComplex) {
// second output. -2x + 4 (func1) > 2x - 2 (func2) when 0 <= x <= 1, so we
// take func1 for this domain and func2 for the remaining.
{
PWMAFunction func1 = parsePWMAF({
{"(x, y) : (x >= 0, y >= 0)", "(x, y) -> (x + y, -2*x + 4)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x >= 0, y >= 0)", {{1, 1, 0}, {-2, 0, 4}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x, y) : (x >= 0, y >= 0)", "(x, y) -> (x, 2*x - 2)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x >= 0, y >= 0)", {{1, 0, 0}, {2, 0, -2}}},
});
PWMAFunction result = parsePWMAF({
{"(x, y) : (x >= 0, y >= 1)", "(x, y) -> (x + y, -2*x + 4)"},
{"(x, y) : (x >= 0, x <= 1, y == 0)", "(x, y) -> (x + y, -2*x + 4)"},
{"(x, y) : (x >= 2, y == 0)", "(x, y) -> (x, 2*x - 2)"},
});
PWMAFunction result = parsePWMAF(/*numInputs=*/2, /*numOutputs=*/2,
{{"(x, y) : (x >= 0, y >= 1)",
{
{1, 1, 0},
{-2, 0, 4},
}},
{"(x, y) : (x >= 0, x <= 1, y == 0)",
{
{1, 1, 0},
{-2, 0, 4},
}},
{"(x, y) : (x >= 2, y == 0)",
{
{1, 0, 0},
{2, 0, -2},
}}});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
@ -343,26 +451,32 @@ TEST(PWMAFunction, unionLexMaxComplex) {
// a == 0, b == 1 --> Take func1
// a == 0, b == 0, c == 1 --> Take func2
{
PWMAFunction func1 = parsePWMAF({
{"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c "
">= 0, 1 - c >= 0)",
"(a, b, c) -> (0, b, 0)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/3, /*numOutputs=*/3,
{
{"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c "
">= 0, 1 - c >= 0)",
{{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 0}}},
});
PWMAFunction func2 = parsePWMAF({
{"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c >= 0, 1 - "
"c >= 0)",
"(a, b, c) -> (a, 0, c)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/3, /*numOutputs=*/3,
{
{"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c >= 0, 1 - "
"c >= 0)",
{{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}},
});
PWMAFunction result = parsePWMAF({
{"(a, b, c) : (a - 1 == 0, b >= 0, 1 - b >= 0, c >= 0, 1 - c >= 0)",
"(a, b, c) -> (a, 0, c)"},
{"(a, b, c) : (a == 0, b - 1 == 0, c >= 0, 1 - c >= 0)",
"(a, b, c) -> (0, b, 0)"},
{"(a, b, c) : (a == 0, b == 0, c >= 0, 1 - c >= 0)",
"(a, b, c) -> (a, 0, c)"},
});
PWMAFunction result = parsePWMAF(
/*numInputs=*/3, /*numOutputs=*/3,
{
{"(a, b, c) : (a - 1 == 0, b >= 0, 1 - b >= 0, c >= 0, 1 - c >= 0)",
{{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}},
{"(a, b, c) : (a == 0, b - 1 == 0, c >= 0, 1 - c >= 0)",
{{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 0}}},
{"(a, b, c) : (a == 0, b == 0, c >= 0, 1 - c >= 0)",
{{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
@ -379,18 +493,26 @@ TEST(PWMAFunction, unionLexMinComplex) {
// If x == 0, func1 and func2 both have the same first output. So we take a
// look at the second output. func2 is better since in the second output,
// y - 1 (func2) is < y (func1).
PWMAFunction func1 = parsePWMAF({
{"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)", "(x, y) -> (-x, y)"},
});
PWMAFunction func1 = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)",
{{-1, 0, 0}, {0, 1, 0}}},
});
PWMAFunction func2 = parsePWMAF({
{"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)", "(x, y) -> (0, y - 1)"},
});
PWMAFunction func2 = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)",
{{0, 0, 0}, {0, 1, -1}}},
});
PWMAFunction result = parsePWMAF({
{"(x, y) : (x == 1, y >= 0, y <= 1)", "(x, y) -> (-x, y)"},
{"(x, y) : (x == 0, y >= 0, y <= 1)", "(x, y) -> (0, y - 1)"},
});
PWMAFunction result = parsePWMAF(
/*numInputs=*/2, /*numOutputs=*/2,
{
{"(x, y) : (x == 1, y >= 0, y <= 1)", {{-1, 0, 0}, {0, 1, 0}}},
{"(x, y) : (x == 0, y >= 0, y <= 1)", {{0, 0, 0}, {0, 1, -1}}},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));

View File

@ -1,106 +0,0 @@
//===- Parser.h - Parser for Presburger library -----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines functions to parse strings into Presburger library
// constructs.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_UNITTESTS_ANALYSIS_PRESBURGER_PARSER_H
#define MLIR_UNITTESTS_ANALYSIS_PRESBURGER_PARSER_H
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/AsmParser/AsmParser.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IntegerSet.h"
namespace mlir {
namespace presburger {
/// Parses an IntegerPolyhedron from a StringRef. It is expected that the string
/// represents a valid IntegerSet.
inline IntegerPolyhedron parseIntegerPolyhedron(StringRef str) {
MLIRContext context(MLIRContext::Threading::DISABLED);
return FlatAffineValueConstraints(parseIntegerSet(str, &context));
}
/// Parse a list of StringRefs to IntegerRelation and combine them into a
/// PresburgerSet by using the union operation. It is expected that the strings
/// are all valid IntegerSet representation and that all of them have compatible
/// spaces.
inline PresburgerSet parsePresburgerSet(ArrayRef<StringRef> strs) {
assert(!strs.empty() && "strs should not be empty");
IntegerPolyhedron initPoly = parseIntegerPolyhedron(strs[0]);
PresburgerSet result(initPoly);
for (unsigned i = 1, e = strs.size(); i < e; ++i)
result.unionInPlace(parseIntegerPolyhedron(strs[i]));
return result;
}
inline MultiAffineFunction parseMultiAffineFunction(StringRef str) {
MLIRContext context(MLIRContext::Threading::DISABLED);
// TODO: Add default constructor for MultiAffineFunction.
MultiAffineFunction multiAff(PresburgerSpace::getRelationSpace(),
Matrix(0, 1));
if (getMultiAffineFunctionFromMap(parseAffineMap(str, &context), multiAff)
.failed())
llvm_unreachable(
"Failed to parse MultiAffineFunction because of semi-affinity");
return multiAff;
}
inline PWMAFunction
parsePWMAF(ArrayRef<std::pair<ArrayRef<StringRef>, StringRef>> pieces) {
assert(!pieces.empty() && "At least one piece should be present.");
MLIRContext context(MLIRContext::Threading::DISABLED);
PresburgerSet initDomain = parsePresburgerSet(pieces[0].first);
MultiAffineFunction initMultiAff = parseMultiAffineFunction(pieces[0].second);
PWMAFunction func(PresburgerSpace::getRelationSpace(
initMultiAff.getNumDomainVars(), initMultiAff.getNumOutputs(),
initMultiAff.getNumSymbolVars()));
func.addPiece({initDomain, initMultiAff});
for (unsigned i = 1, e = pieces.size(); i < e; ++i)
func.addPiece({parsePresburgerSet(pieces[i].first),
parseMultiAffineFunction(pieces[i].second)});
return func;
}
inline PWMAFunction
parsePWMAF(ArrayRef<std::pair<StringRef, StringRef>> pieces) {
assert(!pieces.empty() && "At least one piece should be present.");
MLIRContext context(MLIRContext::Threading::DISABLED);
IntegerPolyhedron initDomain = parseIntegerPolyhedron(pieces[0].first);
MultiAffineFunction initMultiAff = parseMultiAffineFunction(pieces[0].second);
PWMAFunction func(PresburgerSpace::getRelationSpace(
initMultiAff.getNumDomainVars(), initMultiAff.getNumOutputs(),
initMultiAff.getNumSymbolVars()));
func.addPiece({PresburgerSet(initDomain), initMultiAff});
for (unsigned i = 1, e = pieces.size(); i < e; ++i)
func.addPiece({PresburgerSet(parseIntegerPolyhedron(pieces[i].first)),
parseMultiAffineFunction(pieces[i].second)});
return func;
}
} // namespace presburger
} // namespace mlir
#endif // MLIR_UNITTESTS_ANALYSIS_PRESBURGER_PARSER_H

View File

@ -14,8 +14,7 @@
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "Utils.h"
#include "./Utils.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/IR/MLIRContext.h"
@ -98,7 +97,8 @@ static PresburgerSet makeSetFromPoly(unsigned numDims,
}
TEST(SetTest, containsPoint) {
PresburgerSet setA = parsePresburgerSet(
PresburgerSet setA = parsePresburgerSetFromPolyStrings(
1,
{"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"});
for (unsigned x = 0; x <= 21; ++x) {
if ((2 <= x && x <= 8) || (10 <= x && x <= 20))
@ -109,10 +109,10 @@ TEST(SetTest, containsPoint) {
// A parallelogram with vertices {(3, 1), (10, -6), (24, 8), (17, 15)} union
// a square with opposite corners (2, 2) and (10, 10).
PresburgerSet setB = parsePresburgerSet(
{"(x,y) : (x + y - 4 >= 0, -x - y + 32 >= 0, "
"x - y - 2 >= 0, -x + y + 16 >= 0)",
"(x,y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"});
PresburgerSet setB = parsePresburgerSetFromPolyStrings(
2, {"(x,y) : (x + y - 4 >= 0, -x - y + 32 >= 0, "
"x - y - 2 >= 0, -x + y + 16 >= 0)",
"(x,y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"});
for (unsigned x = 1; x <= 25; ++x) {
for (unsigned y = -6; y <= 16; ++y) {
@ -126,13 +126,13 @@ TEST(SetTest, containsPoint) {
}
// The PresburgerSet has only one id, x, so we supply one value.
EXPECT_TRUE(
PresburgerSet(parseIntegerPolyhedron("(x) : (x - 2*(x floordiv 2) == 0)"))
.containsPoint({0}));
EXPECT_TRUE(PresburgerSet(parsePoly("(x) : (x - 2*(x floordiv 2) == 0)"))
.containsPoint({0}));
}
TEST(SetTest, Union) {
PresburgerSet set = parsePresburgerSet(
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1,
{"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"});
// Universe union set.
@ -160,7 +160,8 @@ TEST(SetTest, Union) {
}
TEST(SetTest, Intersect) {
PresburgerSet set = parsePresburgerSet(
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1,
{"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"});
// Universe intersection set.
@ -195,41 +196,48 @@ TEST(SetTest, Intersect) {
TEST(SetTest, Subtract) {
// The interval [2, 8] minus the interval [10, 20].
testSubtractAtPoints(
parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 8 >= 0)"}),
parsePresburgerSet({"(x) : (x - 10 >= 0, -x + 20 >= 0)"}),
parsePresburgerSetFromPolyStrings(1, {"(x) : (x - 2 >= 0, -x + 8 >= 0)"}),
parsePresburgerSetFromPolyStrings(1,
{"(x) : (x - 10 >= 0, -x + 20 >= 0)"}),
{{1}, {2}, {8}, {9}, {10}, {20}, {21}});
// Universe minus [2, 8] U [10, 20]
testSubtractAtPoints(
parsePresburgerSet({"(x) : ()"}),
parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 8 >= 0)",
"(x) : (x - 10 >= 0, -x + 20 >= 0)"}),
{{1}, {2}, {8}, {9}, {10}, {20}, {21}});
testSubtractAtPoints(parsePresburgerSetFromPolyStrings(1, {"(x) : ()"}),
parsePresburgerSetFromPolyStrings(
1, {"(x) : (x - 2 >= 0, -x + 8 >= 0)",
"(x) : (x - 10 >= 0, -x + 20 >= 0)"}),
{{1}, {2}, {8}, {9}, {10}, {20}, {21}});
// ((-infinity, 0] U [3, 4] U [6, 7]) - ([2, 3] U [5, 6])
testSubtractAtPoints(
parsePresburgerSet({"(x) : (-x >= 0)", "(x) : (x - 3 >= 0, -x + 4 >= 0)",
"(x) : (x - 6 >= 0, -x + 7 >= 0)"}),
parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 3 >= 0)",
"(x) : (x - 5 >= 0, -x + 6 >= 0)"}),
parsePresburgerSetFromPolyStrings(1, {"(x) : (-x >= 0)",
"(x) : (x - 3 >= 0, -x + 4 >= 0)",
"(x) : (x - 6 >= 0, -x + 7 >= 0)"}),
parsePresburgerSetFromPolyStrings(1, {"(x) : (x - 2 >= 0, -x + 3 >= 0)",
"(x) : (x - 5 >= 0, -x + 6 >= 0)"}),
{{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}});
// Expected result is {[x, y] : x > y}, i.e., {[x, y] : x >= y + 1}.
testSubtractAtPoints(parsePresburgerSet({"(x, y) : (x - y >= 0)"}),
parsePresburgerSet({"(x, y) : (x + y >= 0)"}),
{{0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}});
testSubtractAtPoints(
parsePresburgerSetFromPolyStrings(2, {"(x, y) : (x - y >= 0)"}),
parsePresburgerSetFromPolyStrings(2, {"(x, y) : (x + y >= 0)"}),
{{0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}});
// A rectangle with corners at (2, 2) and (10, 10), minus
// a rectangle with corners at (5, -10) and (7, 100).
// This splits the former rectangle into two halves, (2, 2) to (5, 10) and
// (7, 2) to (10, 10).
testSubtractAtPoints(
parsePresburgerSet({
"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)",
}),
parsePresburgerSet({
"(x, y) : (x - 5 >= 0, y + 10 >= 0, -x + 7 >= 0, -y + 100 >= 0)",
}),
parsePresburgerSetFromPolyStrings(
2,
{
"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)",
}),
parsePresburgerSetFromPolyStrings(
2,
{
"(x, y) : (x - 5 >= 0, y + 10 >= 0, -x + 7 >= 0, -y + 100 >= 0)",
}),
{{1, 2}, {2, 2}, {4, 2}, {5, 2}, {7, 2}, {8, 2}, {11, 2},
{1, 1}, {2, 1}, {4, 1}, {5, 1}, {7, 1}, {8, 1}, {11, 1},
{1, 10}, {2, 10}, {4, 10}, {5, 10}, {7, 10}, {8, 10}, {11, 10},
@ -240,11 +248,13 @@ TEST(SetTest, Subtract) {
// This creates a hole in the middle of the former rectangle, and the
// resulting set can be represented as a union of four rectangles.
testSubtractAtPoints(
parsePresburgerSet(
{"(x, y) : (x - 2 >= 0, y -2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"}),
parsePresburgerSet({
"(x, y) : (x - 5 >= 0, y - 4 >= 0, -x + 7 >= 0, -y + 8 >= 0)",
}),
parsePresburgerSetFromPolyStrings(
2, {"(x, y) : (x - 2 >= 0, y -2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"}),
parsePresburgerSetFromPolyStrings(
2,
{
"(x, y) : (x - 5 >= 0, y - 4 >= 0, -x + 7 >= 0, -y + 8 >= 0)",
}),
{{1, 1},
{2, 2},
{10, 10},
@ -261,8 +271,9 @@ TEST(SetTest, Subtract) {
// The second set is a superset of the first one, since on the line x + y = 0,
// y <= 1 is equivalent to x >= -1. So the result is empty.
testSubtractAtPoints(
parsePresburgerSet({"(x, y) : (x >= 0, x + y == 0)"}),
parsePresburgerSet({"(x, y) : (-y + 1 >= 0, x + y == 0)"}),
parsePresburgerSetFromPolyStrings(2, {"(x, y) : (x >= 0, x + y == 0)"}),
parsePresburgerSetFromPolyStrings(2,
{"(x, y) : (-y + 1 >= 0, x + y == 0)"}),
{{0, 0},
{1, -1},
{2, -2},
@ -274,9 +285,10 @@ TEST(SetTest, Subtract) {
{1, -1}});
// The result should be {0} U {2}.
testSubtractAtPoints(parsePresburgerSet({"(x) : (x >= 0, -x + 2 >= 0)"}),
parsePresburgerSet({"(x) : (x - 1 == 0)"}),
{{-1}, {0}, {1}, {2}, {3}});
testSubtractAtPoints(
parsePresburgerSetFromPolyStrings(1, {"(x) : (x >= 0, -x + 2 >= 0)"}),
parsePresburgerSetFromPolyStrings(1, {"(x) : (x - 1 == 0)"}),
{{-1}, {0}, {1}, {2}, {3}});
// Sets with lots of redundant inequalities to test the redundancy heuristic.
// (the heuristic is for the subtrahend, the second set which is the one being
@ -285,14 +297,16 @@ TEST(SetTest, Subtract) {
// A parallelogram with vertices {(3, 1), (10, -6), (24, 8), (17, 15)} minus
// a triangle with vertices {(2, 2), (10, 2), (10, 10)}.
testSubtractAtPoints(
parsePresburgerSet({
"(x, y) : (x + y - 4 >= 0, -x - y + 32 >= 0, x - y - 2 >= 0, "
"-x + y + 16 >= 0)",
}),
parsePresburgerSet(
{"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, "
"-y + 10 >= 0, x + y - 2 >= 0, -x - y + 30 >= 0, x - y >= 0, "
"-x + y + 10 >= 0)"}),
parsePresburgerSetFromPolyStrings(
2,
{
"(x, y) : (x + y - 4 >= 0, -x - y + 32 >= 0, x - y - 2 >= 0, "
"-x + y + 16 >= 0)",
}),
parsePresburgerSetFromPolyStrings(
2, {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, "
"-y + 10 >= 0, x + y - 2 >= 0, -x - y + 30 >= 0, x - y >= 0, "
"-x + y + 10 >= 0)"}),
{{1, 2}, {2, 2}, {3, 2}, {4, 2}, {1, 1}, {2, 1}, {3, 1},
{4, 1}, {2, 0}, {3, 0}, {4, 0}, {5, 0}, {10, 2}, {11, 2},
{10, 1}, {10, 10}, {10, 11}, {10, 9}, {11, 10}, {10, -6}, {11, -6},
@ -301,15 +315,16 @@ TEST(SetTest, Subtract) {
// ((-infinity, -5] U [3, 3] U [4, 4] U [5, 5]) - ([-2, -10] U [3, 4] U [6,
// 7])
testSubtractAtPoints(
parsePresburgerSet({"(x) : (-x - 5 >= 0)", "(x) : (x - 3 == 0)",
"(x) : (x - 4 == 0)", "(x) : (x - 5 == 0)"}),
parsePresburgerSet(
{"(x) : (-x - 2 >= 0, x - 10 >= 0, -x >= 0, -x + 10 >= 0, "
"x - 100 >= 0, x - 50 >= 0)",
"(x) : (x - 3 >= 0, -x + 4 >= 0, x + 1 >= 0, "
"x + 7 >= 0, -x + 10 >= 0)",
"(x) : (x - 6 >= 0, -x + 7 >= 0, x + 1 >= 0, x - 3 >= 0, "
"-x + 5 >= 0)"}),
parsePresburgerSetFromPolyStrings(
1, {"(x) : (-x - 5 >= 0)", "(x) : (x - 3 == 0)", "(x) : (x - 4 == 0)",
"(x) : (x - 5 == 0)"}),
parsePresburgerSetFromPolyStrings(
1, {"(x) : (-x - 2 >= 0, x - 10 >= 0, -x >= 0, -x + 10 >= 0, "
"x - 100 >= 0, x - 50 >= 0)",
"(x) : (x - 3 >= 0, -x + 4 >= 0, x + 1 >= 0, "
"x + 7 >= 0, -x + 10 >= 0)",
"(x) : (x - 6 >= 0, -x + 7 >= 0, x + 1 >= 0, x - 3 >= 0, "
"-x + 5 >= 0)"}),
{{-6},
{-5},
{-4},
@ -338,20 +353,21 @@ TEST(SetTest, Complement) {
PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))),
{{-1}, {-2}, {-8}, {1}, {2}, {8}, {9}, {10}, {20}, {21}});
testComplementAtPoints(parsePresburgerSet({"(x,y) : (x - 2 >= 0, y - 2 >= 0, "
"-x + 10 >= 0, -y + 10 >= 0)"}),
{{1, 1},
{2, 1},
{1, 2},
{2, 2},
{2, 3},
{3, 2},
{10, 10},
{10, 11},
{11, 10},
{2, 10},
{2, 11},
{1, 10}});
testComplementAtPoints(
parsePresburgerSetFromPolyStrings(2, {"(x,y) : (x - 2 >= 0, y - 2 >= 0, "
"-x + 10 >= 0, -y + 10 >= 0)"}),
{{1, 1},
{2, 1},
{1, 2},
{2, 2},
{2, 3},
{3, 2},
{10, 10},
{10, 11},
{11, 10},
{2, 10},
{2, 11},
{1, 10}});
}
TEST(SetTest, isEqual) {
@ -360,7 +376,8 @@ TEST(SetTest, isEqual) {
PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1)));
PresburgerSet emptySet =
PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1)));
PresburgerSet set = parsePresburgerSet(
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1,
{"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"});
// universe != emptySet.
@ -397,10 +414,10 @@ TEST(SetTest, isEqual) {
EXPECT_FALSE(set.isEqual(set.unionSet(set.complement())));
// square is one unit taller than rect.
PresburgerSet square = parsePresburgerSet(
{"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 9 >= 0)"});
PresburgerSet rect = parsePresburgerSet(
{"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 8 >= 0)"});
PresburgerSet square = parsePresburgerSetFromPolyStrings(
2, {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 9 >= 0)"});
PresburgerSet rect = parsePresburgerSetFromPolyStrings(
2, {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 8 >= 0)"});
EXPECT_FALSE(square.isEqual(rect));
PresburgerSet universeRect = square.unionSet(square.complement());
PresburgerSet universeSquare = rect.unionSet(rect.complement());
@ -422,20 +439,16 @@ void expectEmpty(const PresburgerSet &s) { EXPECT_TRUE(s.isIntegerEmpty()); }
TEST(SetTest, divisions) {
// evens = {x : exists q, x = 2q}.
PresburgerSet evens{
parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) == 0)")};
PresburgerSet evens{parsePoly("(x) : (x - 2 * (x floordiv 2) == 0)")};
// odds = {x : exists q, x = 2q + 1}.
PresburgerSet odds{
parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) - 1 == 0)")};
PresburgerSet odds{parsePoly("(x) : (x - 2 * (x floordiv 2) - 1 == 0)")};
// multiples3 = {x : exists q, x = 3q}.
PresburgerSet multiples3{
parseIntegerPolyhedron("(x) : (x - 3 * (x floordiv 3) == 0)")};
PresburgerSet multiples3{parsePoly("(x) : (x - 3 * (x floordiv 3) == 0)")};
// multiples6 = {x : exists q, x = 6q}.
PresburgerSet multiples6{
parseIntegerPolyhedron("(x) : (x - 6 * (x floordiv 6) == 0)")};
PresburgerSet multiples6{parsePoly("(x) : (x - 6 * (x floordiv 6) == 0)")};
// evens /\ odds = empty.
expectEmpty(PresburgerSet(evens).intersect(PresburgerSet(odds)));
@ -447,8 +460,8 @@ TEST(SetTest, divisions) {
// even multiples of 3 = multiples of 6.
expectEqual(multiples3.intersect(evens), multiples6);
PresburgerSet setA{parseIntegerPolyhedron("(x) : (-x >= 0)")};
PresburgerSet setB{parseIntegerPolyhedron("(x) : (x floordiv 2 - 4 >= 0)")};
PresburgerSet setA{parsePoly("(x) : (-x >= 0)")};
PresburgerSet setB{parsePoly("(x) : (x floordiv 2 - 4 >= 0)")};
EXPECT_TRUE(setA.subtract(setB).isEqual(setA));
}
@ -457,29 +470,29 @@ void convertSuffixDimsToLocals(IntegerPolyhedron &poly, unsigned numLocals) {
poly.getNumDimVars(), VarKind::Local);
}
inline IntegerPolyhedron
parseIntegerPolyhedronAndMakeLocals(StringRef str, unsigned numLocals) {
IntegerPolyhedron poly = parseIntegerPolyhedron(str);
inline IntegerPolyhedron parsePolyAndMakeLocals(StringRef str,
unsigned numLocals) {
IntegerPolyhedron poly = parsePoly(str);
convertSuffixDimsToLocals(poly, numLocals);
return poly;
}
TEST(SetTest, divisionsDefByEq) {
// evens = {x : exists q, x = 2q}.
PresburgerSet evens{parseIntegerPolyhedronAndMakeLocals(
"(x, y) : (x - 2 * y == 0)", /*numLocals=*/1)};
PresburgerSet evens{
parsePolyAndMakeLocals("(x, y) : (x - 2 * y == 0)", /*numLocals=*/1)};
// odds = {x : exists q, x = 2q + 1}.
PresburgerSet odds{parseIntegerPolyhedronAndMakeLocals(
"(x, y) : (x - 2 * y - 1 == 0)", /*numLocals=*/1)};
PresburgerSet odds{
parsePolyAndMakeLocals("(x, y) : (x - 2 * y - 1 == 0)", /*numLocals=*/1)};
// multiples3 = {x : exists q, x = 3q}.
PresburgerSet multiples3{parseIntegerPolyhedronAndMakeLocals(
"(x, y) : (x - 3 * y == 0)", /*numLocals=*/1)};
PresburgerSet multiples3{
parsePolyAndMakeLocals("(x, y) : (x - 3 * y == 0)", /*numLocals=*/1)};
// multiples6 = {x : exists q, x = 6q}.
PresburgerSet multiples6{parseIntegerPolyhedronAndMakeLocals(
"(x, y) : (x - 6 * y == 0)", /*numLocals=*/1)};
PresburgerSet multiples6{
parsePolyAndMakeLocals("(x, y) : (x - 6 * y == 0)", /*numLocals=*/1)};
// evens /\ odds = empty.
expectEmpty(PresburgerSet(evens).intersect(PresburgerSet(odds)));
@ -492,7 +505,7 @@ TEST(SetTest, divisionsDefByEq) {
expectEqual(multiples3.intersect(evens), multiples6);
PresburgerSet evensDefByIneq{
parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) == 0)")};
parsePoly("(x) : (x - 2 * (x floordiv 2) == 0)")};
expectEqual(evens, PresburgerSet(evensDefByIneq));
}
@ -502,39 +515,36 @@ TEST(SetTest, divisionNonDivLocals) {
//
// The only integer point in this is at (1000, 1000, 1000).
// We project this to the xy plane.
IntegerPolyhedron tetrahedron = parseIntegerPolyhedronAndMakeLocals(
"(x, y, z) : (y >= 0, z - y >= 0, 3000*x - 2998*y "
"- 1000 - z >= 0, -1500*x + 1499*y + 1000 >= 0)",
/*numLocals=*/1);
IntegerPolyhedron tetrahedron =
parsePolyAndMakeLocals("(x, y, z) : (y >= 0, z - y >= 0, 3000*x - 2998*y "
"- 1000 - z >= 0, -1500*x + 1499*y + 1000 >= 0)",
/*numLocals=*/1);
// This is a triangle with vertices at (1/3, 0), (2/3, 0) and (1000, 1000).
// The only integer point in this is at (1000, 1000).
//
// It also happens to be the projection of the above onto the xy plane.
IntegerPolyhedron triangle =
parseIntegerPolyhedron("(x,y) : (y >= 0, 3000 * x - 2999 * y - 1000 >= "
"0, -3000 * x + 2998 * y + 2000 >= 0)");
IntegerPolyhedron triangle = parsePoly("(x,y) : (y >= 0, "
"3000 * x - 2999 * y - 1000 >= 0, "
"-3000 * x + 2998 * y + 2000 >= 0)");
EXPECT_TRUE(triangle.containsPoint({1000, 1000}));
EXPECT_FALSE(triangle.containsPoint({1001, 1001}));
expectEqual(triangle, tetrahedron);
convertSuffixDimsToLocals(triangle, 1);
IntegerPolyhedron line = parseIntegerPolyhedron("(x) : (x - 1000 == 0)");
IntegerPolyhedron line = parsePoly("(x) : (x - 1000 == 0)");
expectEqual(line, triangle);
// Triangle with vertices (0, 0), (5, 0), (15, 5).
// Projected on x, it becomes [0, 13] U {15} as it becomes too narrow towards
// the apex and so does not have have any integer point at x = 14.
// At x = 15, the apex is an integer point.
PresburgerSet triangle2{
parseIntegerPolyhedronAndMakeLocals("(x,y) : (y >= 0, "
"x - 3*y >= 0, "
"2*y - x + 5 >= 0)",
/*numLocals=*/1)};
PresburgerSet zeroToThirteen{
parseIntegerPolyhedron("(x) : (13 - x >= 0, x >= 0)")};
PresburgerSet fifteen{parseIntegerPolyhedron("(x) : (x - 15 == 0)")};
PresburgerSet triangle2{parsePolyAndMakeLocals("(x,y) : (y >= 0, "
"x - 3*y >= 0, "
"2*y - x + 5 >= 0)",
/*numLocals=*/1)};
PresburgerSet zeroToThirteen{parsePoly("(x) : (13 - x >= 0, x >= 0)")};
PresburgerSet fifteen{parsePoly("(x) : (x - 15 == 0)")};
expectEqual(triangle2.subtract(zeroToThirteen), fifteen);
}
@ -562,193 +572,209 @@ TEST(SetTest, coalesceNoPoly) {
}
TEST(SetTest, coalesceContainedOneDim) {
PresburgerSet set = parsePresburgerSet(
{"(x) : (x >= 0, -x + 4 >= 0)", "(x) : (x - 1 >= 0, -x + 2 >= 0)"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : (x >= 0, -x + 4 >= 0)", "(x) : (x - 1 >= 0, -x + 2 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceFirstEmpty) {
PresburgerSet set = parsePresburgerSet(
{"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ( x - 1 >= 0, -x + 2 >= 0)"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ( x - 1 >= 0, -x + 2 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceSecondEmpty) {
PresburgerSet set = parsePresburgerSet(
{"(x) : (x - 1 >= 0, -x + 2 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : (x - 1 >= 0, -x + 2 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceBothEmpty) {
PresburgerSet set = parsePresburgerSet(
{"(x) : (x - 3 >= 0, -x - 1 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : (x - 3 >= 0, -x - 1 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"});
expectCoalesce(0, set);
}
TEST(SetTest, coalesceFirstUniv) {
PresburgerSet set =
parsePresburgerSet({"(x) : ()", "(x) : ( x >= 0, -x + 1 >= 0)"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : ()", "(x) : ( x >= 0, -x + 1 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceSecondUniv) {
PresburgerSet set =
parsePresburgerSet({"(x) : ( x >= 0, -x + 1 >= 0)", "(x) : ()"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : ( x >= 0, -x + 1 >= 0)", "(x) : ()"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceBothUniv) {
PresburgerSet set = parsePresburgerSet({"(x) : ()", "(x) : ()"});
PresburgerSet set =
parsePresburgerSetFromPolyStrings(1, {"(x) : ()", "(x) : ()"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceFirstUnivSecondEmpty) {
PresburgerSet set =
parsePresburgerSet({"(x) : ()", "(x) : ( x >= 0, -x - 1 >= 0)"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : ()", "(x) : ( x >= 0, -x - 1 >= 0)"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceFirstEmptySecondUniv) {
PresburgerSet set =
parsePresburgerSet({"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ()"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ()"});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceCutOneDim) {
PresburgerSet set = parsePresburgerSet({
"(x) : ( x >= 0, -x + 3 >= 0)",
"(x) : ( x - 2 >= 0, -x + 4 >= 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {
"(x) : ( x >= 0, -x + 3 >= 0)",
"(x) : ( x - 2 >= 0, -x + 4 >= 0)",
});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceSeparateOneDim) {
PresburgerSet set = parsePresburgerSet(
{"(x) : ( x >= 0, -x + 2 >= 0)", "(x) : ( x - 3 >= 0, -x + 4 >= 0)"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : ( x >= 0, -x + 2 >= 0)", "(x) : ( x - 3 >= 0, -x + 4 >= 0)"});
expectCoalesce(2, set);
}
TEST(SetTest, coalesceAdjEq) {
PresburgerSet set =
parsePresburgerSet({"(x) : ( x == 0)", "(x) : ( x - 1 == 0)"});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {"(x) : ( x == 0)", "(x) : ( x - 1 == 0)"});
expectCoalesce(2, set);
}
TEST(SetTest, coalesceContainedTwoDim) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 3 >= 0)",
"(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 3 >= 0)",
"(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)",
});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceCutTwoDim) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 2 >= 0)",
"(x,y) : (x >= 0, -x + 3 >= 0, y - 1 >= 0, -y + 3 >= 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 2 >= 0)",
"(x,y) : (x >= 0, -x + 3 >= 0, y - 1 >= 0, -y + 3 >= 0)",
});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceEqStickingOut) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x >= 0, -x + 2 >= 0, y >= 0, -y + 2 >= 0)",
"(x,y) : (y - 1 == 0, x >= 0, -x + 3 >= 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x >= 0, -x + 2 >= 0, y >= 0, -y + 2 >= 0)",
"(x,y) : (y - 1 == 0, x >= 0, -x + 3 >= 0)",
});
expectCoalesce(2, set);
}
TEST(SetTest, coalesceSeparateTwoDim) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 1 >= 0)",
"(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 1 >= 0)",
"(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)",
});
expectCoalesce(2, set);
}
TEST(SetTest, coalesceContainedEq) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x >= 0, -x + 3 >= 0, x - y == 0)",
"(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x >= 0, -x + 3 >= 0, x - y == 0)",
"(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceCuttingEq) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x + 1 >= 0, -x + 1 >= 0, x - y == 0)",
"(x,y) : (x >= 0, -x + 2 >= 0, x - y == 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x + 1 >= 0, -x + 1 >= 0, x - y == 0)",
"(x,y) : (x >= 0, -x + 2 >= 0, x - y == 0)",
});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceSeparateEq) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x - 3 >= 0, -x + 4 >= 0, x - y == 0)",
"(x,y) : (x >= 0, -x + 1 >= 0, x - y == 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x - 3 >= 0, -x + 4 >= 0, x - y == 0)",
"(x,y) : (x >= 0, -x + 1 >= 0, x - y == 0)",
});
expectCoalesce(2, set);
}
TEST(SetTest, coalesceContainedEqAsIneq) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x >= 0, -x + 3 >= 0, x - y >= 0, -x + y >= 0)",
"(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x >= 0, -x + 3 >= 0, x - y >= 0, -x + y >= 0)",
"(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceContainedEqComplex) {
PresburgerSet set = parsePresburgerSet({
"(x,y) : (x - 2 == 0, x - y == 0)",
"(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
2, {
"(x,y) : (x - 2 == 0, x - y == 0)",
"(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)",
});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceThreeContained) {
PresburgerSet set = parsePresburgerSet({
"(x) : (x >= 0, -x + 1 >= 0)",
"(x) : (x >= 0, -x + 2 >= 0)",
"(x) : (x >= 0, -x + 3 >= 0)",
});
PresburgerSet set =
parsePresburgerSetFromPolyStrings(1, {
"(x) : (x >= 0, -x + 1 >= 0)",
"(x) : (x >= 0, -x + 2 >= 0)",
"(x) : (x >= 0, -x + 3 >= 0)",
});
expectCoalesce(1, set);
}
TEST(SetTest, coalesceDoubleIncrement) {
PresburgerSet set = parsePresburgerSet({
"(x) : (x == 0)",
"(x) : (x - 2 == 0)",
"(x) : (x + 2 == 0)",
"(x) : (x - 2 >= 0, -x + 3 >= 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {
"(x) : (x == 0)",
"(x) : (x - 2 == 0)",
"(x) : (x + 2 == 0)",
"(x) : (x - 2 >= 0, -x + 3 >= 0)",
});
expectCoalesce(3, set);
}
TEST(SetTest, coalesceLastCoalesced) {
PresburgerSet set = parsePresburgerSet({
"(x) : (x == 0)",
"(x) : (x - 1 >= 0, -x + 3 >= 0)",
"(x) : (x + 2 == 0)",
"(x) : (x - 2 >= 0, -x + 4 >= 0)",
});
PresburgerSet set = parsePresburgerSetFromPolyStrings(
1, {
"(x) : (x == 0)",
"(x) : (x - 1 >= 0, -x + 3 >= 0)",
"(x) : (x + 2 == 0)",
"(x) : (x - 2 >= 0, -x + 4 >= 0)",
});
expectCoalesce(3, set);
}
TEST(SetTest, coalesceDiv) {
PresburgerSet set = parsePresburgerSet({
"(x) : (x floordiv 2 == 0)",
"(x) : (x floordiv 2 - 1 == 0)",
});
PresburgerSet set =
parsePresburgerSetFromPolyStrings(1, {
"(x) : (x floordiv 2 == 0)",
"(x) : (x floordiv 2 - 1 == 0)",
});
expectCoalesce(2, set);
}
TEST(SetTest, coalesceDivOtherContained) {
PresburgerSet set = parsePresburgerSet({
"(x) : (x floordiv 2 == 0)",
"(x) : (x == 0)",
"(x) : (x >= 0, -x + 1 >= 0)",
});
PresburgerSet set =
parsePresburgerSetFromPolyStrings(1, {
"(x) : (x floordiv 2 == 0)",
"(x) : (x == 0)",
"(x) : (x >= 0, -x + 1 >= 0)",
});
expectCoalesce(2, set);
}
@ -762,15 +788,15 @@ expectComputedVolumeIsValidOverapprox(const PresburgerSet &set,
TEST(SetTest, computeVolume) {
// Diamond with vertices at (0, 0), (5, 5), (5, 5), (10, 0).
PresburgerSet diamond(parseIntegerPolyhedron(
"(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0, -x + y + "
"10 >= 0)"));
PresburgerSet diamond(
parsePoly("(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0, -x + y + "
"10 >= 0)"));
expectComputedVolumeIsValidOverapprox(diamond,
/*trueVolume=*/61ull,
/*resultBound=*/121ull);
// Diamond with vertices at (-5, 0), (0, -5), (0, 5), (5, 0).
PresburgerSet shiftedDiamond(parseIntegerPolyhedron(
PresburgerSet shiftedDiamond(parsePoly(
"(x, y) : (x + y + 5 >= 0, -x - y + 5 >= 0, x - y + 5 >= 0, -x + y + "
"5 >= 0)"));
expectComputedVolumeIsValidOverapprox(shiftedDiamond,
@ -778,7 +804,7 @@ TEST(SetTest, computeVolume) {
/*resultBound=*/121ull);
// Diamond with vertices at (-5, 0), (5, -10), (5, 10), (15, 0).
PresburgerSet biggerDiamond(parseIntegerPolyhedron(
PresburgerSet biggerDiamond(parsePoly(
"(x, y) : (x + y + 5 >= 0, -x - y + 15 >= 0, x - y + 5 >= 0, -x + y + "
"15 >= 0)"));
expectComputedVolumeIsValidOverapprox(biggerDiamond,
@ -797,8 +823,7 @@ TEST(SetTest, computeVolume) {
/*resultBound=*/683ull);
// Unbounded polytope.
PresburgerSet unbounded(
parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"));
PresburgerSet unbounded(parsePoly("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"));
expectComputedVolumeIsValidOverapprox(unbounded, /*trueVolume=*/{},
/*resultBound=*/{});
@ -835,32 +860,35 @@ void testComputeRepr(IntegerPolyhedron poly, const PresburgerSet &expected,
}
TEST(SetTest, computeReprWithOnlyDivLocals) {
testComputeReprAtPoints(parseIntegerPolyhedron("(x, y) : (x - 2*y == 0)"),
testComputeReprAtPoints(parsePoly("(x, y) : (x - 2*y == 0)"),
{{1, 0}, {2, 1}, {3, 0}, {4, 2}, {5, 3}},
/*numToProject=*/0);
testComputeReprAtPoints(parseIntegerPolyhedron("(x, e) : (x - 2*e == 0)"),
testComputeReprAtPoints(parsePoly("(x, e) : (x - 2*e == 0)"),
{{1}, {2}, {3}, {4}, {5}}, /*numToProject=*/1);
// Tests to check that the space is preserved.
testComputeReprAtPoints(parseIntegerPolyhedron("(x, y)[z, w] : ()"), {},
testComputeReprAtPoints(parsePoly("(x, y)[z, w] : ()"), {},
/*numToProject=*/1);
testComputeReprAtPoints(parsePoly("(x, y)[z, w] : (z - (w floordiv 2) == 0)"),
{},
/*numToProject=*/1);
testComputeReprAtPoints(
parseIntegerPolyhedron("(x, y)[z, w] : (z - (w floordiv 2) == 0)"), {},
/*numToProject=*/1);
// Bezout's lemma: if a, b are constants,
// the set of values that ax + by can take is all multiples of gcd(a, b).
testComputeRepr(parseIntegerPolyhedron("(x, e, f) : (x - 15*e - 21*f == 0)"),
PresburgerSet(parseIntegerPolyhedron(
{"(x) : (x - 3*(x floordiv 3) == 0)"})),
/*numToProject=*/2);
testComputeRepr(
parsePoly("(x, e, f) : (x - 15*e - 21*f == 0)"),
PresburgerSet(parsePoly({"(x) : (x - 3*(x floordiv 3) == 0)"})),
/*numToProject=*/2);
}
TEST(SetTest, subtractOutputSizeRegression) {
PresburgerSet set1 = parsePresburgerSet({"(i) : (i >= 0, 10 - i >= 0)"});
PresburgerSet set2 = parsePresburgerSet({"(i) : (i - 5 >= 0)"});
PresburgerSet set1 =
parsePresburgerSetFromPolyStrings(1, {"(i) : (i >= 0, 10 - i >= 0)"});
PresburgerSet set2 =
parsePresburgerSetFromPolyStrings(1, {"(i) : (i - 5 >= 0)"});
PresburgerSet set3 = parsePresburgerSet({"(i) : (i >= 0, 4 - i >= 0)"});
PresburgerSet set3 =
parsePresburgerSetFromPolyStrings(1, {"(i) : (i >= 0, 4 - i >= 0)"});
PresburgerSet result = set1.subtract(set2);

View File

@ -6,8 +6,7 @@
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "Utils.h"
#include "./Utils.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/IR/MLIRContext.h"
@ -528,12 +527,10 @@ TEST(SimplexTest, isRedundantEquality) {
}
TEST(SimplexTest, IsRationalSubsetOf) {
IntegerPolyhedron univ = parseIntegerPolyhedron("(x) : ()");
IntegerPolyhedron empty =
parseIntegerPolyhedron("(x) : (x + 0 >= 0, -x - 1 >= 0)");
IntegerPolyhedron s1 = parseIntegerPolyhedron("(x) : ( x >= 0, -x + 4 >= 0)");
IntegerPolyhedron s2 =
parseIntegerPolyhedron("(x) : (x - 1 >= 0, -x + 3 >= 0)");
IntegerPolyhedron univ = parsePoly("(x) : ()");
IntegerPolyhedron empty = parsePoly("(x) : (x + 0 >= 0, -x - 1 >= 0)");
IntegerPolyhedron s1 = parsePoly("(x) : ( x >= 0, -x + 4 >= 0)");
IntegerPolyhedron s2 = parsePoly("(x) : (x - 1 >= 0, -x + 3 >= 0)");
Simplex simUniv(univ);
Simplex simEmpty(empty);

View File

@ -13,6 +13,7 @@
#ifndef MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H
#define MLIR_UNITTESTS_ANALYSIS_PRESBURGER_UTILS_H
#include "../../Dialect/Affine/Analysis/AffineStructuresParser.h"
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
@ -25,6 +26,30 @@
namespace mlir {
namespace presburger {
/// Parses a IntegerPolyhedron from a StringRef. It is expected that the
/// string represents a valid IntegerSet, otherwise it will violate a gtest
/// assertion.
inline IntegerPolyhedron parsePoly(StringRef str) {
MLIRContext context(MLIRContext::Threading::DISABLED);
FailureOr<IntegerPolyhedron> poly = parseIntegerSetToFAC(str, &context);
EXPECT_TRUE(succeeded(poly));
return *poly;
}
/// Parse a list of StringRefs to IntegerRelation and combine them into a
/// PresburgerSet be using the union operation. It is expected that the strings
/// are all valid IntegerSet representation and that all of them have the same
/// number of dimensions as is specified by the numDims argument.
inline PresburgerSet
parsePresburgerSetFromPolyStrings(unsigned numDims, ArrayRef<StringRef> strs,
unsigned numSymbols = 0) {
PresburgerSet set = PresburgerSet::getEmpty(
PresburgerSpace::getSetSpace(numDims, numSymbols));
for (StringRef str : strs)
set.unionInPlace(parsePoly(str));
return set;
}
inline Matrix makeMatrix(unsigned numRow, unsigned numColumns,
ArrayRef<SmallVector<int64_t, 8>> matrix) {
Matrix results(numRow, numColumns);
@ -38,6 +63,34 @@ inline Matrix makeMatrix(unsigned numRow, unsigned numColumns,
return results;
}
/// Construct a PWMAFunction given the dimensionalities and an array describing
/// the list of pieces. Each piece is given by a string describing the domain
/// and a 2D array that represents the output.
inline PWMAFunction parsePWMAF(
unsigned numInputs, unsigned numOutputs,
ArrayRef<std::pair<StringRef, SmallVector<SmallVector<int64_t, 8>, 8>>>
data,
unsigned numSymbols = 0) {
static MLIRContext context;
PWMAFunction result(
PresburgerSpace::getRelationSpace(numInputs, numOutputs, numSymbols));
for (const auto &pair : data) {
IntegerPolyhedron domain = parsePoly(pair.first);
PresburgerSpace funcSpace = result.getSpace();
funcSpace.insertVar(VarKind::Local, 0, domain.getNumLocalVars());
result.addPiece(
{PresburgerSet(domain),
MultiAffineFunction(
funcSpace,
makeMatrix(numOutputs, domain.getNumVars() + 1, pair.second),
domain.getLocalReprs())});
}
return result;
}
/// lhs and rhs represent non-negative integers or positive infinity. The
/// infinity case corresponds to when the Optional is empty.
inline bool infinityOrUInt64LE(Optional<MPInt> lhs, Optional<MPInt> rhs) {

View File

@ -0,0 +1,34 @@
//===- AffineStructuresParser.h - Parser for AffineStructures ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines helper functions to parse AffineStructures from
// StringRefs.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_UNITTEST_ANALYSIS_AFFINESTRUCTURESPARSER_H
#define MLIR_UNITTEST_ANALYSIS_AFFINESTRUCTURESPARSER_H
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Support/LogicalResult.h"
namespace mlir {
/// This parses a single IntegerSet to an MLIR context and transforms it to
/// IntegerPolyhedron if it was valid. If not, a failure is returned. If the
/// passed `str` has additional tokens that were not part of the IntegerSet, a
/// failure is returned. Diagnostics are printed on failure if
/// `printDiagnosticInfo` is true.
FailureOr<presburger::IntegerPolyhedron>
parseIntegerSetToFAC(llvm::StringRef, MLIRContext *context,
bool printDiagnosticInfo = true);
} // namespace mlir
#endif // MLIR_UNITTEST_ANALYSIS_AFFINESTRUCTURESPARSER_H

View File

@ -1,4 +1,4 @@
//===- PresbugerParserTest.cpp - Presburger parsing unit tests --*- C++ -*-===//
//===- AffineStructuresParserTest.cpp - FAC parsing unit tests --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@ -13,7 +13,8 @@
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "./AffineStructuresParser.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include <gtest/gtest.h>
@ -37,53 +38,99 @@ static IntegerPolyhedron makeFACFromConstraints(
return fac;
}
TEST(ParseFACTest, InvalidInputTest) {
MLIRContext context;
FailureOr<IntegerPolyhedron> fac;
fac = parseIntegerSetToFAC("(x)", &context, false);
EXPECT_TRUE(failed(fac))
<< "should not accept strings with no constraint list";
fac = parseIntegerSetToFAC("(x)[] : ())", &context, false);
EXPECT_TRUE(failed(fac))
<< "should not accept strings that contain remaining characters";
fac = parseIntegerSetToFAC("(x)[] : (x - >= 0)", &context, false);
EXPECT_TRUE(failed(fac))
<< "should not accept strings that contain incomplete constraints";
fac = parseIntegerSetToFAC("(x)[] : (y == 0)", &context, false);
EXPECT_TRUE(failed(fac))
<< "should not accept strings that contain unknown identifiers";
fac = parseIntegerSetToFAC("(x, x) : (2 * x >= 0)", &context, false);
EXPECT_TRUE(failed(fac))
<< "should not accept strings that contain repeated identifier names";
fac = parseIntegerSetToFAC("(x)[x] : (2 * x >= 0)", &context, false);
EXPECT_TRUE(failed(fac))
<< "should not accept strings that contain repeated identifier names";
fac = parseIntegerSetToFAC("(x) : (2 * x + 9223372036854775808 >= 0)",
&context, false);
EXPECT_TRUE(failed(fac)) << "should not accept strings with integer literals "
"that do not fit into int64_t";
}
/// Parses and compares the `str` to the `ex`. The equality check is performed
/// by using PresburgerSet::isEqual
static bool parseAndCompare(StringRef str, const IntegerPolyhedron &ex) {
IntegerPolyhedron poly = parseIntegerPolyhedron(str);
return PresburgerSet(poly).isEqual(PresburgerSet(ex));
static bool parseAndCompare(StringRef str, const IntegerPolyhedron &ex,
MLIRContext *context) {
FailureOr<IntegerPolyhedron> fac = parseIntegerSetToFAC(str, context);
EXPECT_TRUE(succeeded(fac));
return PresburgerSet(*fac).isEqual(PresburgerSet(ex));
}
TEST(ParseFACTest, ParseAndCompareTest) {
MLIRContext context;
// simple ineq
EXPECT_TRUE(parseAndCompare("(x)[] : (x >= 0)",
makeFACFromConstraints(1, 0, {{1, 0}})));
EXPECT_TRUE(parseAndCompare(
"(x)[] : (x >= 0)", makeFACFromConstraints(1, 0, {{1, 0}}), &context));
// simple eq
EXPECT_TRUE(parseAndCompare("(x)[] : (x == 0)",
makeFACFromConstraints(1, 0, {}, {{1, 0}})));
makeFACFromConstraints(1, 0, {}, {{1, 0}}),
&context));
// multiple constraints
EXPECT_TRUE(parseAndCompare("(x)[] : (7 * x >= 0, -7 * x + 5 >= 0)",
makeFACFromConstraints(1, 0, {{7, 0}, {-7, 5}})));
makeFACFromConstraints(1, 0, {{7, 0}, {-7, 5}}),
&context));
// multiple dimensions
EXPECT_TRUE(parseAndCompare("(x,y,z)[] : (x + y - z >= 0)",
makeFACFromConstraints(3, 0, {{1, 1, -1, 0}})));
makeFACFromConstraints(3, 0, {{1, 1, -1, 0}}),
&context));
// dimensions and symbols
EXPECT_TRUE(
parseAndCompare("(x,y,z)[a,b] : (x + y - z + 2 * a - 15 * b >= 0)",
makeFACFromConstraints(3, 2, {{1, 1, -1, 2, -15, 0}})));
EXPECT_TRUE(parseAndCompare(
"(x,y,z)[a,b] : (x + y - z + 2 * a - 15 * b >= 0)",
makeFACFromConstraints(3, 2, {{1, 1, -1, 2, -15, 0}}), &context));
// only symbols
EXPECT_TRUE(parseAndCompare("()[a] : (2 * a - 4 == 0)",
makeFACFromConstraints(0, 1, {}, {{2, -4}})));
makeFACFromConstraints(0, 1, {}, {{2, -4}}),
&context));
// simple floordiv
EXPECT_TRUE(parseAndCompare(
"(x, y) : (y - 3 * ((x + y - 13) floordiv 3) - 42 == 0)",
makeFACFromConstraints(2, 0, {}, {{0, 1, -3, -42}}, {{{1, 1, -13}, 3}})));
makeFACFromConstraints(2, 0, {}, {{0, 1, -3, -42}}, {{{1, 1, -13}, 3}}),
&context));
// multiple floordiv
EXPECT_TRUE(parseAndCompare(
"(x, y) : (y - x floordiv 3 - y floordiv 2 == 0)",
makeFACFromConstraints(2, 0, {}, {{0, 1, -1, -1, 0}},
{{{1, 0, 0}, 3}, {{0, 1, 0, 0}, 2}})));
{{{1, 0, 0}, 3}, {{0, 1, 0, 0}, 2}}),
&context));
// nested floordiv
EXPECT_TRUE(parseAndCompare(
"(x, y) : (y - (x + y floordiv 2) floordiv 3 == 0)",
makeFACFromConstraints(2, 0, {}, {{0, 1, 0, -1, 0}},
{{{0, 1, 0}, 2}, {{1, 0, 1, 0}, 3}})));
{{{0, 1, 0}, 2}, {{1, 0, 1, 0}, 3}}),
&context));
}

View File

@ -0,0 +1,10 @@
add_mlir_unittest(MLIRAffineAnalysisTests
AffineStructuresParser.cpp
AffineStructuresParserTest.cpp
)
target_link_libraries(MLIRAffineAnalysisTests
PRIVATE
MLIRAffineAnalysis
MLIRParser
)

View File

@ -0,0 +1 @@
add_subdirectory(Analysis)

View File

@ -6,6 +6,7 @@ target_link_libraries(MLIRDialectTests
MLIRIR
MLIRDialect)
add_subdirectory(Affine)
add_subdirectory(LLVMIR)
add_subdirectory(MemRef)
add_subdirectory(SparseTensor)