From 62fc44ca3cf66442b30e22b1be34afc492a2a388 Mon Sep 17 00:00:00 2001 From: Mircea Trofin Date: Mon, 10 Aug 2020 09:36:18 -0700 Subject: [PATCH] [MLInliner] In development mode, obtain the output specs from a file Different training algorithms may produce models that, besides the main policy output (i.e. inline/don't inline), produce additional outputs that are necessary for the next training stage. To facilitate this, in development mode, we require the training policy infrastructure produce a description of the outputs that are interesting to it, in the form of a JSON file. We special-case the first entry in the JSON file as the inlining decision - we care about its value, so we can guide inlining during training - but treat the rest as opaque data that we just copy over to the training log. Differential Revision: https://reviews.llvm.org/D85674 --- .../Analysis/DevelopmentModeInlineAdvisor.cpp | 180 +++++++++++++++--- .../Analysis/models/inliner/output_spec.json | 14 ++ .../Inline/ML/Inputs/test_output_spec.json | 25 +++ .../Inline/ML/development-training-log.ll | 8 +- 4 files changed, 202 insertions(+), 25 deletions(-) create mode 100644 llvm/lib/Analysis/models/inliner/output_spec.json create mode 100644 llvm/test/Transforms/Inline/ML/Inputs/test_output_spec.json diff --git a/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp b/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp index b20f9427525a..19ec8cbd4042 100644 --- a/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp +++ b/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp @@ -21,6 +21,7 @@ #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/Path.h" #include @@ -32,17 +33,43 @@ static cl::opt TrainingLog( static cl::opt TFModelUnderTrainingPath( "ml-inliner-model-under-training", cl::Hidden, - cl::desc("Path to SavedModel from the previous training iteration.")); + cl::desc(R"(Path to SavedModel from the previous training iteration. +The directory is also expected to contain a JSON specification of the +outputs expected to be logged, where the first entry must be the +inlining decision. The file containing the specification should be +called output_spec.json. The expected JSON value is an array of +dictionaries. Each dictionary should have 2 keys: + +- "tensor_spec, followed by the TensorSpec description of the +output; and +- "logging_name", a string indicating the name to use when +logging the output values. + +Example: +[ + { + "logging_name" : "some_name", + "tensor_spec" : { + "name" : "model_name", + "port" : 0, + "shape" : [2, 3], + "type" : "float" + } + } +] + +The first value must always correspond to the decision.)")); + +static cl::opt TFOutputSpecOverride( + "ml-inliner-output-spec-override", cl::Hidden, + cl::desc("Override the path to the output spec json file. See " + "-ml-inliner-model-under-training documentation for the " + "specification of that file.")); static cl::opt TFFeedPrefix("ml-inliner-trained-model-feed-prefix", cl::Hidden, cl::init("action_"), cl::desc("Prefix for feature names.")); -static cl::opt TFDecisionName( - "ml-inliner-trained-model-decision-name", cl::Hidden, - cl::init("StatefulPartitionedCall"), - cl::desc("Name of the graph operation representing the decision.")); - namespace { /// An InlineEvent, used by TrainingLogger. struct InlineEvent { @@ -69,9 +96,10 @@ struct InlineEvent { /// Because this is a protobuf, we cannot just stream the events as they come. /// Internally, TrainingLogger stores data in column-major format, because that /// lines up with how TF SequenceExample represents it. +class ModelUnderTrainingRunner; class TrainingLogger final { public: - TrainingLogger(StringRef LogFileName); + TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR); /// Log one inlining event. void logInlineEvent(const InlineEvent &Event, @@ -157,9 +185,13 @@ private: } StringRef LogFileName; + const ModelUnderTrainingRunner *const MUTR; std::vector Features; std::vector DefaultDecisions; - std::vector Decisions; + // We store all outputs as data blobs, but we always expect to have one, the + // first one, representing the decision. While we could track that separately, + // for uniformity, we store it, generically, here. + std::vector> Outputs; std::vector Effects; std::vector Rewards; }; @@ -336,8 +368,22 @@ public: int64_t getFeature(int Index) const override; bool isValid() const { return !!Evaluator; } + const std::vector outputNames() const { return OutputNames; } + + const std::vector outputSpecs() const { return OutputSpecs; } + + const Optional & + lastEvaluationResult() const { + return LastEvaluationResult; + } + private: std::unique_ptr Evaluator; + std::vector OutputNames; + std::vector OutputSpecs; + Optional LastEvaluationResult; + + bool loadOutputSpecs(LLVMContext &Ctx, StringRef FileName); // The training framework needs some additional features. const std::vector TrainingOnlyFeatures{ @@ -348,10 +394,15 @@ private: }; } // namespace -TrainingLogger::TrainingLogger(StringRef LogFileName) - : LogFileName(LogFileName) { +TrainingLogger::TrainingLogger(StringRef LogFileName, + const ModelUnderTrainingRunner *MUTR) + : LogFileName(LogFileName), MUTR(MUTR) { for (size_t I = 0; I < NumberOfFeatures; ++I) Features.push_back(InlineFeatures()); + + // The first output is the inlining decision. + auto OutputCount = MUTR ? MUTR->outputSpecs().size() : 1; + Outputs.assign(OutputCount, std::vector()); } /// Log one inlining event. @@ -360,16 +411,27 @@ void TrainingLogger::logInlineEvent(const InlineEvent &Event, for (size_t I = 0; I < NumberOfFeatures; ++I) Features[I].push_back(ModelRunner.getFeature(I)); - Decisions.push_back(Event.AdvisedDecision); Effects.push_back(Event.Effect); Rewards.push_back(Event.Reward); DefaultDecisions.push_back(Event.DefaultDecision); + int64_t Advice = static_cast(Event.AdvisedDecision); + const char *AdviceData = reinterpret_cast(&Advice); + Outputs[0].insert(Outputs[0].end(), AdviceData, AdviceData + sizeof(int64_t)); + for (size_t I = 1; I < Outputs.size(); ++I) { + const auto &Result = *MUTR->lastEvaluationResult(); + auto &Spec = MUTR->outputSpecs()[I]; + const char *RawData = + reinterpret_cast(Result.getUntypedTensorValue(I)); + Outputs[I].insert(Outputs[I].end(), RawData, + RawData + + Spec.getElementCount() * Spec.getElementByteSize()); + } } void TrainingLogger::print() { std::error_code EC; raw_fd_ostream OutFile(LogFileName, EC); - size_t NumberOfRecords = Decisions.size(); + size_t NumberOfRecords = Rewards.size(); if (NumberOfRecords == 0) return; @@ -383,13 +445,18 @@ void TrainingLogger::print() { OutFile, TensorSpec::createSpec(DefaultDecisionName, {1}), DefaultDecisions.data(), NumberOfRecords); - writeTensorsAsFeatureLists(OutFile, - TensorSpec::createSpec(DecisionName, {1}), - Decisions.data(), NumberOfRecords); + writeRawTensorsAsFeatureLists( + OutFile, TensorSpec::createSpec(DecisionName, {1}), + Outputs[0].data(), NumberOfRecords); writeTensorsAsFeatureLists(OutFile, TensorSpec::createSpec(RewardName, {1}), Rewards.data(), NumberOfRecords); + for (size_t I = 1; I < Outputs.size(); ++I) + writeRawTensorsAsFeatureLists(OutFile, MUTR->outputSpecs()[I], + Outputs[I].data(), NumberOfRecords, + StringRef(MUTR->outputNames()[I])); + OutFile << "}\n"; } @@ -472,13 +539,19 @@ ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath) : MLModelRunner(Ctx) { std::vector InputSpecs; - std::vector OutputSpecs; for (size_t I = 0; I < NumberOfFeatures; ++I) InputSpecs.push_back( TensorSpec::createSpec(TFFeedPrefix + FeatureNameMap[I], {1})); InputSpecs.insert(InputSpecs.end(), TrainingOnlyFeatures.begin(), TrainingOnlyFeatures.end()); - OutputSpecs.push_back(TensorSpec::createSpec(TFDecisionName, {1})); + SmallVector OutputSpecsPath; + StringRef OutputSpecPath = TFOutputSpecOverride; + if (OutputSpecPath.empty()) { + llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json"); + OutputSpecPath = {OutputSpecsPath.data(), OutputSpecsPath.size()}; + } + if (!loadOutputSpecs(Ctx, OutputSpecPath)) + return; Evaluator = std::make_unique(ModelPath, InputSpecs, OutputSpecs); @@ -489,13 +562,70 @@ ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx, } } +bool ModelUnderTrainingRunner::loadOutputSpecs(LLVMContext &Ctx, + StringRef FileName) { + auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName); + if (!BufferOrError) { + Ctx.emitError("Error opening output specs file: " + FileName + " : " + + BufferOrError.getError().message()); + return false; + } + auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer()); + if (!ParsedJSONValues) { + Ctx.emitError("Could not parse specs file: " + FileName); + return false; + } + auto ValuesArray = ParsedJSONValues->getAsArray(); + if (!ValuesArray) { + Ctx.emitError("Expected an array of {tensor_spec:, " + "logging_name:} dictionaries"); + return false; + } + + for (const auto &Value : *ValuesArray) + if (const auto *Obj = Value.getAsObject()) + if (const auto *SpecPart = Obj->get("tensor_spec")) + if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart)) + if (auto LoggingName = Obj->getString("logging_name")) { + if (!TensorSpec->isElementType() && + !TensorSpec->isElementType() && + !TensorSpec->isElementType()) { + Ctx.emitError( + "Only int64, int32, and float tensors are supported. " + "Found unsupported type for tensor named " + + TensorSpec->name()); + return false; + } + OutputNames.push_back(LoggingName->str()); + OutputSpecs.push_back(*TensorSpec); + } + + if (ValuesArray->size() != OutputNames.size()) { + Ctx.emitError( + "Unable to parse output spec. It should be a json file containing an " + "array of dictionaries. Each dictionary must have a 'tensor_spec' key, " + "with a json object describing a TensorSpec; and a 'logging_name' key, " + "which is a string to use as name when logging this tensor in the " + "training log."); + return false; + } + assert(OutputNames.size() == OutputSpecs.size()); + if (OutputNames.empty() || OutputNames[0] != DecisionName) { + Ctx.emitError("The first output spec must describe the decision tensor, " + "and must have the logging_name " + + StringRef(DecisionName)); + return false; + } + return true; +} + bool ModelUnderTrainingRunner::run() { - auto ER = Evaluator->evaluate(); - if (!ER.hasValue()) { + LastEvaluationResult = Evaluator->evaluate(); + if (!LastEvaluationResult.hasValue()) { Ctx.emitError("Error evaluating model."); return false; } - int64_t Decision = *ER->getTensorValue(0); + int64_t Decision = *LastEvaluationResult->getTensorValue(0); return static_cast(Decision); } @@ -521,22 +651,24 @@ std::unique_ptr llvm::getDevelopmentModeAdvisor( } std::unique_ptr Runner; - + ModelUnderTrainingRunner *MUTRPtr = nullptr; bool IsDoingInference = false; if (TFModelUnderTrainingPath.empty()) Runner.reset(new NoInferenceModelRunner(Ctx)); else { - Runner = std::make_unique( + auto MUTR = std::make_unique( Ctx, TFModelUnderTrainingPath); - if (!Runner) { + if (!MUTR || !MUTR->isValid()) { Ctx.emitError("Could not load the policy model from the provided path"); return nullptr; } IsDoingInference = true; + MUTRPtr = MUTR.get(); + Runner = std::move(MUTR); } std::unique_ptr Logger; if (!TrainingLog.empty()) - Logger = std::make_unique(TrainingLog); + Logger = std::make_unique(TrainingLog, MUTRPtr); return std::make_unique( M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference, diff --git a/llvm/lib/Analysis/models/inliner/output_spec.json b/llvm/lib/Analysis/models/inliner/output_spec.json new file mode 100644 index 000000000000..d9e2060cf176 --- /dev/null +++ b/llvm/lib/Analysis/models/inliner/output_spec.json @@ -0,0 +1,14 @@ +[ + { + "logging_name": "inlining_decision", + "tensor_spec": { + "name": "StatefulPartitionedCall", + "port": 0, + "type": "int64", + "shape": [ + 1 + ] + } + } +] + \ No newline at end of file diff --git a/llvm/test/Transforms/Inline/ML/Inputs/test_output_spec.json b/llvm/test/Transforms/Inline/ML/Inputs/test_output_spec.json new file mode 100644 index 000000000000..bd6a19c9572b --- /dev/null +++ b/llvm/test/Transforms/Inline/ML/Inputs/test_output_spec.json @@ -0,0 +1,25 @@ +[ + { + "logging_name": "inlining_decision", + "tensor_spec": { + "name": "StatefulPartitionedCall", + "port": 0, + "type": "int64", + "shape": [ + 1 + ] + } + }, + { + "logging_name": "fake_extra_output", + "tensor_spec": { + "name": "StatefulPartitionedCall", + "port": 0, + "type": "int64", + "shape": [ + 1 + ] + } + } +] + \ No newline at end of file diff --git a/llvm/test/Transforms/Inline/ML/development-training-log.ll b/llvm/test/Transforms/Inline/ML/development-training-log.ll index 4bf6259f7e48..77347455958b 100644 --- a/llvm/test/Transforms/Inline/ML/development-training-log.ll +++ b/llvm/test/Transforms/Inline/ML/development-training-log.ll @@ -1,6 +1,7 @@ ; Test that we can produce a log if we have or do not have a model, in development mode. ; REQUIRES: have_tf_api ; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-model-under-training=%S/../../../../lib/Analysis/models/inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s +; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-model-under-training=%S/../../../../lib/Analysis/models/inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-output-spec-override=%S/Inputs/test_output_spec.json -S < %s | FileCheck %s --check-prefix=EXTRA-OUTPUTS ; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" @@ -48,4 +49,9 @@ define dso_local i32 @top() { ; CHECK-NEXT: key: "delta_size" value: { ; CHECK-NEXT: feature: { int64_list: { value: [0] } } ; CHECK-NEXT: } -; CHECK-NEXT: } \ No newline at end of file +; CHECK-NEXT: } +; CHECK-NOT: fake_extra_output +; EXTRA-OUTPUTS: key: "fake_extra_output" value: { +; EXTRA-OUTPUTS-NEXT: feature: { int64_list: { value: [1] } } +; EXTRA-OUTPUTS-NEXT: } +; EXTRA-OUTPUTS-NEXT: } \ No newline at end of file