[MLInliner] In development mode, obtain the output specs from a file

Different training algorithms may produce models that, besides the main
policy output (i.e. inline/don't inline), produce additional outputs
that are necessary for the next training stage. To facilitate this, in
development mode, we require the training policy infrastructure produce
a description of the outputs that are interesting to it, in the form of
a JSON file. We special-case the first entry in the JSON file as the
inlining decision - we care about its value, so we can guide inlining
during training - but treat the rest as opaque data that we just copy
over to the training log.

Differential Revision: https://reviews.llvm.org/D85674
This commit is contained in:
Mircea Trofin 2020-08-10 09:36:18 -07:00
parent 819b2d9c79
commit 62fc44ca3c
4 changed files with 202 additions and 25 deletions

View File

@ -21,6 +21,7 @@
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Path.h"
#include <vector>
@ -32,17 +33,43 @@ static cl::opt<std::string> TrainingLog(
static cl::opt<std::string> TFModelUnderTrainingPath(
"ml-inliner-model-under-training", cl::Hidden,
cl::desc("Path to SavedModel from the previous training iteration."));
cl::desc(R"(Path to SavedModel from the previous training iteration.
The directory is also expected to contain a JSON specification of the
outputs expected to be logged, where the first entry must be the
inlining decision. The file containing the specification should be
called output_spec.json. The expected JSON value is an array of
dictionaries. Each dictionary should have 2 keys:
- "tensor_spec, followed by the TensorSpec description of the
output; and
- "logging_name", a string indicating the name to use when
logging the output values.
Example:
[
{
"logging_name" : "some_name",
"tensor_spec" : {
"name" : "model_name",
"port" : 0,
"shape" : [2, 3],
"type" : "float"
}
}
]
The first value must always correspond to the decision.)"));
static cl::opt<std::string> TFOutputSpecOverride(
"ml-inliner-output-spec-override", cl::Hidden,
cl::desc("Override the path to the output spec json file. See "
"-ml-inliner-model-under-training documentation for the "
"specification of that file."));
static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix",
cl::Hidden, cl::init("action_"),
cl::desc("Prefix for feature names."));
static cl::opt<std::string> TFDecisionName(
"ml-inliner-trained-model-decision-name", cl::Hidden,
cl::init("StatefulPartitionedCall"),
cl::desc("Name of the graph operation representing the decision."));
namespace {
/// An InlineEvent, used by TrainingLogger.
struct InlineEvent {
@ -69,9 +96,10 @@ struct InlineEvent {
/// Because this is a protobuf, we cannot just stream the events as they come.
/// Internally, TrainingLogger stores data in column-major format, because that
/// lines up with how TF SequenceExample represents it.
class ModelUnderTrainingRunner;
class TrainingLogger final {
public:
TrainingLogger(StringRef LogFileName);
TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR);
/// Log one inlining event.
void logInlineEvent(const InlineEvent &Event,
@ -157,9 +185,13 @@ private:
}
StringRef LogFileName;
const ModelUnderTrainingRunner *const MUTR;
std::vector<InlineFeatures> Features;
std::vector<int64_t> DefaultDecisions;
std::vector<int64_t> Decisions;
// We store all outputs as data blobs, but we always expect to have one, the
// first one, representing the decision. While we could track that separately,
// for uniformity, we store it, generically, here.
std::vector<std::vector<char>> Outputs;
std::vector<bool> Effects;
std::vector<int64_t> Rewards;
};
@ -336,8 +368,22 @@ public:
int64_t getFeature(int Index) const override;
bool isValid() const { return !!Evaluator; }
const std::vector<std::string> outputNames() const { return OutputNames; }
const std::vector<TensorSpec> outputSpecs() const { return OutputSpecs; }
const Optional<TFModelEvaluator::EvaluationResult> &
lastEvaluationResult() const {
return LastEvaluationResult;
}
private:
std::unique_ptr<TFModelEvaluator> Evaluator;
std::vector<std::string> OutputNames;
std::vector<TensorSpec> OutputSpecs;
Optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult;
bool loadOutputSpecs(LLVMContext &Ctx, StringRef FileName);
// The training framework needs some additional features.
const std::vector<TensorSpec> TrainingOnlyFeatures{
@ -348,10 +394,15 @@ private:
};
} // namespace
TrainingLogger::TrainingLogger(StringRef LogFileName)
: LogFileName(LogFileName) {
TrainingLogger::TrainingLogger(StringRef LogFileName,
const ModelUnderTrainingRunner *MUTR)
: LogFileName(LogFileName), MUTR(MUTR) {
for (size_t I = 0; I < NumberOfFeatures; ++I)
Features.push_back(InlineFeatures());
// The first output is the inlining decision.
auto OutputCount = MUTR ? MUTR->outputSpecs().size() : 1;
Outputs.assign(OutputCount, std::vector<char>());
}
/// Log one inlining event.
@ -360,16 +411,27 @@ void TrainingLogger::logInlineEvent(const InlineEvent &Event,
for (size_t I = 0; I < NumberOfFeatures; ++I)
Features[I].push_back(ModelRunner.getFeature(I));
Decisions.push_back(Event.AdvisedDecision);
Effects.push_back(Event.Effect);
Rewards.push_back(Event.Reward);
DefaultDecisions.push_back(Event.DefaultDecision);
int64_t Advice = static_cast<int64_t>(Event.AdvisedDecision);
const char *AdviceData = reinterpret_cast<const char *>(&Advice);
Outputs[0].insert(Outputs[0].end(), AdviceData, AdviceData + sizeof(int64_t));
for (size_t I = 1; I < Outputs.size(); ++I) {
const auto &Result = *MUTR->lastEvaluationResult();
auto &Spec = MUTR->outputSpecs()[I];
const char *RawData =
reinterpret_cast<const char *>(Result.getUntypedTensorValue(I));
Outputs[I].insert(Outputs[I].end(), RawData,
RawData +
Spec.getElementCount() * Spec.getElementByteSize());
}
}
void TrainingLogger::print() {
std::error_code EC;
raw_fd_ostream OutFile(LogFileName, EC);
size_t NumberOfRecords = Decisions.size();
size_t NumberOfRecords = Rewards.size();
if (NumberOfRecords == 0)
return;
@ -383,13 +445,18 @@ void TrainingLogger::print() {
OutFile, TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}),
DefaultDecisions.data(), NumberOfRecords);
writeTensorsAsFeatureLists(OutFile,
TensorSpec::createSpec<int64_t>(DecisionName, {1}),
Decisions.data(), NumberOfRecords);
writeRawTensorsAsFeatureLists(
OutFile, TensorSpec::createSpec<int64_t>(DecisionName, {1}),
Outputs[0].data(), NumberOfRecords);
writeTensorsAsFeatureLists(OutFile,
TensorSpec::createSpec<int64_t>(RewardName, {1}),
Rewards.data(), NumberOfRecords);
for (size_t I = 1; I < Outputs.size(); ++I)
writeRawTensorsAsFeatureLists(OutFile, MUTR->outputSpecs()[I],
Outputs[I].data(), NumberOfRecords,
StringRef(MUTR->outputNames()[I]));
OutFile << "}\n";
}
@ -472,13 +539,19 @@ ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx,
const std::string &ModelPath)
: MLModelRunner(Ctx) {
std::vector<TensorSpec> InputSpecs;
std::vector<TensorSpec> OutputSpecs;
for (size_t I = 0; I < NumberOfFeatures; ++I)
InputSpecs.push_back(
TensorSpec::createSpec<int64_t>(TFFeedPrefix + FeatureNameMap[I], {1}));
InputSpecs.insert(InputSpecs.end(), TrainingOnlyFeatures.begin(),
TrainingOnlyFeatures.end());
OutputSpecs.push_back(TensorSpec::createSpec<int64_t>(TFDecisionName, {1}));
SmallVector<char, 128> OutputSpecsPath;
StringRef OutputSpecPath = TFOutputSpecOverride;
if (OutputSpecPath.empty()) {
llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
OutputSpecPath = {OutputSpecsPath.data(), OutputSpecsPath.size()};
}
if (!loadOutputSpecs(Ctx, OutputSpecPath))
return;
Evaluator =
std::make_unique<TFModelEvaluator>(ModelPath, InputSpecs, OutputSpecs);
@ -489,13 +562,70 @@ ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx,
}
}
bool ModelUnderTrainingRunner::loadOutputSpecs(LLVMContext &Ctx,
StringRef FileName) {
auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
if (!BufferOrError) {
Ctx.emitError("Error opening output specs file: " + FileName + " : " +
BufferOrError.getError().message());
return false;
}
auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
if (!ParsedJSONValues) {
Ctx.emitError("Could not parse specs file: " + FileName);
return false;
}
auto ValuesArray = ParsedJSONValues->getAsArray();
if (!ValuesArray) {
Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
"logging_name:<name>} dictionaries");
return false;
}
for (const auto &Value : *ValuesArray)
if (const auto *Obj = Value.getAsObject())
if (const auto *SpecPart = Obj->get("tensor_spec"))
if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
if (auto LoggingName = Obj->getString("logging_name")) {
if (!TensorSpec->isElementType<int64_t>() &&
!TensorSpec->isElementType<int32_t>() &&
!TensorSpec->isElementType<float>()) {
Ctx.emitError(
"Only int64, int32, and float tensors are supported. "
"Found unsupported type for tensor named " +
TensorSpec->name());
return false;
}
OutputNames.push_back(LoggingName->str());
OutputSpecs.push_back(*TensorSpec);
}
if (ValuesArray->size() != OutputNames.size()) {
Ctx.emitError(
"Unable to parse output spec. It should be a json file containing an "
"array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
"with a json object describing a TensorSpec; and a 'logging_name' key, "
"which is a string to use as name when logging this tensor in the "
"training log.");
return false;
}
assert(OutputNames.size() == OutputSpecs.size());
if (OutputNames.empty() || OutputNames[0] != DecisionName) {
Ctx.emitError("The first output spec must describe the decision tensor, "
"and must have the logging_name " +
StringRef(DecisionName));
return false;
}
return true;
}
bool ModelUnderTrainingRunner::run() {
auto ER = Evaluator->evaluate();
if (!ER.hasValue()) {
LastEvaluationResult = Evaluator->evaluate();
if (!LastEvaluationResult.hasValue()) {
Ctx.emitError("Error evaluating model.");
return false;
}
int64_t Decision = *ER->getTensorValue<int64_t>(0);
int64_t Decision = *LastEvaluationResult->getTensorValue<int64_t>(0);
return static_cast<bool>(Decision);
}
@ -521,22 +651,24 @@ std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor(
}
std::unique_ptr<MLModelRunner> Runner;
ModelUnderTrainingRunner *MUTRPtr = nullptr;
bool IsDoingInference = false;
if (TFModelUnderTrainingPath.empty())
Runner.reset(new NoInferenceModelRunner(Ctx));
else {
Runner = std::make_unique<ModelUnderTrainingRunner>(
auto MUTR = std::make_unique<ModelUnderTrainingRunner>(
Ctx, TFModelUnderTrainingPath);
if (!Runner) {
if (!MUTR || !MUTR->isValid()) {
Ctx.emitError("Could not load the policy model from the provided path");
return nullptr;
}
IsDoingInference = true;
MUTRPtr = MUTR.get();
Runner = std::move(MUTR);
}
std::unique_ptr<TrainingLogger> Logger;
if (!TrainingLog.empty())
Logger = std::make_unique<TrainingLogger>(TrainingLog);
Logger = std::make_unique<TrainingLogger>(TrainingLog, MUTRPtr);
return std::make_unique<DevelopmentModeMLInlineAdvisor>(
M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference,

View File

@ -0,0 +1,14 @@
[
{
"logging_name": "inlining_decision",
"tensor_spec": {
"name": "StatefulPartitionedCall",
"port": 0,
"type": "int64",
"shape": [
1
]
}
}
]

View File

@ -0,0 +1,25 @@
[
{
"logging_name": "inlining_decision",
"tensor_spec": {
"name": "StatefulPartitionedCall",
"port": 0,
"type": "int64",
"shape": [
1
]
}
},
{
"logging_name": "fake_extra_output",
"tensor_spec": {
"name": "StatefulPartitionedCall",
"port": 0,
"type": "int64",
"shape": [
1
]
}
}
]

View File

@ -1,6 +1,7 @@
; Test that we can produce a log if we have or do not have a model, in development mode.
; REQUIRES: have_tf_api
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-model-under-training=%S/../../../../lib/Analysis/models/inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-model-under-training=%S/../../../../lib/Analysis/models/inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-output-spec-override=%S/Inputs/test_output_spec.json -S < %s | FileCheck %s --check-prefix=EXTRA-OUTPUTS
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
@ -48,4 +49,9 @@ define dso_local i32 @top() {
; CHECK-NEXT: key: "delta_size" value: {
; CHECK-NEXT: feature: { int64_list: { value: [0] } }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NOT: fake_extra_output
; EXTRA-OUTPUTS: key: "fake_extra_output" value: {
; EXTRA-OUTPUTS-NEXT: feature: { int64_list: { value: [1] } }
; EXTRA-OUTPUTS-NEXT: }
; EXTRA-OUTPUTS-NEXT: }