diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_out_mult_elt.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_out_mult_elt.mlir new file mode 100644 index 000000000000..e57a86d12a11 --- /dev/null +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_out_mult_elt.mlir @@ -0,0 +1,82 @@ +// RUN: mlir-opt %s \ +// RUN: --sparsification --sparse-tensor-conversion \ +// RUN: --linalg-bufferize --convert-linalg-to-loops \ +// RUN: --convert-vector-to-scf --convert-scf-to-std \ +// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ +// RUN: --std-bufferize --finalizing-bufferize --lower-affine \ +// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-math-to-llvm \ +// RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \ +// RUN: mlir-cpu-runner \ +// RUN: -e entry -entry-point-result=void \ +// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ +// RUN: FileCheck %s + +#DCSR = #sparse_tensor.encoding<{ + dimLevelType = [ "compressed", "compressed" ] +}> + +#trait_mult_elt = { + indexing_maps = [ + affine_map<(i,j) -> (i,j)>, // A + affine_map<(i,j) -> (i,j)>, // B + affine_map<(i,j) -> (i,j)> // X (out) + ], + iterator_types = ["parallel", "parallel"], + doc = "X(i,j) = A(i,j) * B(i,j)" +} + +module { + // Sparse kernel. + func @sparse_mult_elt( + %arga: tensor<32x16xf32, #DCSR>, %argb: tensor<32x16xf32, #DCSR>) -> tensor<32x16xf32, #DCSR> { + %c16 = arith.constant 16 : index + %c32 = arith.constant 32 : index + %argx = sparse_tensor.init [%c32, %c16] : tensor<32x16xf32, #DCSR> + %0 = linalg.generic #trait_mult_elt + ins(%arga, %argb: tensor<32x16xf32, #DCSR>, tensor<32x16xf32, #DCSR>) + outs(%argx: tensor<32x16xf32, #DCSR>) { + ^bb(%a: f32, %b: f32, %x: f32): + %1 = arith.mulf %a, %b : f32 + linalg.yield %1 : f32 + } -> tensor<32x16xf32, #DCSR> + return %0 : tensor<32x16xf32, #DCSR> + } + + // Driver method to call and verify kernel. + func @entry() { + %c0 = arith.constant 0 : index + %f1 = arith.constant -1.0 : f32 + + // Setup very sparse matrices. + %ta = arith.constant sparse< + [ [2,2], [15,15], [31,0], [31,14] ], [ 2.0, 3.0, -2.0, 4.0 ] + > : tensor<32x16xf32> + %tb = arith.constant sparse< + [ [1,1], [2,0], [2,2], [2,15], [31,0], [31,15] ], [ 5.0, 6.0, 7.0, 8.0, -10.0, 9.0 ] + > : tensor<32x16xf32> + %sta = sparse_tensor.convert %ta + : tensor<32x16xf32> to tensor<32x16xf32, #DCSR> + %stb = sparse_tensor.convert %tb + : tensor<32x16xf32> to tensor<32x16xf32, #DCSR> + + // Call kernel. + %0 = call @sparse_mult_elt(%sta, %stb) + : (tensor<32x16xf32, #DCSR>, + tensor<32x16xf32, #DCSR>) -> tensor<32x16xf32, #DCSR> + + // + // Verify results. Only two entries stored in result! + // + // CHECK: ( 14, 20, -1, -1 ) + // + %val = sparse_tensor.values %0 : tensor<32x16xf32, #DCSR> to memref + %vv = vector.transfer_read %val[%c0], %f1: memref, vector<4xf32> + vector.print %vv : vector<4xf32> + + // Release the resources. + sparse_tensor.release %sta : tensor<32x16xf32, #DCSR> + sparse_tensor.release %stb : tensor<32x16xf32, #DCSR> + sparse_tensor.release %0 : tensor<32x16xf32, #DCSR> + return + } +}