Linalg3 example: implement JIT-compilation and execution

Use MLIR's ExecutionEngine to demonstrate how one can implement a simple
    JIT-compiler and executor after fully lowering the Linalg dialect to the LLVM
    IR dialect, using the direct conversion (not going through standard
    loads/stores).

--

PiperOrigin-RevId: 242127690
This commit is contained in:
Alex Zinenko 2019-04-05 08:18:13 -07:00 committed by Mehdi Amini
parent 33285de937
commit 6196c8a9fd
1 changed files with 159 additions and 0 deletions

View File

@ -0,0 +1,159 @@
//===- Conversion.cpp - Linalg to LLVM execution driver -------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "TestHarness.h"
#include "linalg1/Common.h"
#include "linalg2/Intrinsics.h"
#include "linalg3/ConvertToLLVMDialect.h"
#include "linalg3/Ops.h"
#include "linalg3/Transforms.h"
#include "llvm/Support/TargetSelect.h"
#include "mlir/ExecutionEngine/ExecutionEngine.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace linalg;
using namespace linalg::common;
using namespace linalg::intrinsics;
Function *makeFunctionWithAMatmulOp(Module &module, StringRef name) {
MLIRContext *context = module.getContext();
auto dynamic2DMemRefType = floatMemRefType<2>(context);
mlir::Function *f = linalg::common::makeFunction(
module, name,
{dynamic2DMemRefType, dynamic2DMemRefType, dynamic2DMemRefType}, {});
ScopedContext scope(f);
// clang-format off
ValueHandle
M = dim(f->getArgument(0), 0),
N = dim(f->getArgument(2), 1),
K = dim(f->getArgument(0), 1),
rM = range(constant_index(0), M, constant_index(1)),
rN = range(constant_index(0), N, constant_index(1)),
rK = range(constant_index(0), K, constant_index(1)),
vA = view(f->getArgument(0), {rM, rK}),
vB = view(f->getArgument(1), {rK, rN}),
vC = view(f->getArgument(2), {rM, rN});
matmul(vA, vB, vC);
ret();
// clang-format on
return f;
}
// Representation of a Memref descriptor for a 2D dynamically-sized Memref in C.
// This is equivalent to the structure that the conversion produces.
struct MemRefDescriptor2D {
float *ptr;
int64_t sz1;
int64_t sz2;
};
// Alocate a 2D memref of the given size, store the sizes in the descriptor and
// initialize all values with 1.0f.
static MemRefDescriptor2D allocateInit2DMemref(int64_t sz1, int64_t sz2) {
MemRefDescriptor2D descriptor;
descriptor.ptr = static_cast<float *>(malloc(sizeof(float) * sz1 * sz2));
descriptor.sz1 = sz1;
descriptor.sz2 = sz2;
for (int64_t i = 0, e = sz1 * sz2; i < e; ++i)
descriptor.ptr[i] = 1.0f;
return descriptor;
}
// Print the contents of the memref given its descriptor.
static void print2DMemref(const MemRefDescriptor2D &descriptor) {
for (int64_t i = 0; i < descriptor.sz1; ++i) {
llvm::outs() << '[';
for (int64_t j = 0; j < descriptor.sz2; ++j) {
if (j != 0)
llvm::outs() << ", ";
llvm::outs() << descriptor.ptr[i * descriptor.sz2 + j];
}
llvm::outs() << "]\n";
}
}
// Free a 2D memref given its descriptor. Resets the pointer in the descriptor
// to nullptr.
static void free2DMemref(MemRefDescriptor2D &descriptor) {
free(descriptor.ptr);
descriptor.ptr = nullptr;
}
TEST_FUNC(execution) {
// Create an MLIR module, create a function "matmul_as_loops" containing a
// linalg.matmul operation and lower it all the way down to the LLVM IR
// dialect through partial conversions.
MLIRContext context;
Module module(&context);
mlir::Function *f = makeFunctionWithAMatmulOp(module, "matmul_as_loops");
lowerToLoops(f);
convertLinalg3ToLLVM(module);
// Create an MLIR execution engine. Note that it takes a null pass manager
// to make sure it won't run "default" passes on the MLIR that would trigger
// a second conversion to LLVM IR. The execution engine eagerly JIT-compiles
// the module.
auto maybeEngine = mlir::ExecutionEngine::create(&module, /*pm=*/nullptr);
assert(maybeEngine && "failed to construct an execution engine");
auto &engine = maybeEngine.get();
// Prepare arguments for the function invocation: allocate input and output
// buffers.
auto A = allocateInit2DMemref(5, 3);
auto B = allocateInit2DMemref(3, 2);
auto C = allocateInit2DMemref(5, 2);
llvm::SmallVector<void *, 4> args;
args.push_back(&A);
args.push_back(&B);
args.push_back(&C);
// Invoke the JIT-compiled function with the arguments. Note that, for API
// uniformity reasons, it takes a list of type-erased pointers to arguments.
auto invocationResult =
engine->invoke("matmul_as_loops", MutableArrayRef<void *>(args));
assert(!invocationResult && "call failed");
// clang-format off
// CHECK: [3.000000e+00, 3.000000e+00]
// CHECK-NEXT: [3.000000e+00, 3.000000e+00]
// CHECK-NEXT: [3.000000e+00, 3.000000e+00]
// CHECK-NEXT: [3.000000e+00, 3.000000e+00]
// CHECK-NEXT: [3.000000e+00, 3.000000e+00]
// clang-format on
print2DMemref(C);
// Cleanup.
free2DMemref(A);
free2DMemref(B);
free2DMemref(C);
}
int main() {
// Initialize LLVM targets.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
RUN_TESTS();
return 0;
}