[MLIR] Introduce normalized single-result unbounded AffineApplyOp

Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL introduces a simpler abstraction and composition of single-result
unbounded AffineApplyOp by using the existing unbound AffineMap composition.

This CL adds a simple API call and relevant tests:

```c++
OpPointer<AffineApplyOp> makeNormalizedAffineApply(
  FuncBuilder *b, Location loc, AffineMap map, ArrayRef<Value*> operands);
```

which creates a single-result unbounded AffineApplyOp.
The operands of AffineApplyOp are not themselves results of AffineApplyOp by
consrtuction.

This represent the simplest possible interface to complement the composition
of (mathematical) AffineMap, for the cases when we are interested in applying
it to Value*.

In this CL the composed AffineMap is not compressed (i.e. there exist operands
that are not part of the result). A followup commit will compress to normal
form.

The single-result unbounded AffineApplyOp abstraction will be used in a
followup CL to support the MaterializeVectors pass.

PiperOrigin-RevId: 227879021
This commit is contained in:
Nicolas Vasilache 2019-01-04 10:45:58 -08:00 committed by jpienaar
parent d2cd083f79
commit 618c6a74c6
9 changed files with 355 additions and 55 deletions

View File

@ -63,6 +63,8 @@ struct MLFunctionMatches {
iterator begin();
iterator end();
EntryType &front();
EntryType &back();
unsigned size() { return end() - begin(); }
unsigned empty() { return size() == 0; }

View File

@ -24,10 +24,17 @@
namespace mlir {
class AffineApplyOp;
class AffineMap;
class ForInst;
class FuncBuilder;
class Instruction;
class Location;
class MemRefType;
class OperationInst;
template <typename ObjectType, typename ElementType> class OperandIterator;
template <typename OpType> class OpPointer;
class Value;
class VectorType;
/// Computes and returns the multi-dimensional ratio of `superShape` to
@ -121,6 +128,23 @@ AffineMap
makePermutationMap(OperationInst *opInst,
const llvm::DenseMap<ForInst *, unsigned> &loopToVectorDim);
/// Creates an AffineApplyOp that is normalized for super-vectorization. That is
/// an AffineApplyOp with a single result and an unbounded AffineMap. The
/// operands of the AffineApplyOp are either dims, symbols or constants but can
/// never be obtained from other AffineApplyOp.
/// This is achieved by performing a composition at the single-result AffineMap
/// level.
///
/// Prerequisite:
/// 1. `map` is a single result, unbounded, AffineMap;
/// 2. `operands` can involve at most a length-1 chain of AffineApplyOp. The
/// affine map for each of these AffineApplyOp is itself single result and
/// unbounded. Essentially, all ancestor AffineApplyOp must have been
/// constructed as single-result, unbounded, AffineMaps.
OpPointer<AffineApplyOp> makeNormalizedAffineApply(FuncBuilder *b, Location loc,
AffineMap map,
ArrayRef<Value *> operands);
namespace matcher {
/// Matches vector_transfer_read, vector_transfer_write and ops that return a

View File

@ -24,7 +24,7 @@
#define MLIR_IR_AFFINE_EXPR_H
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Casting.h"
#include <type_traits>
@ -202,22 +202,6 @@ AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context);
AffineExpr getAffineBinaryExpr(AffineExprKind kind, AffineExpr lhs,
AffineExpr rhs);
/// This auxiliary free function allows conveniently capturing the LHS, RHS and
/// AffineExprBinaryOp in an AffineBinaryOpExpr.
/// In particular it is used to elegantly write compositions as such:
/// ```c++
/// AffineMap g = /* Some affine map */;
/// if (auto binExpr = e.template dyn_cast<AffineBinaryOpExpr>()) {
/// AffineExpr lhs, rhs;
/// AffineExprBinaryOp binOp;
/// std::tie(lhs, rhs, binOp) = matchBinaryOpExpr(binExpr);
/// return binOp(compose(lhs, g), compose(rhs, g));
/// }
/// ```
using AffineExprBinaryOp = std::function<AffineExpr(AffineExpr, AffineExpr)>;
std::tuple<AffineExpr, AffineExpr, AffineExprBinaryOp>
matchBinaryOpExpr(AffineBinaryOpExpr e);
raw_ostream &operator<<(raw_ostream &os, AffineExpr &expr);
template <typename U> bool AffineExpr::isa() const {

View File

@ -367,10 +367,9 @@ AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
/// `exprs.size()`.
static AffineExpr substExprs(AffineExpr e, llvm::ArrayRef<AffineExpr> exprs) {
if (auto binExpr = e.dyn_cast<AffineBinaryOpExpr>()) {
AffineExpr lhs, rhs;
AffineExprBinaryOp binOp;
std::tie(lhs, rhs, binOp) = matchBinaryOpExpr(binExpr);
return binOp(substExprs(lhs, exprs), substExprs(rhs, exprs));
return getAffineBinaryExpr(binExpr.getKind(),
substExprs(binExpr.getLHS(), exprs),
substExprs(binExpr.getRHS(), exprs));
}
if (auto dim = e.dyn_cast<AffineDimExpr>()) {
assert(dim.getPosition() < exprs.size() &&

View File

@ -79,7 +79,14 @@ MLFunctionMatches::iterator MLFunctionMatches::begin() {
MLFunctionMatches::iterator MLFunctionMatches::end() {
return storage ? storage->matches.end() : nullptr;
}
MLFunctionMatches::EntryType &MLFunctionMatches::front() {
assert(storage && "null storage");
return *storage->matches.begin();
}
MLFunctionMatches::EntryType &MLFunctionMatches::back() {
assert(storage && "null storage");
return *(storage->matches.begin() + size() - 1);
}
/// Return the combination of multiple MLFunctionMatches as a new object.
static MLFunctionMatches combine(ArrayRef<MLFunctionMatches> matches) {
MLFunctionMatches res;

View File

@ -16,6 +16,7 @@
// =============================================================================
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
@ -27,6 +28,8 @@
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
///
/// Implements Analysis functions specific to vectors which support
@ -35,6 +38,9 @@
using namespace mlir;
#define DEBUG_TYPE "vector-analysis"
using llvm::dbgs;
using llvm::SetVector;
Optional<SmallVector<unsigned, 4>> mlir::shapeRatio(ArrayRef<int> superShape,
@ -237,3 +243,200 @@ bool mlir::matcher::operatesOnSuperVectors(const OperationInst &opInst,
return true;
}
namespace {
/// A `SingleResultAffineNormalizer` is a helper class that is not visible to
/// the user and supports renumbering operands of single-result AffineApplyOp.
/// This operates on the assumption that only single-result unbounded AffineMap
/// are used for all operands.
/// This acts as a reindexing map of Value* to positional dims or symbols and
/// allows simplifications such as:
///
/// ```mlir
/// %1 = affine_apply (d0, d1) -> (d0 - d1) (%0, %0)
/// ```
///
/// into:
///
/// ```mlir
/// %1 = affine_apply () -> (0)
/// ```
struct SingleResultAffineNormalizer {
SingleResultAffineNormalizer(AffineMap map, ArrayRef<Value *> operands);
/// Returns the single result, unbounded, AffineMap resulting from
/// normalization.
AffineMap getAffineMap() {
return AffineMap::get(reorderedDims.size(), reorderedSymbols.size(), {expr},
{});
}
SmallVector<Value *, 8> getOperands() {
SmallVector<Value *, 8> res(reorderedDims);
res.append(reorderedSymbols.begin(), reorderedSymbols.end());
return res;
}
private:
/// Helper function to insert `v` into the coordinate system of the current
/// SingleResultAffineNormalizer (i.e. in the proper `xxxValueToPosition` and
/// the proper `reorderedXXX`).
/// Returns the AffineDimExpr or AffineSymbolExpr with the correponding
/// renumbered position.
template <typename DimOrSymbol> DimOrSymbol renumberOneIndex(Value *v);
/// Given an `other` normalizer, this rewrites `other.expr` in the coordinate
/// system of the current SingleResultAffineNormalizer.
/// Returns the rewritten AffineExpr.
AffineExpr renumber(const SingleResultAffineNormalizer &other);
/// Given an `app` with single result and unbounded AffineMap, this rewrites
/// the app's map single result AffineExpr in the coordinate system of the
/// current SingleResultAffineNormalizer.
/// Returns the rewritten AffineExpr.
AffineExpr renumber(AffineApplyOp *app);
/// Maps of Value* to position in the `expr`.
DenseMap<Value *, unsigned> dimValueToPosition;
DenseMap<Value *, unsigned> symValueToPosition;
/// Ordered dims and symbols matching positional dims and symbols in `expr`.
SmallVector<Value *, 8> reorderedDims;
SmallVector<Value *, 8> reorderedSymbols;
AffineExpr expr;
};
} // namespace
template <typename DimOrSymbol>
static DimOrSymbol make(unsigned position, MLIRContext *context);
template <> AffineDimExpr make(unsigned position, MLIRContext *context) {
return getAffineDimExpr(position, context).cast<AffineDimExpr>();
}
template <> AffineSymbolExpr make(unsigned position, MLIRContext *context) {
return getAffineSymbolExpr(position, context).cast<AffineSymbolExpr>();
}
template <typename DimOrSymbol>
DimOrSymbol SingleResultAffineNormalizer::renumberOneIndex(Value *v) {
static_assert(std::is_same<DimOrSymbol, AffineDimExpr>::value ||
std::is_same<DimOrSymbol, AffineSymbolExpr>::value,
"renumber<AffineDimExpr>(...) or renumber<AffineDimExpr>(...) "
"required");
DenseMap<Value *, unsigned> &pos =
std::is_same<DimOrSymbol, AffineSymbolExpr>::value ? symValueToPosition
: dimValueToPosition;
DenseMap<Value *, unsigned>::iterator iterPos;
bool inserted = false;
std::tie(iterPos, inserted) = pos.insert(std::make_pair(v, pos.size()));
if (inserted) {
std::is_same<DimOrSymbol, AffineDimExpr>::value
? reorderedDims.push_back(v)
: reorderedSymbols.push_back(v);
}
return make<DimOrSymbol>(iterPos->second, v->getFunction()->getContext());
}
AffineExpr SingleResultAffineNormalizer::renumber(
const SingleResultAffineNormalizer &other) {
SmallVector<AffineExpr, 8> dimRemapping, symRemapping;
for (auto kvp : other.dimValueToPosition) {
if (dimRemapping.size() <= kvp.second)
dimRemapping.resize(kvp.second + 1);
dimRemapping[kvp.second] = renumberOneIndex<AffineDimExpr>(kvp.first);
}
for (auto kvp : other.symValueToPosition) {
if (symRemapping.size() <= kvp.second)
symRemapping.resize(kvp.second + 1);
symRemapping[kvp.second] = renumberOneIndex<AffineSymbolExpr>(kvp.first);
}
return other.expr.replaceDimsAndSymbols(dimRemapping, symRemapping);
}
AffineExpr SingleResultAffineNormalizer::renumber(AffineApplyOp *app) {
// Sanity check, single result AffineApplyOp if one wants to use this.
assert(app->getNumResults() == 1 && "Not a single result AffineApplyOp");
assert(app->getAffineMap().getRangeSizes().empty() &&
"Non-empty range sizes");
// Create the SingleResultAffineNormalizer for the operands of this
// AffineApplyOp and combine it with the current SingleResultAffineNormalizer.
using ValueTy = decltype(*(app->getOperands().begin()));
SingleResultAffineNormalizer normalizer(
app->getAffineMap(),
functional::map([](ValueTy v) { return static_cast<Value *>(v); },
app->getOperands()));
// We know this is a single result AffineMap, we need to append a
// renumbered AffineExpr.
return renumber(normalizer);
}
SingleResultAffineNormalizer::SingleResultAffineNormalizer(
AffineMap map, ArrayRef<Value *> operands) {
assert(map.getNumResults() == 1 && "Single-result map expected");
assert(map.getRangeSizes().empty() && "Unbounded map expected");
assert(map.getNumInputs() == operands.size() &&
"number of operands does not match the number of map inputs");
if (operands.empty()) {
return;
}
auto *context = operands[0]->getFunction()->getContext();
SmallVector<AffineExpr, 8> exprs;
for (auto en : llvm::enumerate(operands)) {
auto *t = en.value();
assert(t->getType().isIndex());
if (auto inst = t->getDefiningInst()) {
if (auto app = inst->dyn_cast<AffineApplyOp>()) {
// Sanity check, AffineApplyOp must always be composed by construction
// and there can only ever be a dependence chain of 1 AffineApply. So we
// can never get a second AffineApplyOp.
// This also guarantees we can build another
// SingleResultAffineNormalizer here that does not recurse a second
// time.
for (auto *pred : app->getOperands()) {
assert(!pred->getDefiningInst() ||
!pred->getDefiningInst()->isa<AffineApplyOp>() &&
"AffineApplyOp chain of length > 1");
}
exprs.push_back(renumber(app));
} else if (auto constant = inst->dyn_cast<ConstantOp>()) {
// Constants remain constants.
auto affineConstant = inst->cast<ConstantIndexOp>();
exprs.push_back(
getAffineConstantExpr(affineConstant->getValue(), context));
} else {
// DimOp, top of the function symbols are all symbols.
exprs.push_back(renumberOneIndex<AffineSymbolExpr>(t));
}
} else if (en.index() < map.getNumDims()) {
assert(isa<ForInst>(t) && "ForInst expected for AffineDimExpr");
exprs.push_back(renumberOneIndex<AffineDimExpr>(t));
} else {
assert(!isa<ForInst>(t) && "unexpectd ForInst for a AffineSymbolExpr");
exprs.push_back(renumberOneIndex<AffineSymbolExpr>(t));
}
}
auto exprsMap = AffineMap::get(dimValueToPosition.size(),
symValueToPosition.size(), exprs, {});
expr = composeWithUnboundedMap(map.getResult(0), exprsMap);
LLVM_DEBUG(map.getResult(0).print(dbgs() << "\nCompose expr: "));
LLVM_DEBUG(exprsMap.print(dbgs() << "\nWith map: "));
LLVM_DEBUG(expr.print(dbgs() << "\nResult: "));
}
OpPointer<AffineApplyOp>
mlir::makeNormalizedAffineApply(FuncBuilder *b, Location loc, AffineMap map,
ArrayRef<Value *> operands) {
SingleResultAffineNormalizer normalizer(map, operands);
return b->create<AffineApplyOp>(loc, normalizer.getAffineMap(),
normalizer.getOperands());
}

View File

@ -19,6 +19,7 @@
#include "AffineExprDetail.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
@ -284,39 +285,6 @@ AffineExpr AffineExpr::operator%(AffineExpr other) const {
return AffineBinaryOpExprStorage::get(AffineExprKind::Mod, expr, other.expr);
}
std::tuple<AffineExpr, AffineExpr, AffineExprBinaryOp>
mlir::matchBinaryOpExpr(AffineBinaryOpExpr e) {
switch (e.getKind()) {
case AffineExprKind::Add:
return std::make_tuple(
e.getLHS(), e.getRHS(),
[](AffineExpr e1, AffineExpr e2) { return e1 + e2; });
case AffineExprKind::Mul:
return std::make_tuple(
e.getLHS(), e.getRHS(),
[](AffineExpr e1, AffineExpr e2) { return e1 * e2; });
case AffineExprKind::Mod:
return std::make_tuple(
e.getLHS(), e.getRHS(),
[](AffineExpr e1, AffineExpr e2) { return e1 % e2; });
case AffineExprKind::FloorDiv:
return std::make_tuple(
e.getLHS(), e.getRHS(),
[](AffineExpr e1, AffineExpr e2) { return e1.floorDiv(e2); });
case AffineExprKind::CeilDiv:
return std::make_tuple(
e.getLHS(), e.getRHS(),
[](AffineExpr e1, AffineExpr e2) { return e1.ceilDiv(e2); });
case AffineExprKind::DimId:
case AffineExprKind::SymbolId:
case AffineExprKind::Constant:
assert(false && "Not a binary expr");
}
return std::make_tuple(
AffineExpr(), AffineExpr(),
[](AffineExpr e1, AffineExpr e2) { return AffineExpr(); });
}
raw_ostream &operator<<(raw_ostream &os, AffineExpr &expr) {
expr.print(os);
return os;

View File

@ -23,6 +23,7 @@
#include "mlir/Analysis/MLFunctionMatcher.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Pass.h"
@ -66,6 +67,12 @@ static llvm::cl::opt<bool> clTestComposeMaps(
"Specify to enable testing the composition of AffineMap where each "
"AffineMap in the composition is specified as the affine_map attribute "
"in a constant op."));
static llvm::cl::opt<bool> clTestNormalizeMaps(
"normalize-maps",
llvm::cl::desc(
"Specify to enable testing the normalization of AffineAffineApplyOp "
"where each AffineAffineApplyOp in the composition is a single output "
"instruction."));
namespace {
@ -80,6 +87,7 @@ struct VectorizerTestPass : public FunctionPass {
void testBackwardSlicing(Function *f);
void testSlicing(Function *f);
void testComposeMaps(Function *f);
void testNormalizeMaps(Function *f);
// Thread-safe RAII contexts local to pass, BumpPtrAllocator freed on exit.
MLFunctionMatcherContext MLContext;
@ -219,6 +227,47 @@ void VectorizerTestPass::testComposeMaps(Function *f) {
res.print(outs() << "\nComposed map: ");
}
bool affineApplyOp(const Instruction &inst) {
const auto &opInst = cast<OperationInst>(inst);
return opInst.isa<AffineApplyOp>();
}
bool singleResultAffineApplyOpWithoutUses(const Instruction &inst) {
const auto &opInst = cast<OperationInst>(inst);
auto app = opInst.dyn_cast<AffineApplyOp>();
return app && (app->getNumResults() == 1) &&
app->getResult(0)->getUses().end() ==
app->getResult(0)->getUses().begin();
}
void VectorizerTestPass::testNormalizeMaps(Function *f) {
using matcher::Op;
// Save matched AffineApplyOp that all need to be erased in the end.
auto pattern = Op(affineApplyOp);
auto toErase = pattern.match(f);
std::reverse(toErase.begin(), toErase.end());
{
// Compose maps.
auto pattern = Op(singleResultAffineApplyOpWithoutUses);
for (auto m : pattern.match(f)) {
auto app = cast<OperationInst>(m.first)->cast<AffineApplyOp>();
FuncBuilder b(m.first);
using ValueTy = decltype(*(app->getOperands().begin()));
SmallVector<Value *, 8> operands =
functional::map([](ValueTy v) { return static_cast<Value *>(v); },
app->getOperands().begin(), app->getOperands().end());
makeNormalizedAffineApply(&b, app->getLoc(), app->getAffineMap(),
operands);
}
}
// We should now be able to erase everything in reverse order in this test.
for (auto m : toErase) {
m.first->erase();
}
}
PassResult VectorizerTestPass::runOnFunction(Function *f) {
// Only support single block functions at this point.
if (f->getBlocks().size() != 1)
@ -239,6 +288,9 @@ PassResult VectorizerTestPass::runOnFunction(Function *f) {
if (clTestComposeMaps) {
testComposeMaps(f);
}
if (clTestNormalizeMaps) {
testNormalizeMaps(f);
}
return PassResult::Success;
}

View File

@ -0,0 +1,61 @@
// RUN: mlir-opt %s -vectorizer-test -normalize-maps | FileCheck %s
// CHECK-DAG: #[[ZERO:[a-zA-Z0-9]+]] = (d0) -> (0)
// CHECK-DAG: #[[ID1:[a-zA-Z0-9]+]] = (d0) -> (d0)
// CHECK-DAG: #[[D0TIMES2:[a-zA-Z0-9]+]] = (d0) -> (d0 * 2)
// CHECK-DAG: #[[D0PLUSD1:[a-zA-Z0-9]+]] = (d0, d1) -> (d0 + d1)
// CHECK-DAG: #[[MINSD0PLUSD1:[a-zA-Z0-9]+]] = (d0, d1) -> (d0 * -1 + d1)
// CHECK-DAG: #[[D0MINUSD1:[a-zA-Z0-9]+]] = (d0, d1) -> (d0 - d1)
// CHECK-DAG: #[[D0D1D2TOD0:[a-zA-Z0-9]+]] = (d0, d1, d2) -> (d0)
// CHECK-DAG: #[[D0D1D2TOD1:[a-zA-Z0-9]+]] = (d0, d1, d2) -> (d1)
// CHECK-DAG: #[[D0D1D2TOD2:[a-zA-Z0-9]+]] = (d0, d1, d2) -> (d2)
// CHECK-LABEL: func @simple()
func @simple() {
for %i0 = 0 to 7 {
%0 = affine_apply (d0) -> (d0) (%i0)
%1 = affine_apply (d0) -> (d0) (%0)
%2 = affine_apply (d0, d1) -> (d0 + d1) (%0, %0)
%3 = affine_apply (d0, d1) -> (d0 - d1) (%0, %0)
}
// CHECK-NEXT: for %i0 = 0 to 7
// CHECK-NEXT: {{.*}} affine_apply #[[ID1]](%i0)
// CHECK-NEXT: {{.*}} affine_apply #[[D0TIMES2]](%i0)
// CHECK-NEXT: {{.*}} affine_apply #[[ZERO]](%i0)
for %i1 = 0 to 7 {
for %i2 = 0 to 42 {
%20 = affine_apply (d0, d1) -> (d1) (%i1, %i2)
%21 = affine_apply (d0, d1) -> (d0) (%i1, %i2)
%22 = affine_apply (d0, d1) -> (d0 + d1) (%20, %21)
%23 = affine_apply (d0, d1) -> (d0 - d1) (%20, %21)
%24 = affine_apply (d0, d1) -> (-d0 + d1) (%20, %21)
}
}
// CHECK: for %i1 = 0 to 7
// CHECK-NEXT: for %i2 = 0 to 42
// CHECK-NEXT: {{.*}} affine_apply #[[D0PLUSD1]](%i2, %i1)
// CHECK-NEXT: {{.*}} affine_apply #[[D0MINUSD1]](%i2, %i1)
// CHECK-NEXT: {{.*}} affine_apply #[[MINSD0PLUSD1]](%i2, %i1)
for %i3 = 0 to 16 {
for %i4 = 0 to 47 step 2 {
for %i5 = 0 to 78 step 16 {
%50 = affine_apply (d0) -> (d0) (%i3)
%51 = affine_apply (d0) -> (d0) (%i4)
%52 = affine_apply (d0) -> (d0) (%i5)
%53 = affine_apply (d0, d1, d2) -> (d0) (%50, %51, %52)
%54 = affine_apply (d0, d1, d2) -> (d1) (%50, %51, %52)
%55 = affine_apply (d0, d1, d2) -> (d2) (%50, %51, %52)
}
}
}
// CHECK: for %i3 = 0 to 16
// CHECK-NEXT: for %i4 = 0 to 47 step 2
// CHECK-NEXT: for %i5 = 0 to 78 step 16
// CHECK-NEXT: {{.*}} affine_apply #[[D0D1D2TOD0]](%i3, %i4, %i5)
// CHECK-NEXT: {{.*}} affine_apply #[[D0D1D2TOD1]](%i3, %i4, %i5)
// CHECK-NEXT: {{.*}} affine_apply #[[D0D1D2TOD2]](%i3, %i4, %i5)
return
}