Pointer comparisons (and pointer-pointer subtraction). Basically filling in SimpleSValuator::EvalBinOpLL().

llvm-svn: 106992
This commit is contained in:
Jordy Rose 2010-06-28 08:26:15 +00:00
parent fb6f22f010
commit 61176897ba
6 changed files with 556 additions and 60 deletions

View File

@ -47,8 +47,8 @@ public:
virtual SVal EvalBinOpNN(const GRState *state, BinaryOperator::Opcode Op,
NonLoc lhs, NonLoc rhs, QualType resultTy) = 0;
virtual SVal EvalBinOpLL(BinaryOperator::Opcode Op, Loc lhs, Loc rhs,
QualType resultTy) = 0;
virtual SVal EvalBinOpLL(const GRState *state, BinaryOperator::Opcode Op,
Loc lhs, Loc rhs, QualType resultTy) = 0;
virtual SVal EvalBinOpLN(const GRState *state, BinaryOperator::Opcode Op,
Loc lhs, NonLoc rhs, QualType resultTy) = 0;

View File

@ -867,6 +867,19 @@ SVal RegionStoreManager::EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R,
if (!isa<loc::MemRegionVal>(L))
return UnknownVal();
// Special case for zero RHS.
if (R.isZeroConstant()) {
switch (Op) {
default:
// Handle it normally.
break;
case BinaryOperator::Add:
case BinaryOperator::Sub:
// FIXME: does this need to be casted to match resultTy?
return L;
}
}
const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
const ElementRegion *ER = 0;

View File

@ -29,15 +29,15 @@ SVal SValuator::EvalBinOp(const GRState *ST, BinaryOperator::Opcode Op,
if (isa<Loc>(L)) {
if (isa<Loc>(R))
return EvalBinOpLL(Op, cast<Loc>(L), cast<Loc>(R), T);
return EvalBinOpLL(ST, Op, cast<Loc>(L), cast<Loc>(R), T);
return EvalBinOpLN(ST, Op, cast<Loc>(L), cast<NonLoc>(R), T);
}
if (isa<Loc>(R)) {
// Support pointer arithmetic where the increment/decrement operand
// is on the left and the pointer on the right.
assert(Op == BinaryOperator::Add || Op == BinaryOperator::Sub);
// Support pointer arithmetic where the addend is on the left
// and the pointer on the right.
assert(Op == BinaryOperator::Add);
// Commute the operands.
return EvalBinOpLN(ST, Op, cast<Loc>(R), cast<NonLoc>(L), T);

View File

@ -30,8 +30,8 @@ public:
virtual SVal EvalComplement(NonLoc val);
virtual SVal EvalBinOpNN(const GRState *state, BinaryOperator::Opcode op,
NonLoc lhs, NonLoc rhs, QualType resultTy);
virtual SVal EvalBinOpLL(BinaryOperator::Opcode op, Loc lhs, Loc rhs,
QualType resultTy);
virtual SVal EvalBinOpLL(const GRState *state, BinaryOperator::Opcode op,
Loc lhs, Loc rhs, QualType resultTy);
virtual SVal EvalBinOpLN(const GRState *state, BinaryOperator::Opcode op,
Loc lhs, NonLoc rhs, QualType resultTy);
@ -173,45 +173,18 @@ static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
}
}
// Equality operators for Locs.
// FIXME: All this logic will be revamped when we have MemRegion::getLocation()
// implemented.
static SVal EvalEquality(ValueManager &ValMgr, Loc lhs, Loc rhs, bool isEqual,
QualType resultTy) {
switch (lhs.getSubKind()) {
default:
assert(false && "EQ/NE not implemented for this Loc.");
return UnknownVal();
case loc::ConcreteIntKind: {
if (SymbolRef rSym = rhs.getAsSymbol())
return ValMgr.makeNonLoc(rSym,
isEqual ? BinaryOperator::EQ
: BinaryOperator::NE,
cast<loc::ConcreteInt>(lhs).getValue(),
resultTy);
break;
}
case loc::MemRegionKind: {
if (SymbolRef lSym = lhs.getAsLocSymbol()) {
if (isa<loc::ConcreteInt>(rhs)) {
return ValMgr.makeNonLoc(lSym,
isEqual ? BinaryOperator::EQ
: BinaryOperator::NE,
cast<loc::ConcreteInt>(rhs).getValue(),
resultTy);
}
}
break;
}
case loc::GotoLabelKind:
break;
static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
switch (op) {
default:
assert(false && "Invalid opcode.");
case BinaryOperator::LT: return BinaryOperator::GT;
case BinaryOperator::GT: return BinaryOperator::LT;
case BinaryOperator::LE: return BinaryOperator::GE;
case BinaryOperator::GE: return BinaryOperator::LE;
case BinaryOperator::EQ:
case BinaryOperator::NE:
return op;
}
return ValMgr.makeTruthVal(isEqual ? lhs == rhs : lhs != rhs, resultTy);
}
SVal SimpleSValuator::MakeSymIntVal(const SymExpr *LHS,
@ -322,7 +295,8 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
switch (rhs.getSubKind()) {
case nonloc::LocAsIntegerKind:
return EvalBinOpLL(op, lhsL, cast<nonloc::LocAsInteger>(rhs).getLoc(),
return EvalBinOpLL(state, op, lhsL,
cast<nonloc::LocAsInteger>(rhs).getLoc(),
resultTy);
case nonloc::ConcreteIntKind: {
// Transform the integer into a location and compare.
@ -330,7 +304,7 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
i.setIsUnsigned(true);
i.extOrTrunc(Ctx.getTypeSize(Ctx.VoidPtrTy));
return EvalBinOpLL(op, lhsL, ValMgr.makeLoc(i), resultTy);
return EvalBinOpLL(state, op, lhsL, ValMgr.makeLoc(i), resultTy);
}
default:
switch (op) {
@ -451,10 +425,12 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
lhs = tmp;
switch (op) {
case BinaryOperator::LT: op = BinaryOperator::GT; continue;
case BinaryOperator::GT: op = BinaryOperator::LT; continue;
case BinaryOperator::LE: op = BinaryOperator::GE; continue;
case BinaryOperator::GE: op = BinaryOperator::LE; continue;
case BinaryOperator::LT:
case BinaryOperator::GT:
case BinaryOperator::LE:
case BinaryOperator::GE:
op = ReverseComparison(op);
continue;
case BinaryOperator::EQ:
case BinaryOperator::NE:
case BinaryOperator::Add:
@ -519,21 +495,296 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
}
}
SVal SimpleSValuator::EvalBinOpLL(BinaryOperator::Opcode op, Loc lhs, Loc rhs,
// FIXME: all this logic will change if/when we have MemRegion::getLocation().
SVal SimpleSValuator::EvalBinOpLL(const GRState *state,
BinaryOperator::Opcode op,
Loc lhs, Loc rhs,
QualType resultTy) {
switch (op) {
// Only comparisons and subtractions are valid operations on two pointers.
// See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
assert(BinaryOperator::isComparisonOp(op) || op == BinaryOperator::Sub);
// Special cases for when both sides are identical.
if (lhs == rhs) {
switch (op) {
default:
assert(false && "Unimplemented operation for two identical values");
return UnknownVal();
case BinaryOperator::Sub:
return ValMgr.makeZeroVal(resultTy);
case BinaryOperator::EQ:
case BinaryOperator::LE:
case BinaryOperator::GE:
return ValMgr.makeTruthVal(true, resultTy);
case BinaryOperator::NE:
return EvalEquality(ValMgr, lhs, rhs, op == BinaryOperator::EQ, resultTy);
case BinaryOperator::LT:
case BinaryOperator::GT:
// FIXME: Generalize. For now, just handle the trivial case where
// the two locations are identical.
if (lhs == rhs)
return ValMgr.makeTruthVal(false, resultTy);
}
}
switch (lhs.getSubKind()) {
default:
assert(false && "Ordering not implemented for this Loc.");
return UnknownVal();
case loc::GotoLabelKind:
// The only thing we know about labels is that they're non-null.
if (rhs.isZeroConstant()) {
switch (op) {
default:
break;
case BinaryOperator::Sub:
return EvalCastL(lhs, resultTy);
case BinaryOperator::EQ:
case BinaryOperator::LE:
case BinaryOperator::LT:
return ValMgr.makeTruthVal(false, resultTy);
case BinaryOperator::NE:
case BinaryOperator::GT:
case BinaryOperator::GE:
return ValMgr.makeTruthVal(true, resultTy);
}
}
// There may be two labels for the same location, and a function region may
// have the same address as a label at the start of the function (depending
// on the ABI).
// FIXME: we can probably do a comparison against other MemRegions, though.
// FIXME: is there a way to tell if two labels refer to the same location?
return UnknownVal();
case loc::ConcreteIntKind: {
// If one of the operands is a symbol and the other is a constant,
// build an expression for use by the constraint manager.
if (SymbolRef rSym = rhs.getAsLocSymbol()) {
// We can only build expressions with symbols on the left,
// so we need a reversible operator.
if (!BinaryOperator::isComparisonOp(op))
return UnknownVal();
const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
return ValMgr.makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
}
// If both operands are constants, just perform the operation.
if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
BasicValueFactory &BVF = ValMgr.getBasicValueFactory();
SVal ResultVal = cast<loc::ConcreteInt>(lhs).EvalBinOp(BVF, op, *rInt);
if (Loc *Result = dyn_cast<Loc>(&ResultVal))
return EvalCastL(*Result, resultTy);
else
return UnknownVal();
}
// Special case comparisons against NULL.
// This must come after the test if the RHS is a symbol, which is used to
// build constraints. The address of any non-symbolic region is guaranteed
// to be non-NULL, as is any label.
assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
if (lhs.isZeroConstant()) {
switch (op) {
default:
break;
case BinaryOperator::EQ:
case BinaryOperator::GT:
case BinaryOperator::GE:
return ValMgr.makeTruthVal(false, resultTy);
case BinaryOperator::NE:
case BinaryOperator::LT:
case BinaryOperator::LE:
return ValMgr.makeTruthVal(true, resultTy);
}
}
// Comparing an arbitrary integer to a region or label address is
// completely unknowable.
return UnknownVal();
}
case loc::MemRegionKind: {
if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
// If one of the operands is a symbol and the other is a constant,
// build an expression for use by the constraint manager.
if (SymbolRef lSym = lhs.getAsLocSymbol())
return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
// Special case comparisons to NULL.
// This must come after the test if the LHS is a symbol, which is used to
// build constraints. The address of any non-symbolic region is guaranteed
// to be non-NULL.
if (rInt->isZeroConstant()) {
switch (op) {
default:
break;
case BinaryOperator::Sub:
return EvalCastL(lhs, resultTy);
case BinaryOperator::EQ:
case BinaryOperator::LT:
case BinaryOperator::LE:
return ValMgr.makeTruthVal(false, resultTy);
case BinaryOperator::NE:
case BinaryOperator::GT:
case BinaryOperator::GE:
return ValMgr.makeTruthVal(true, resultTy);
}
}
// Comparing a region to an arbitrary integer is completely unknowable.
return UnknownVal();
}
// Get both values as regions, if possible.
const MemRegion *LeftMR = lhs.getAsRegion();
assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
const MemRegion *RightMR = rhs.getAsRegion();
if (!RightMR)
// The RHS is probably a label, which in theory could address a region.
// FIXME: we can probably make a more useful statement about non-code
// regions, though.
return UnknownVal();
// If both values wrap regions, see if they're from different base regions.
const MemRegion *LeftBase = LeftMR->getBaseRegion();
const MemRegion *RightBase = RightMR->getBaseRegion();
if (LeftBase != RightBase &&
!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
switch (op) {
default:
return UnknownVal();
case BinaryOperator::EQ:
return ValMgr.makeTruthVal(false, resultTy);
case BinaryOperator::NE:
return ValMgr.makeTruthVal(true, resultTy);
}
}
// The two regions are from the same base region. See if they're both a
// type of region we know how to compare.
// FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
// ElementRegion path and the FieldRegion path below should be unified.
if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
// First see if the right region is also an ElementRegion.
const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
if (!RightER)
return UnknownVal();
// Next, see if the two ERs have the same super-region and matching types.
// FIXME: This should do something useful even if the types don't match,
// though if both indexes are constant the RegionRawOffset path will
// give the correct answer.
if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
LeftER->getElementType() == RightER->getElementType()) {
// Get the left index and cast it to the correct type.
// If the index is unknown or undefined, bail out here.
SVal LeftIndexVal = LeftER->getIndex();
NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
if (!LeftIndex)
return UnknownVal();
LeftIndexVal = EvalCastNL(*LeftIndex, resultTy);
LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
if (!LeftIndex)
return UnknownVal();
// Do the same for the right index.
SVal RightIndexVal = RightER->getIndex();
NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
if (!RightIndex)
return UnknownVal();
RightIndexVal = EvalCastNL(*RightIndex, resultTy);
RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
if (!RightIndex)
return UnknownVal();
// Actually perform the operation.
// EvalBinOpNN expects the two indexes to already be the right type.
return EvalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
}
// If the element indexes aren't comparable, see if the raw offsets are.
RegionRawOffset LeftOffset = LeftER->getAsRawOffset();
RegionRawOffset RightOffset = RightER->getAsRawOffset();
if (LeftOffset.getRegion() != NULL &&
LeftOffset.getRegion() == RightOffset.getRegion()) {
int64_t left = LeftOffset.getByteOffset();
int64_t right = RightOffset.getByteOffset();
switch (op) {
default:
return UnknownVal();
case BinaryOperator::LT:
return ValMgr.makeTruthVal(left < right, resultTy);
case BinaryOperator::GT:
return ValMgr.makeTruthVal(left > right, resultTy);
case BinaryOperator::LE:
return ValMgr.makeTruthVal(left <= right, resultTy);
case BinaryOperator::GE:
return ValMgr.makeTruthVal(left >= right, resultTy);
case BinaryOperator::EQ:
return ValMgr.makeTruthVal(left == right, resultTy);
case BinaryOperator::NE:
return ValMgr.makeTruthVal(left != right, resultTy);
}
}
// If we get here, we have no way of comparing the ElementRegions.
return UnknownVal();
}
// See if both regions are fields of the same structure.
// FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
// Only comparisons are meaningful here!
if (!BinaryOperator::isComparisonOp(op))
return UnknownVal();
// First see if the right region is also a FieldRegion.
const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
if (!RightFR)
return UnknownVal();
// Next, see if the two FRs have the same super-region.
// FIXME: This doesn't handle casts yet, and simply stripping the casts
// doesn't help.
if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
return UnknownVal();
const FieldDecl *LeftFD = LeftFR->getDecl();
const FieldDecl *RightFD = RightFR->getDecl();
const RecordDecl *RD = LeftFD->getParent();
// Make sure the two FRs are from the same kind of record. Just in case!
// FIXME: This is probably where inheritance would be a problem.
if (RD != RightFD->getParent())
return UnknownVal();
// We know for sure that the two fields are not the same, since that
// would have given us the same SVal.
if (op == BinaryOperator::EQ)
return ValMgr.makeTruthVal(false, resultTy);
if (op == BinaryOperator::NE)
return ValMgr.makeTruthVal(true, resultTy);
// Iterate through the fields and see which one comes first.
// [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
// members and the units in which bit-fields reside have addresses that
// increase in the order in which they are declared."
bool leftFirst = (op == BinaryOperator::LT || op == BinaryOperator::LE);
for (RecordDecl::field_iterator I = RD->field_begin(),
E = RD->field_end(); I!=E; ++I) {
if (*I == LeftFD)
return ValMgr.makeTruthVal(leftFirst, resultTy);
if (*I == RightFD)
return ValMgr.makeTruthVal(!leftFirst, resultTy);
}
assert(false && "Fields not found in parent record's definition");
}
// If we get here, we have no way of comparing the regions.
return UnknownVal();
}
}
}
@ -545,7 +796,7 @@ SVal SimpleSValuator::EvalBinOpLN(const GRState *state,
// triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
// can generate comparisons that trigger this code.
// FIXME: Are all locations guaranteed to have pointer width?
if (BinaryOperator::isEqualityOp(op)) {
if (BinaryOperator::isComparisonOp(op)) {
if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
const llvm::APSInt *x = &rhsInt->getValue();
ASTContext &ctx = ValMgr.getContext();
@ -554,7 +805,7 @@ SVal SimpleSValuator::EvalBinOpLN(const GRState *state,
if (x->isSigned())
x = &ValMgr.getBasicValueFactory().getValue(*x, true);
return EvalBinOpLL(op, lhs, loc::ConcreteInt(*x), resultTy);
return EvalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
}
}
}

View File

@ -59,3 +59,14 @@ void testAsymmetricIntSymOperations (int a) {
if ((((unsigned)(~0)) >> ((unsigned) a)) != ((unsigned)(~0)))
WARN; // expected-warning{{}}
}
void testLocations (char *a) {
char *b = a;
if (!(b==a)) WARN;
if (!(b>=a)) WARN;
if (!(b<=a)) WARN;
if (b!=a) WARN;
if (b>a) WARN;
if (b<a) WARN;
if (b-a) WARN;
}

View File

@ -1,6 +1,9 @@
// RUN: %clang_cc1 -analyze -analyzer-experimental-internal-checks -analyzer-check-objc-mem -analyzer-store=region -verify -triple x86_64-apple-darwin9 %s
// RUN: %clang_cc1 -analyze -analyzer-experimental-internal-checks -analyzer-check-objc-mem -analyzer-store=region -verify -triple i686-apple-darwin9 %s
// Used to trigger warnings for unreachable paths.
#define WARN do { int a, b; int c = &b-&a; } while (0)
void f1() {
int a[10];
int *p = a;
@ -60,3 +63,221 @@ void f5() {
void f6(int *p, int *q) {
int d = q - p; // no-warning
}
void null_operand(int *a) {
start:
// LHS is a label, RHS is NULL
if (&&start == 0)
WARN; // no-warning
if (&&start < 0)
WARN; // no-warning
if (&&start <= 0)
WARN; // no-warning
if (!(&&start != 0))
WARN; // no-warning
if (!(&&start > 0))
WARN; // no-warning
if (!(&&start >= 0))
WARN; // no-warning
if (!(&&start - 0))
WARN; // no-warning
// LHS is a non-symbolic value, RHS is NULL
if (&a == 0)
WARN; // no-warning
if (&a < 0)
WARN; // no-warning
if (&a <= 0)
WARN; // no-warning
if (!(&a != 0))
WARN; // no-warning
if (!(&a > 0))
WARN; // no-warning
if (!(&a >= 0))
WARN; // no-warning
if (!(&a - 0)) // expected-warning{{Pointer arithmetic done on non-array variables}}
WARN; // no-warning
// LHS is NULL, RHS is non-symbolic
// The same code is used for labels and non-symbolic values.
if (0 == &a)
WARN; // no-warning
if (0 > &a)
WARN; // no-warning
if (0 >= &a)
WARN; // no-warning
if (!(0 != &a))
WARN; // no-warning
if (!(0 < &a))
WARN; // no-warning
if (!(0 <= &a))
WARN; // no-warning
// LHS is a symbolic value, RHS is NULL
if (a == 0)
WARN; // expected-warning{{}}
if (a < 0)
WARN; // no-warning
if (a <= 0)
WARN; // expected-warning{{}}
if (!(a != 0))
WARN; // expected-warning{{}}
if (!(a > 0))
WARN; // expected-warning{{}}
if (!(a >= 0))
WARN; // no-warning
if (!(a - 0))
WARN; // expected-warning{{}}
// LHS is NULL, RHS is a symbolic value
if (0 == a)
WARN; // expected-warning{{}}
if (0 > a)
WARN; // no-warning
if (0 >= a)
WARN; // expected-warning{{}}
if (!(0 != a))
WARN; // expected-warning{{}}
if (!(0 < a))
WARN; // expected-warning{{}}
if (!(0 <= a))
WARN; // no-warning
}
void const_locs() {
char *a = (char*)0x1000;
char *b = (char*)0x1100;
start:
if (a==b)
WARN; // no-warning
if (!(a!=b))
WARN; // no-warning
if (a>b)
WARN; // no-warning
if (b<a)
WARN; // no-warning
if (a>=b)
WARN; // no-warning
if (b<=a)
WARN; // no-warning
if (b-a != 0x100)
WARN; // no-warning
if (&&start == a)
WARN; // expected-warning{{}}
if (a == &&start)
WARN; // expected-warning{{}}
if (&a == (char**)a)
WARN; // expected-warning{{}}
if ((char**)a == &a)
WARN; // expected-warning{{}}
}
void array_matching_types() {
int array[10];
int *a = &array[2];
int *b = &array[5];
if (a==b)
WARN; // no-warning
if (!(a!=b))
WARN; // no-warning
if (a>b)
WARN; // no-warning
if (b<a)
WARN; // no-warning
if (a>=b)
WARN; // no-warning
if (b<=a)
WARN; // no-warning
if ((b-a) == 0)
WARN; // no-warning
}
// This takes a different code path than array_matching_types()
void array_different_types() {
int array[10];
int *a = &array[2];
char *b = (char*)&array[5];
if (a==b) // expected-warning{{comparison of distinct pointer types}}
WARN; // no-warning
if (!(a!=b)) // expected-warning{{comparison of distinct pointer types}}
WARN; // no-warning
if (a>b) // expected-warning{{comparison of distinct pointer types}}
WARN; // no-warning
if (b<a) // expected-warning{{comparison of distinct pointer types}}
WARN; // no-warning
if (a>=b) // expected-warning{{comparison of distinct pointer types}}
WARN; // no-warning
if (b<=a) // expected-warning{{comparison of distinct pointer types}}
WARN; // no-warning
}
struct test { int x; int y; };
void struct_fields() {
struct test a, b;
if (&a.x == &a.y)
WARN; // no-warning
if (!(&a.x != &a.y))
WARN; // no-warning
if (&a.x > &a.y)
WARN; // no-warning
if (&a.y < &a.x)
WARN; // no-warning
if (&a.x >= &a.y)
WARN; // no-warning
if (&a.y <= &a.x)
WARN; // no-warning
if (&a.x == &b.x)
WARN; // no-warning
if (!(&a.x != &b.x))
WARN; // no-warning
if (&a.x > &b.x)
WARN; // expected-warning{{}}
if (&b.x < &a.x)
WARN; // expected-warning{{}}
if (&a.x >= &b.x)
WARN; // expected-warning{{}}
if (&b.x <= &a.x)
WARN; // expected-warning{{}}
}
void mixed_region_types() {
struct test s;
int array[2];
void *a = &array, *b = &s;
if (&a == &b)
WARN; // no-warning
if (!(&a != &b))
WARN; // no-warning
if (&a > &b)
WARN; // expected-warning{{}}
if (&b < &a)
WARN; // expected-warning{{}}
if (&a >= &b)
WARN; // expected-warning{{}}
if (&b <= &a)
WARN; // expected-warning{{}}
}
void symbolic_region(int *p) {
int a;
if (&a == p)
WARN; // expected-warning{{}}
if (&a != p)
WARN; // expected-warning{{}}
if (&a > p)
WARN; // expected-warning{{}}
if (&a < p)
WARN; // expected-warning{{}}
if (&a >= p)
WARN; // expected-warning{{}}
if (&a <= p)
WARN; // expected-warning{{}}
}