PowerPC: Initial support for PowerPC64 MCJIT

This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC
relocation and ODP handling is implemented.

It fixes the following ExecutionEngine testcases:

ExecutionEngine/2003-01-04-ArgumentBug.ll
ExecutionEngine/2003-01-04-LoopTest.ll
ExecutionEngine/2003-01-04-PhiTest.ll
ExecutionEngine/2003-01-09-SARTest.ll
ExecutionEngine/2003-01-10-FUCOM.ll
ExecutionEngine/2003-01-15-AlignmentTest.ll
ExecutionEngine/2003-05-11-PHIRegAllocBug.ll
ExecutionEngine/2003-06-04-bzip2-bug.ll
ExecutionEngine/2003-06-05-PHIBug.ll
ExecutionEngine/2003-08-15-AllocaAssertion.ll
ExecutionEngine/2003-08-21-EnvironmentTest.ll
ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll
ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll
ExecutionEngine/simplesttest.ll
ExecutionEngine/simpletest.ll
ExecutionEngine/stubs.ll
ExecutionEngine/test-arith.ll
ExecutionEngine/test-branch.ll
ExecutionEngine/test-call-no-external-funcs.ll
ExecutionEngine/test-cast.ll
ExecutionEngine/test-common-symbols.ll
ExecutionEngine/test-constantexpr.ll
ExecutionEngine/test-fp-no-external-funcs.ll
ExecutionEngine/test-fp.ll
ExecutionEngine/test-global-init-nonzero.ll
ExecutionEngine/test-global.ll
ExecutionEngine/test-loadstore.ll
ExecutionEngine/test-local.ll
ExecutionEngine/test-logical.ll
ExecutionEngine/test-loop.ll
ExecutionEngine/test-phi.ll
ExecutionEngine/test-ret.ll
ExecutionEngine/test-return.ll
ExecutionEngine/test-setcond-fp.ll
ExecutionEngine/test-setcond-int.ll
ExecutionEngine/test-shift.ll

llvm-svn: 166678
This commit is contained in:
Adhemerval Zanella 2012-10-25 13:13:48 +00:00
parent f2aceda854
commit 5fc11b3554
4 changed files with 348 additions and 7 deletions

View File

@ -190,7 +190,7 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
if (!Addr)
report_fatal_error("Unable to allocate memory for common symbols!");
uint64_t Offset = 0;
Sections.push_back(SectionEntry(Addr, TotalSize, TotalSize, 0));
Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, TotalSize, 0));
memset(Addr, 0, TotalSize);
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
@ -233,10 +233,12 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
bool IsVirtual;
bool IsZeroInit;
uint64_t DataSize;
StringRef Name;
Check(Section.isRequiredForExecution(IsRequired));
Check(Section.isVirtual(IsVirtual));
Check(Section.isZeroInit(IsZeroInit));
Check(Section.getSize(DataSize));
Check(Section.getName(Name));
unsigned Allocate;
unsigned SectionID = Sections.size();
@ -264,6 +266,7 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
memcpy(Addr, pData, DataSize);
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " Name: " << Name
<< " obj addr: " << format("%p", pData)
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << DataSize
@ -279,6 +282,7 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
Allocate = 0;
Addr = 0;
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " Name: " << Name
<< " obj addr: " << format("%p", data.data())
<< " new addr: 0"
<< " DataSize: " << DataSize
@ -287,7 +291,8 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
<< "\n");
}
Sections.push_back(SectionEntry(Addr, Allocate, DataSize,(uintptr_t)pData));
Sections.push_back(SectionEntry(Name, Addr, Allocate, DataSize,
(uintptr_t)pData));
return SectionID;
}
@ -352,6 +357,24 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
*StubAddr = JrT9Instr;
StubAddr++;
*StubAddr = NopInstr;
return Addr;
} else if (Arch == Triple::ppc64) {
// PowerPC64 stub: the address points to a function descriptor
// instead of the function itself. Load the function address
// on r11 and sets it to control register. Also loads the function
// TOC in r2 and environment pointer to r11.
writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
writeInt32BE(Addr+40, 0x4E800420); // bctr
return Addr;
}
return Addr;

View File

@ -30,6 +30,14 @@ using namespace llvm::object;
namespace {
static inline
error_code check(error_code Err) {
if (Err) {
report_fatal_error(Err.message());
}
return Err;
}
template<support::endianness target_endianness, bool is64Bits>
class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
@ -340,6 +348,179 @@ void RuntimeDyldELF::resolveMIPSRelocation(uint8_t *LocalAddress,
}
}
// Return the .TOC. section address to R_PPC64_TOC relocations.
uint64_t RuntimeDyldELF::findPPC64TOC() const {
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
// order. The TOC starts where the first of these sections starts.
SectionList::const_iterator it = Sections.begin();
SectionList::const_iterator ite = Sections.end();
for (; it != ite; ++it) {
if (it->Name == ".got" ||
it->Name == ".toc" ||
it->Name == ".tocbss" ||
it->Name == ".plt")
break;
}
if (it == ite) {
// This may happen for
// * references to TOC base base (sym@toc, .odp relocation) without
// a .toc directive.
// In this case just use the first section (which is usually
// the .odp) since the code won't reference the .toc base
// directly.
it = Sections.begin();
}
assert (it != ite);
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
// thus permitting a full 64 Kbytes segment.
return it->LoadAddress + 0x8000;
}
// Returns the sections and offset associated with the ODP entry referenced
// by Symbol.
void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel) {
// Get the ELF symbol value (st_value) to compare with Relocation offset in
// .opd entries
error_code err;
for (section_iterator si = Obj.begin_sections(),
se = Obj.end_sections(); si != se; si.increment(err)) {
StringRef SectionName;
check(si->getName(SectionName));
if (SectionName != ".opd")
continue;
for (relocation_iterator i = si->begin_relocations(),
e = si->end_relocations(); i != e;) {
check(err);
// The R_PPC64_ADDR64 relocation indicates the first field
// of a .opd entry
uint64_t TypeFunc;
check(i->getType(TypeFunc));
if (TypeFunc != ELF::R_PPC64_ADDR64) {
i.increment(err);
continue;
}
SymbolRef TargetSymbol;
uint64_t TargetSymbolOffset;
int64_t TargetAdditionalInfo;
check(i->getSymbol(TargetSymbol));
check(i->getOffset(TargetSymbolOffset));
check(i->getAdditionalInfo(TargetAdditionalInfo));
i = i.increment(err);
if (i == e)
break;
check(err);
// Just check if following relocation is a R_PPC64_TOC
uint64_t TypeTOC;
check(i->getType(TypeTOC));
if (TypeTOC != ELF::R_PPC64_TOC)
continue;
// Finally compares the Symbol value and the target symbol offset
// to check if this .opd entry refers to the symbol the relocation
// points to.
if (Rel.Addend != (intptr_t)TargetSymbolOffset)
continue;
section_iterator tsi(Obj.end_sections());
check(TargetSymbol.getSection(tsi));
Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
Rel.Addend = (intptr_t)TargetAdditionalInfo;
return;
}
}
llvm_unreachable("Attempting to get address of ODP entry!");
}
// Relocation masks following the #lo(value), #hi(value), #higher(value),
// and #highest(value) macros defined in section 4.5.1. Relocation Types
// in PPC-elf64abi document.
//
static inline
uint16_t applyPPClo (uint64_t value)
{
return value & 0xffff;
}
static inline
uint16_t applyPPChi (uint64_t value)
{
return (value >> 16) & 0xffff;
}
static inline
uint16_t applyPPChigher (uint64_t value)
{
return (value >> 32) & 0xffff;
}
static inline
uint16_t applyPPChighest (uint64_t value)
{
return (value >> 48) & 0xffff;
}
void RuntimeDyldELF::resolvePPC64Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend) {
switch (Type) {
default:
llvm_unreachable("Relocation type not implemented yet!");
break;
case ELF::R_PPC64_ADDR16_LO :
writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
break;
case ELF::R_PPC64_ADDR16_HI :
writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
break;
case ELF::R_PPC64_ADDR16_HIGHER :
writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
break;
case ELF::R_PPC64_ADDR16_HIGHEST :
writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
break;
case ELF::R_PPC64_ADDR14 : {
assert(((Value + Addend) & 3) == 0);
// Preserve the AA/LK bits in the branch instruction
uint8_t aalk = *(LocalAddress+3);
writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
} break;
case ELF::R_PPC64_REL24 : {
int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
if (SignExtend32<24>(delta) != delta)
llvm_unreachable("Relocation R_PPC64_REL24 overflow");
// Generates a 'bl <address>' instruction
writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
} break;
case ELF::R_PPC64_ADDR64 :
writeInt64BE(LocalAddress, Value + Addend);
break;
case ELF::R_PPC64_TOC :
writeInt64BE(LocalAddress, findPPC64TOC());
break;
case ELF::R_PPC64_TOC16 : {
uint64_t TOCStart = findPPC64TOC();
Value = applyPPClo((Value + Addend) - TOCStart);
writeInt16BE(LocalAddress, applyPPClo(Value));
} break;
case ELF::R_PPC64_TOC16_DS : {
uint64_t TOCStart = findPPC64TOC();
Value = ((Value + Addend) - TOCStart);
writeInt16BE(LocalAddress, applyPPClo(Value));
} break;
}
}
void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
@ -366,6 +547,9 @@ void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
(uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
case Triple::ppc64:
resolvePPC64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
break;
default: llvm_unreachable("Unsupported CPU type!");
}
}
@ -390,6 +574,8 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
RelocationValueRef Value;
// First search for the symbol in the local symbol table
SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
SymbolRef::Type SymType;
Symbol.getType(SymType);
if (lsi != Symbols.end()) {
Value.SectionID = lsi->second.first;
Value.Addend = lsi->second.second;
@ -401,8 +587,6 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
Value.SectionID = gsi->second.first;
Value.Addend = gsi->second.second;
} else {
SymbolRef::Type SymType;
Symbol.getType(SymType);
switch (SymType) {
case SymbolRef::ST_Debug: {
// TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
@ -516,6 +700,93 @@ void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
Section.StubOffset, RelType, 0);
Section.StubOffset += getMaxStubSize();
}
} else if (Arch == Triple::ppc64) {
if (RelType == ELF::R_PPC64_REL24) {
// A PPC branch relocation will need a stub function if the target is
// an external symbol (Symbol::ST_Unknown) or if the target address
// is not within the signed 24-bits branch address.
SectionEntry &Section = Sections[Rel.SectionID];
uint8_t *Target = Section.Address + Rel.Offset;
bool RangeOverflow = false;
if (SymType != SymbolRef::ST_Unknown) {
// A function call may points to the .opd entry, so the final symbol value
// in calculated based in the relocation values in .opd section.
findOPDEntrySection(Obj, ObjSectionToID, Value);
uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
int32_t delta = static_cast<int32_t>(Target - RelocTarget);
// If it is within 24-bits branch range, just set the branch target
if (SignExtend32<24>(delta) == delta) {
RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
} else {
RangeOverflow = true;
}
}
if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
// It is an external symbol (SymbolRef::ST_Unknown) or within a range
// larger than 24-bits.
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end()) {
// Symbol function stub already created, just relocate to it
resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address
+ i->second, RelType, 0);
DEBUG(dbgs() << " Stub function found\n");
} else {
// Create a new stub function.
DEBUG(dbgs() << " Create a new stub function\n");
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
Section.StubOffset);
RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
ELF::R_PPC64_ADDR64, Value.Addend);
// Generates the 64-bits address loads as exemplified in section
// 4.5.1 in PPC64 ELF ABI.
RelocationEntry REhst(Rel.SectionID,
StubTargetAddr - Section.Address + 2,
ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
RelocationEntry REhr(Rel.SectionID,
StubTargetAddr - Section.Address + 6,
ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
RelocationEntry REh(Rel.SectionID,
StubTargetAddr - Section.Address + 14,
ELF::R_PPC64_ADDR16_HI, Value.Addend);
RelocationEntry REl(Rel.SectionID,
StubTargetAddr - Section.Address + 18,
ELF::R_PPC64_ADDR16_LO, Value.Addend);
if (Value.SymbolName) {
addRelocationForSymbol(REhst, Value.SymbolName);
addRelocationForSymbol(REhr, Value.SymbolName);
addRelocationForSymbol(REh, Value.SymbolName);
addRelocationForSymbol(REl, Value.SymbolName);
} else {
addRelocationForSection(REhst, Value.SectionID);
addRelocationForSection(REhr, Value.SectionID);
addRelocationForSection(REh, Value.SectionID);
addRelocationForSection(REl, Value.SectionID);
}
resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address
+ Section.StubOffset, RelType, 0);
if (SymType == SymbolRef::ST_Unknown)
// Restore the TOC for external calls
writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
Section.StubOffset += getMaxStubSize();
}
}
} else {
RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
// Extra check to avoid relocation againt empty symbols (usually
// the R_PPC64_TOC).
if (Value.SymbolName && !TargetName.empty())
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
}
} else {
RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
if (Value.SymbolName)

View File

@ -46,6 +46,12 @@ protected:
uint32_t Type,
int32_t Addend);
void resolvePPC64Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend);
virtual void resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
@ -60,6 +66,11 @@ protected:
virtual ObjectImage *createObjectImage(ObjectBuffer *InputBuffer);
uint64_t findPPC64TOC() const;
void findOPDEntrySection(ObjectImage &Obj,
ObjSectionToIDMap &LocalSections,
RelocationValueRef &Rel);
public:
RuntimeDyldELF(RTDyldMemoryManager *mm)
: RuntimeDyldImpl(mm) {}

View File

@ -24,6 +24,8 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/SwapByteOrder.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <map>
@ -41,6 +43,9 @@ class Twine;
/// linker.
class SectionEntry {
public:
/// Name - section name.
StringRef Name;
/// Address - address in the linker's memory where the section resides.
uint8_t *Address;
@ -61,9 +66,9 @@ public:
/// for calculating relocations in some object formats (like MachO).
uintptr_t ObjAddress;
SectionEntry(uint8_t *address, size_t size, uintptr_t stubOffset,
uintptr_t objAddress)
: Address(address), Size(size), LoadAddress((uintptr_t)address),
SectionEntry(StringRef name, uint8_t *address, size_t size,
uintptr_t stubOffset, uintptr_t objAddress)
: Name(name), Address(address), Size(size), LoadAddress((uintptr_t)address),
StubOffset(stubOffset), ObjAddress(objAddress) {}
};
@ -163,6 +168,8 @@ protected:
return 8; // 32-bit instruction and 32-bit address
else if (Arch == Triple::mipsel)
return 16;
else if (Arch == Triple::ppc64)
return 44;
else
return 0;
}
@ -185,6 +192,35 @@ protected:
return (uint8_t*)Sections[SectionID].Address;
}
void writeInt16BE(uint8_t *Addr, uint16_t Value) {
if (sys::isLittleEndianHost())
Value = sys::SwapByteOrder(Value);
*Addr = (Value >> 8) & 0xFF;
*(Addr+1) = Value & 0xFF;
}
void writeInt32BE(uint8_t *Addr, uint32_t Value) {
if (sys::isLittleEndianHost())
Value = sys::SwapByteOrder(Value);
*Addr = (Value >> 24) & 0xFF;
*(Addr+1) = (Value >> 16) & 0xFF;
*(Addr+2) = (Value >> 8) & 0xFF;
*(Addr+3) = Value & 0xFF;
}
void writeInt64BE(uint8_t *Addr, uint64_t Value) {
if (sys::isLittleEndianHost())
Value = sys::SwapByteOrder(Value);
*Addr = (Value >> 56) & 0xFF;
*(Addr+1) = (Value >> 48) & 0xFF;
*(Addr+2) = (Value >> 40) & 0xFF;
*(Addr+3) = (Value >> 32) & 0xFF;
*(Addr+4) = (Value >> 24) & 0xFF;
*(Addr+5) = (Value >> 16) & 0xFF;
*(Addr+6) = (Value >> 8) & 0xFF;
*(Addr+7) = Value & 0xFF;
}
/// \brief Given the common symbols discovered in the object file, emit a
/// new section for them and update the symbol mappings in the object and
/// symbol table.