[mlir][linalg] Add optional output operand to PadTensorOp

This optional operand will be used for tiling in a subsequent commit.

Differential Revision: https://reviews.llvm.org/D105459
This commit is contained in:
Matthias Springer 2021-07-15 10:20:00 +09:00
parent 3469a8e03b
commit 5da010af9a
5 changed files with 103 additions and 6 deletions

View File

@ -146,6 +146,7 @@ def Linalg_PadTensorOp : Linalg_Op<"pad_tensor",
dimension, i.e `low`.
* high: A list contains the padding along the end of each
dimension, i.e. `high`.
* output: An optional output operand.
The result tensor dimensions are `low` + `dim` + `high` along that
dimension. The number of elements of `low` and `high` must match
@ -194,16 +195,21 @@ def Linalg_PadTensorOp : Linalg_Op<"pad_tensor",
Variadic<Index>:$low,
Variadic<Index>:$high,
I64ArrayAttr:$static_low,
I64ArrayAttr:$static_high);
I64ArrayAttr:$static_high,
Optional<AnyTensor>:$output);
let regions = (region SizedRegion<1>:$region);
let results = (outs AnyTensor:$result);
// TODO: Remove custom<InferType> when AllTypesMatch supports opt. operands.
let assemblyFormat = [{
$source `low` `` custom<OperandsOrIntegersSizesList>($low, $static_low)
$source
`low` `` custom<OperandsOrIntegersSizesList>($low, $static_low)
`high` `` custom<OperandsOrIntegersSizesList>($high, $static_high)
(`into` $output^ )?
$region attr-dict `:` type($source) `to` type($result)
custom<InferType>(ref($output), type($output), ref(type($result)))
}];
let extraClassDeclaration = [{
@ -292,7 +298,12 @@ def Linalg_PadTensorOp : Linalg_Op<"pad_tensor",
// result type. If the type passed is nullptr, it is inferred.
OpBuilder<(ins "Type":$resultType, "Value":$source,
"ArrayRef<OpFoldResult>":$low, "ArrayRef<OpFoldResult>":$high,
CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>
CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>,
// Build a PadTensorOp with mixed static and dynamic entries and custom
// result type.
OpBuilder<(ins "Type":$resultType, "Value":$source,
"ArrayRef<Value>":$low, "ArrayRef<Value>":$high, "ArrayAttr":$staticLow,
"ArrayAttr":$staticHigh)>
];
let hasCanonicalizer = 1;

View File

@ -855,6 +855,19 @@ LogicalResult InitTensorOp::reifyReturnTypeShapesPerResultDim(
// PadTensorOp
//===----------------------------------------------------------------------===//
// TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it
// supports optional types.
void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand,
Type typeToInfer, Type typeToInferFrom) {}
ParseResult parseInferType(OpAsmParser &parser,
Optional<OpAsmParser::OperandType> optOperand,
Type &typeToInfer, Type typeToInferFrom) {
if (optOperand)
typeToInfer = typeToInferFrom;
return success();
}
static LogicalResult verify(PadTensorOp op) {
auto sourceType = op.source().getType().cast<RankedTensorType>();
auto resultType = op.result().getType().cast<RankedTensorType>();
@ -870,6 +883,9 @@ static LogicalResult verify(PadTensorOp op) {
<< resultType << " does not match the inferred type "
<< expectedType;
}
if (op.output() && op.output().getType() != op.getResultType()) {
op.emitError("expected that output operand type equals result type");
}
auto &region = op.region();
unsigned rank = resultType.getRank();
@ -916,7 +932,7 @@ void PadTensorOp::build(OpBuilder &b, OperationState &result, Value source,
auto sourceType = source.getType().cast<RankedTensorType>();
auto resultType = inferResultType(sourceType, staticLow, staticHigh);
build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow),
b.getI64ArrayAttr(staticHigh));
b.getI64ArrayAttr(staticHigh), /*output=*/Value());
result.addAttributes(attrs);
}
@ -953,7 +969,15 @@ void PadTensorOp::build(OpBuilder &b, OperationState &result, Type resultType,
PadTensorOp::inferResultType(sourceType, staticLow, staticHigh);
}
build(b, result, resultType, source, dynamicLow, dynamicHigh,
b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh));
b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh),
/*output=*/Value());
}
void PadTensorOp::build(OpBuilder &b, OperationState &result, Type resultType,
Value source, ArrayRef<Value> low, ArrayRef<Value> high,
ArrayAttr staticLow, ArrayAttr staticHigh) {
build(b, result, resultType, source, low, high, staticLow, staticHigh,
/*output=*/{});
}
PadTensorOp PadTensorOp::createPadScalarOp(Type type, Value source, Value pad,
@ -1038,11 +1062,25 @@ struct FoldStaticZeroPadding : public OpRewritePattern<PadTensorOp> {
}
};
// Fold tensor.dim(pad_tensor(%input, %output)) to tensor.dim(%output).
struct FoldToDimOfOutputOperand : public OpRewritePattern<tensor::DimOp> {
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
PatternRewriter &rewriter) const override {
auto padTensorOp = dimOp.source().getDefiningOp<PadTensorOp>();
if (!padTensorOp || !padTensorOp.output())
return failure();
rewriter.replaceOpWithNewOp<tensor::DimOp>(dimOp, padTensorOp.output(),
dimOp.index());
return success();
}
};
} // namespace
void PadTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldStaticZeroPadding>(context);
results.add<FoldStaticZeroPadding, FoldToDimOfOutputOperand>(context);
}
/// Return the padding value of the PadTensorOp if it constant. In this context,

View File

@ -902,3 +902,21 @@ func @rank_reducing_init_extract(%sz : index, %idx : index) -> tensor<2xf32> {
%r = tensor.extract_slice %a[%idx, 0] [1, 2] [1, 1] : tensor<?x2xf32> to tensor<2xf32>
return %r: tensor<2xf32>
}
// -----
// CHECK-LABEL: func @dim_of_pad_tensor(
// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?xf32>, %[[ARG1:.*]]: tensor<?x?xf32>
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[RESULT:.*]] = tensor.dim %[[ARG1]], %[[C0]]
// CHECK: return %[[RESULT]]
func @dim_of_pad_tensor(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>,
%pad_value: f32) -> index {
%c0 = constant 0 : index
%0 = linalg.pad_tensor %arg0 low[2, 3] high[4, 5] into %arg1 {
^bb0(%arg2: index, %arg3: index):
linalg.yield %pad_value : f32
} : tensor<?x?xf32> to tensor<?x?xf32>
%r = tensor.dim %0, %c0 : tensor<?x?xf32>
return %r : index
}

View File

@ -584,6 +584,18 @@ func @pad_result_type(%arg0: tensor<?x2x3x4xi32>, %arg1: index, %arg2: i32) -> t
// -----
// expected-note@+1 {{prior use here}}
func @pad_output_type(%arg0: tensor<?x2x3x4xi32>, %arg1: index, %arg2: i32, %output: tensor<?x6x6x7xf32>) -> tensor<?x?x?x8xf32> {
// expected-error @+1 {{use of value '%output' expects different type than prior uses: 'tensor<?x5x6x7xf32>' vs 'tensor<?x6x6x7xf32>'}}
%0 = linalg.pad_tensor %arg0 low[1, 1, 1, 1] high[2, 2, 2, 2] into %output {
^bb0(%arg3: index, %arg4: index): // no predecessors
linalg.yield %arg2 : i32
} : tensor<?x2x3x4xi32> to tensor<?x5x6x7xf32>
return %0 : tensor<?x5x6x7xf32>
}
// -----
func @pad_number_of_block_args(%arg0: tensor<?x4xi32>, %arg1: i32) -> tensor<?x9xi32> {
// expected-error @+1 {{expected the block to have 2 arguments}}
%0 = linalg.pad_tensor %arg0 low[1, 2] high[2, 3] {

View File

@ -51,6 +51,24 @@ func @pad_static(%arg0: tensor<3x4xf32>, %pad_value: f32) -> tensor<6x9xf32> {
// -----
func @pad_static_with_output(%arg0: tensor<3x4xf32>,
%out_tensor : tensor<6x9xf32>,
%pad_value: f32)
-> tensor<6x9xf32> {
%0 = linalg.pad_tensor %arg0 low[1, 2] high[2, 3] into %out_tensor {
^bb0(%arg1 : index, %arg2 : index):
linalg.yield %pad_value : f32
} : tensor<3x4xf32> to tensor<6x9xf32>
return %0 : tensor<6x9xf32>
}
// CHECK-LABEL: func @pad_static
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: tensor<3x4xf32>,
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: tensor<6x9xf32>,
// CHECK: linalg.pad_tensor %[[ARG0]] low[1, 2] high[2, 3] into %[[ARG1]]
// CHECK: : tensor<3x4xf32> to tensor<6x9xf32>
// -----
func @pad_asymmetrical(%arg0: tensor<2x3xf32>, %ub0: index, %ub1: index,
%pad_value: f32) -> tensor<?x?xf32> {
%0 = linalg.pad_tensor %arg0 low[0, 0] high[%ub0, %ub1] {