[mlir][linalg] Fold tensor.pad when inserting into linalg.fill

Fold tensor.insert_slice(tensor.pad(<input>), linalg.fill) into
tensor.insert_slice(<input>, linalg.fill) if the padding value and
the filling value are the same.

Reviewed By: ThomasRaoux

Differential Revision: https://reviews.llvm.org/D120410
This commit is contained in:
Lei Zhang 2022-02-28 16:34:46 -05:00
parent 1521162d78
commit 5d47332783
2 changed files with 88 additions and 1 deletions

View File

@ -444,13 +444,71 @@ struct FoldFillWithPad final : public OpRewritePattern<tensor::PadOp> {
}
};
/// Fold tensor.insert_slice(tensor.pad(<input>), linalg.fill) into
/// tensor.insert_slice(<input>, linalg.fill) if the padding value and the
/// filling value are the same.
struct FoldInsertPadIntoFill : public OpRewritePattern<tensor::InsertSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
PatternRewriter &rewriter) const override {
auto srcPadOp = insertOp.source().getDefiningOp<tensor::PadOp>();
if (!srcPadOp)
return failure();
auto dstFillOp = insertOp.dest().getDefiningOp<linalg::FillOp>();
if (!dstFillOp)
return failure();
// We can only fold if the padding value is the same as the original
// filling value.
Value padValue = srcPadOp.getConstantPaddingValue();
if (!padValue || dstFillOp.value() != padValue)
return failure();
SmallVector<OpFoldResult> lowPads = srcPadOp.getMixedLowPad();
SmallVector<OpFoldResult> oldOffsets = insertOp.getMixedOffsets();
Location loc = insertOp.getLoc();
MLIRContext *context = getContext();
AffineExpr sym0, sym1;
bindSymbols(context, sym0, sym1);
auto addMap = AffineMap::get(0, 2, {sym0 + sym1}, context);
// Calculate the new offsets for the insert. It should be the old offsets
// plus low padding sizes.
SmallVector<OpFoldResult, 4> newOffsets;
for (const auto &p : llvm::zip(lowPads, oldOffsets)) {
Value padValue = getValueOrCreateConstantIndexOp(
rewriter, srcPadOp.getLoc(), std::get<0>(p));
Value offsetValue = getValueOrCreateConstantIndexOp(
rewriter, insertOp.getLoc(), std::get<1>(p));
newOffsets.push_back(
applyMapToValues(rewriter, loc, addMap, {offsetValue, padValue})[0]);
}
SmallVector<OpFoldResult, 4> newSizes;
for (int i = 0, e = srcPadOp.getSourceType().getRank(); i < e; ++i) {
newSizes.push_back(
rewriter.create<tensor::DimOp>(loc, srcPadOp.source(), i).result());
}
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
insertOp, srcPadOp.source(), insertOp.dest(), newOffsets, newSizes,
insertOp.getMixedStrides());
return success();
}
};
} // namespace
void FillOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results
.add<FoldFillWithPad, FoldFillWithTensorReshape<tensor::CollapseShapeOp>,
FoldFillWithTensorReshape<tensor::ExpandShapeOp>>(context);
FoldFillWithTensorReshape<tensor::ExpandShapeOp>,
FoldInsertPadIntoFill>(context);
}
//===----------------------------------------------------------------------===//

View File

@ -613,3 +613,32 @@ func @cast_dest(%arg0: tensor<?x?x?xf32>, %arg1: tensor<1x?x?xf32>, %arg2: index
// CHECK-SAME: outs(%{{.*}} : tensor<1x?x?xf32>)
// CHECK: tensor.cast %[[GENERIC_OP]] : tensor<1x?x?xf32> to tensor<?x?x?xf32>
}
// -----
// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 + 1)>
// CHECK-LABEL: func @insert_pad_into_fill
// CHECK-SAME: (%[[INPUT:.+]]: tensor<?x?x?xf32>, %[[LOW0:.+]]: index, %[[LOW1:.+]]: index, %{{.+}}: index, %{{.+}}: index)
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK-DAG: %[[F0:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[INIT:.+]] = linalg.init_tensor [8, 384, 384]
// CHECK: %[[FILL:.+]] = linalg.fill(%[[F0]], %[[INIT]])
// CHECK: %[[OFFSET1:.+]] = affine.apply #[[$MAP]]()[%[[LOW1]]]
// CHECK: %[[D0:.+]] = tensor.dim %[[INPUT]], %[[C0]] : tensor<?x?x?xf32>
// CHECK: %[[D1:.+]] = tensor.dim %[[INPUT]], %[[C1]] : tensor<?x?x?xf32>
// CHECK: %[[D2:.+]] = tensor.dim %[[INPUT]], %[[C2]] : tensor<?x?x?xf32>
// CHECK: tensor.insert_slice %[[INPUT]] into %[[FILL]][%[[LOW0]], %[[OFFSET1]], 2] [%[[D0]], %[[D1]], %[[D2]]] [1, 1, 1]
func @insert_pad_into_fill(%input: tensor<?x?x?xf32>, %low0: index, %low1: index, %high1: index, %high2: index) -> tensor<8x384x384xf32> {
%f0 = arith.constant 0.0 : f32
%c0 = arith.constant 0 : index
%pad = tensor.pad %input low[%low0, %low1, %c0] high[%c0, %high1, %high2] {
^bb0(%arg3: index, %arg4: index, %arg5: index):
tensor.yield %f0 : f32
} : tensor<?x?x?xf32> to tensor<8x128x128xf32>
%init = linalg.init_tensor [8, 384, 384] : tensor<8x384x384xf32>
%fill = linalg.fill(%f0, %init) : f32, tensor<8x384x384xf32> -> tensor<8x384x384xf32>
%0 = tensor.insert_slice %pad into %fill[0, 1, 2] [8, 128, 128] [1, 1, 1] : tensor<8x128x128xf32> into tensor<8x384x384xf32>
return %0: tensor<8x384x384xf32>
}