Add a description of the X86-64 calling convention and the return

conventions.  This doesn't do anything yet, but may in the future.

llvm-svn: 34636
This commit is contained in:
Chris Lattner 2007-02-26 18:17:14 +00:00
parent 62530f93b3
commit 5d00a0b8a9
2 changed files with 143 additions and 0 deletions

View File

@ -123,6 +123,17 @@ def X86InstrInfo : InstrInfo {
24];
}
//===----------------------------------------------------------------------===//
// Calling Conventions
//===----------------------------------------------------------------------===//
include "X86CallingConv.td"
//===----------------------------------------------------------------------===//
// Assembly Printers
//===----------------------------------------------------------------------===//
// The X86 target supports two different syntaxes for emitting machine code.
// This is controlled by the -x86-asm-syntax={att|intel}
def ATTAsmWriter : AsmWriter {

View File

@ -0,0 +1,132 @@
//===- X86CallingConv.td - Calling Conventions for X86 32/64 ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the X86-32 and X86-64
// architectures.
//
//===----------------------------------------------------------------------===//
class CCAction;
class CallingConv;
/// CCMatchType - If the current argument is one of the specified types, apply
/// Action A.
class CCMatchType<list<ValueType> VTs, CCAction A> : CCAction {
}
/// CCMatchIf - If the predicate matches, apply A.
class CCMatchIf<string predicate, CCAction A> : CCAction {
string Predicate = predicate;
}
/// CCAssignToReg - This action matches if there is a register in the specified
/// list that is still available. If so, it assigns the value to the first
/// available register and succeeds.
class CCAssignToReg<list<Register> regList> : CCAction {
list<Register> RegList = regList;
}
/// CCAssignToStack - This action always matches: it assigns the value to a
/// stack slot of the specified size and alignment on the stack.
class CCAssignToStack<int size, int align> : CCAction {
int Size = size;
int Align = align;
}
/// CCPromoteToType - If applied, this promotes the specified current value to
/// the specified type.
class CCPromoteToType<ValueType destTy> : CCAction {
ValueType DestTy = destTy;
}
/// CCDelegateTo - This action invokes the specified sub-calling-convention. It
/// is successful if the specified CC matches.
class CCDelegateTo<CallingConv cc> : CCAction {
CallingConv CC = cc;
}
class CallingConv<list<CCAction> actions> {
list<CCAction> Actions = actions;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
//===----------------------------------------------------------------------===//
def RetCC_X86Common : CallingConv<[
// Scalar values are returned in AX first, then DX.
CCMatchType<[i8] , CCAssignToReg<[AL]>>,
CCMatchType<[i16], CCAssignToReg<[AX]>>,
CCMatchType<[i32], CCAssignToReg<[EAX, EDX]>>,
CCMatchType<[i64], CCAssignToReg<[RAX, RDX]>>,
// Vector types are always returned in XMM0. If the target doesn't have XMM0,
// it won't have vector types.
CCMatchType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToReg<[XMM0]>>
]>;
// Return conventions for the X86-32 C calling convention.
def RetCC_X86_32_C : CallingConv<[
// The X86-32 calling convention returns FP values in ST0, otherwise it is the
// same as the common X86 calling conv.
CCMatchType<[f32], CCAssignToReg<[ST0]>>,
CCMatchType<[f64], CCAssignToReg<[ST0]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// Return conventions for the X86-32 Fast calling convention.
def RetCC_X86_32_Fast : CallingConv<[
// The X86-32 fastcc returns FP values in XMM0 if the target has SSE2,
// otherwise it is the the C calling conventions.
CCMatchType<[f32], CCMatchIf<"Subtarget->hasSSE2()", CCAssignToReg<[XMM0]>>>,
CCMatchType<[f64], CCMatchIf<"Subtarget->hasSSE2()", CCAssignToReg<[XMM0]>>>,
CCDelegateTo<RetCC_X86Common>
]>;
// Return conventions for the X86-64 C calling convention.
def RetCC_X86_64_C : CallingConv<[
// The X86-64 calling convention always returns FP values in XMM0.
CCMatchType<[f32], CCAssignToReg<[XMM0]>>,
CCMatchType<[f64], CCAssignToReg<[XMM0]>>,
CCDelegateTo<RetCC_X86Common>
]>;
//===----------------------------------------------------------------------===//
// Argument Calling Conventions
//===----------------------------------------------------------------------===//
def CC_X86_64_C : CallingConv<[
// Promote i8/i16 arguments to i32.
CCMatchType<[i8, i16], CCPromoteToType<i32>>,
// The first 6 integer arguments are passed in integer registers.
CCMatchType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
CCMatchType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCMatchType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCMatchType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCMatchType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToStack<16, 16>>
]>;