forked from OSchip/llvm-project
[mlgo] Use TFLite for 'development' mode.
TLite is a lightweight, statically linkable[1], model evaluator, supporting a subset of what the full tensorflow library does, sufficient for the types of scenarios we envision having. It is also faster. We still use saved models as "source of truth" - 'release' mode's AOT starts from a saved model; and the ML training side operates in terms of saved models. Using TFLite solves the following problems compared to using the full TF C API: - a compiler-friendly implementation for runtime-loadable (as opposed to AOT-embedded) models: it's statically linked; it can be built via cmake; - solves an issue we had when building the compiler with both AOT and full TF C API support, whereby, due to a packaging issue on the TF side, we needed to have the pip package and the TF C API library at the same version. We have no such constraints now. The main liability is it supporting a subset of what the full TF framework does. We do not expect that to cause an issue, but should that be the case, we can always revert back to using the full framework (after also figuring out a way to address the problems that motivated the move to TFLite). Details: This change switches the development mode to TFLite. Models are still expected to be placed in a directory - i.e. the parameters to clang don't change; what changes is the directory content: we still need an `output_spec.json` file; but instead of the saved_model protobuf and the `variables` directory, we now just have one file, `model.tflite`. The change includes a utility showing how to take a saved model and convert it to TFLite, which it uses for testing. The full TF implementation can still be built (not side-by-side). We intend to remove it shortly, after patching downstream dependencies. The build behavior, however, prioritizes TFLite - i.e. trying to enable both full TF C API and TFLite will just pick TFLite. [1] thanks to @petrhosek's changes to TFLite's cmake support and its deps!
This commit is contained in:
parent
b6d56ddac1
commit
5ce4c9aa04
|
@ -944,15 +944,17 @@ if(LLVM_INCLUDE_TESTS)
|
|||
get_errc_messages(LLVM_LIT_ERRC_MESSAGES)
|
||||
endif()
|
||||
|
||||
# For up-to-date instructions for installing the Tensorflow dependency, refer to
|
||||
# For up-to-date instructions for installing the TFLite dependency, refer to
|
||||
# the bot setup script: https://github.com/google/ml-compiler-opt/blob/main/buildbot/buildbot_init.sh
|
||||
# In this case, the latest C API library is available for download from
|
||||
# https://www.tensorflow.org/install/lang_c.
|
||||
# We will expose the conditional compilation variable,
|
||||
# LLVM_HAVE_TF_API, through llvm-config.h, so that a user of the LLVM library may
|
||||
# also leverage the dependency.
|
||||
set(TENSORFLOW_C_LIB_PATH "" CACHE PATH "Path to TensorFlow C library install")
|
||||
if (TENSORFLOW_C_LIB_PATH)
|
||||
set(LLVM_HAVE_TFLITE "" CACHE BOOL "Use tflite")
|
||||
if (LLVM_HAVE_TFLITE)
|
||||
find_package(protobuf REQUIRED)
|
||||
find_package(tensorflow-lite REQUIRED)
|
||||
set(LLVM_HAVE_TF_API "ON" CACHE BOOL "Full Tensorflow API available")
|
||||
set(LLVM_PROTOBUF_OUT_DIR ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/protobuf_gen)
|
||||
include_directories(${LLVM_PROTOBUF_OUT_DIR})
|
||||
elseif (TENSORFLOW_C_LIB_PATH)
|
||||
find_library(tensorflow_c_api tensorflow PATHS ${TENSORFLOW_C_LIB_PATH}/lib NO_DEFAULT_PATH REQUIRED)
|
||||
# Currently, the protobuf headers are distributed with the pip package that corresponds to the version
|
||||
# of the C API library.
|
||||
|
@ -989,7 +991,12 @@ if (NOT TENSORFLOW_AOT_PATH STREQUAL "")
|
|||
set(TENSORFLOW_AOT_COMPILER
|
||||
"${TENSORFLOW_AOT_PATH}/../../../../bin/saved_model_cli"
|
||||
CACHE PATH "Path to the Tensorflow AOT compiler")
|
||||
include_directories(${TENSORFLOW_AOT_PATH}/include)
|
||||
# This needs to happen to avoid clashing protobuf codegen when building both AOT and development mode.
|
||||
# We plan to replace protobuf with a simpler alternative, so this will go away.
|
||||
file(COPY ${TENSORFLOW_AOT_PATH}/include DESTINATION ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/tensorflow
|
||||
PATTERN "google/*" EXCLUDE
|
||||
PATTERN "*.pb.h" EXCLUDE)
|
||||
include_directories(${CMAKE_LIBRARY_OUTPUT_DIRECTORY}/tensorflow/include)
|
||||
add_subdirectory(${TENSORFLOW_AOT_PATH}/xla_aot_runtime_src
|
||||
${CMAKE_ARCHIVE_OUTPUT_DIRECTORY}/tf_runtime)
|
||||
install(TARGETS tf_xla_runtime EXPORT LLVMExports
|
||||
|
|
|
@ -116,3 +116,18 @@ function(tf_find_and_compile model default_url default_path test_model_generator
|
|||
set(MLLinkDeps ${MLLinkDeps} tf_xla_runtime PARENT_SCOPE)
|
||||
add_definitions(-DLLVM_HAVE_TF_AOT_${fname_allcaps})
|
||||
endfunction()
|
||||
|
||||
function(build_proto)
|
||||
foreach (P ${ARGV})
|
||||
set(PB_SRCS ${PB_SRCS} ${LLVM_PROTOBUF_OUT_DIR}/${P}.pb.cc)
|
||||
set(PB_HDRS ${PB_HDRS} ${LLVM_PROTOBUF_OUT_DIR}/${P}.pb.h)
|
||||
set(PBS ${PBS} ${TENSORFLOW_SRC_DIR}/${P}.proto)
|
||||
endforeach()
|
||||
add_custom_command(OUTPUT ${PB_SRCS} ${PB_HDRS}
|
||||
COMMAND protobuf::protoc
|
||||
ARGS --proto_path=${TENSORFLOW_SRC_DIR} --cpp_out=${LLVM_PROTOBUF_OUT_DIR} ${PBS})
|
||||
set_source_files_properties(${PB_SRCS} PROPERTIES
|
||||
GENERATED 1)
|
||||
set(GeneratedMLSources ${GeneratedMLSources} ${PB_SRCS} PARENT_SCOPE)
|
||||
set(MLDeps ${MLDeps} ${MLDeps} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
|
|
@ -101,6 +101,9 @@
|
|||
/* Define if LLVM was built with a dependency to the libtensorflow dynamic library */
|
||||
#cmakedefine LLVM_HAVE_TF_API
|
||||
|
||||
/* Define if LLVM is using tflite instead of libtensorflow */
|
||||
#cmakedefine LLVM_HAVE_TFLITE
|
||||
|
||||
/* Define to 1 if you have the <sysexits.h> header file. */
|
||||
#cmakedefine HAVE_SYSEXITS_H ${HAVE_SYSEXITS_H}
|
||||
|
||||
|
|
|
@ -18,7 +18,17 @@ if (DEFINED LLVM_HAVE_TF_AOT OR DEFINED LLVM_HAVE_TF_API)
|
|||
endif()
|
||||
|
||||
if (DEFINED LLVM_HAVE_TF_API)
|
||||
list(APPEND MLLinkDeps ${tensorflow_c_api} ${tensorflow_fx})
|
||||
if (DEFINED LLVM_HAVE_TFLITE)
|
||||
build_proto(
|
||||
tensorflow/core/protobuf/error_codes
|
||||
tensorflow/core/example/feature
|
||||
tensorflow/core/example/example)
|
||||
list(APPEND MLLinkDeps
|
||||
tensorflow-lite::tensorflow-lite
|
||||
protobuf::libprotobuf)
|
||||
else()
|
||||
list(APPEND MLLinkDeps ${tensorflow_c_api} ${tensorflow_fx})
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
@ -130,6 +140,7 @@ add_llvm_component_library(LLVMAnalysis
|
|||
SyncDependenceAnalysis.cpp
|
||||
SyntheticCountsUtils.cpp
|
||||
TFUtils.cpp
|
||||
TFLiteUtils.cpp
|
||||
TargetLibraryInfo.cpp
|
||||
TargetTransformInfo.cpp
|
||||
TensorSpec.cpp
|
||||
|
|
|
@ -0,0 +1,232 @@
|
|||
//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements utilities for interfacing with tensorflow C APIs.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#include "llvm/Config/config.h"
|
||||
#if defined(LLVM_HAVE_TFLITE)
|
||||
|
||||
#include "llvm/ADT/Twine.h"
|
||||
#include "llvm/Analysis/Utils/TFUtils.h"
|
||||
#include "llvm/Support/Base64.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/JSON.h"
|
||||
#include "llvm/Support/MemoryBuffer.h"
|
||||
#include "llvm/Support/Path.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/model_builder.h"
|
||||
#include "tensorflow/lite/op_resolver.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace llvm {
|
||||
class EvaluationResultImpl {
|
||||
public:
|
||||
EvaluationResultImpl(const std::vector<const TfLiteTensor *> &Outputs)
|
||||
: Outputs(Outputs){};
|
||||
|
||||
const TfLiteTensor *getOutput(size_t I) { return Outputs[I]; }
|
||||
|
||||
EvaluationResultImpl(const EvaluationResultImpl &) = delete;
|
||||
EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
|
||||
|
||||
private:
|
||||
const std::vector<const TfLiteTensor *> Outputs;
|
||||
};
|
||||
|
||||
class TFModelEvaluatorImpl {
|
||||
public:
|
||||
TFModelEvaluatorImpl(StringRef SavedModelPath,
|
||||
const std::vector<TensorSpec> &InputSpecs,
|
||||
function_ref<TensorSpec(size_t)> GetOutputSpecs,
|
||||
size_t OutputSpecsSize, const char *Tags);
|
||||
|
||||
bool isValid() const { return IsValid; }
|
||||
size_t outputSize() const { return Output.size(); }
|
||||
|
||||
std::unique_ptr<EvaluationResultImpl> evaluate() {
|
||||
Interpreter->Invoke();
|
||||
return std::make_unique<EvaluationResultImpl>(Output);
|
||||
}
|
||||
|
||||
const std::vector<TfLiteTensor *> &getInput() const { return Input; }
|
||||
|
||||
~TFModelEvaluatorImpl();
|
||||
|
||||
private:
|
||||
std::unique_ptr<tflite::FlatBufferModel> Model;
|
||||
|
||||
/// The objects necessary for carrying out an evaluation of the SavedModel.
|
||||
/// They are expensive to set up, and we maintain them accross all the
|
||||
/// evaluations of the model.
|
||||
std::unique_ptr<tflite::Interpreter> Interpreter;
|
||||
|
||||
/// The input tensors. We set up the tensors once and just mutate theirs
|
||||
/// scalars before each evaluation. The input tensors keep their value after
|
||||
/// an evaluation.
|
||||
std::vector<TfLiteTensor *> Input;
|
||||
|
||||
/// The output nodes.
|
||||
std::vector<const TfLiteTensor *> Output;
|
||||
|
||||
void invalidate() { IsValid = false; }
|
||||
|
||||
bool IsValid = true;
|
||||
|
||||
/// Reusable utility for ensuring we can bind the requested Name to a node in
|
||||
/// the SavedModel Graph.
|
||||
bool checkReportAndInvalidate(const TfLiteTensor *Tensor,
|
||||
const TensorSpec &Spec);
|
||||
};
|
||||
|
||||
} // namespace llvm
|
||||
|
||||
TFModelEvaluatorImpl::TFModelEvaluatorImpl(
|
||||
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
|
||||
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
|
||||
const char *Tags = "serve")
|
||||
: Input(InputSpecs.size()), Output(OutputSpecsSize) {
|
||||
// FIXME: make ErrorReporter a member (may also need subclassing
|
||||
// StatefulErrorReporter) to easily get the latest error status, for
|
||||
// debugging.
|
||||
tflite::StderrReporter ErrorReporter;
|
||||
SmallVector<char, 128> TFLitePathBuff;
|
||||
llvm::sys::path::append(TFLitePathBuff, SavedModelPath, "model.tflite");
|
||||
StringRef TFLitePath(TFLitePathBuff.data(), TFLitePathBuff.size());
|
||||
Model = tflite::FlatBufferModel::BuildFromFile(TFLitePath.str().c_str(),
|
||||
&ErrorReporter);
|
||||
if (!Model) {
|
||||
invalidate();
|
||||
return;
|
||||
}
|
||||
|
||||
tflite::ops::builtin::BuiltinOpResolver Resolver;
|
||||
tflite::InterpreterBuilder Builder(*Model, Resolver);
|
||||
Builder(&Interpreter);
|
||||
|
||||
if (!Interpreter ||
|
||||
Interpreter->AllocateTensors() != TfLiteStatus::kTfLiteOk) {
|
||||
invalidate();
|
||||
return;
|
||||
}
|
||||
// Known inputs and outputs
|
||||
StringMap<int> InputsMap;
|
||||
StringMap<int> OutputsMap;
|
||||
for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
|
||||
InputsMap[Interpreter->GetInputName(I)] = I;
|
||||
for (size_t I = 0; I < Interpreter->outputs().size(); ++I)
|
||||
OutputsMap[Interpreter->GetOutputName(I)] = I;
|
||||
|
||||
for (size_t I = 0; I < InputSpecs.size(); ++I) {
|
||||
auto &InputSpec = InputSpecs[I];
|
||||
auto MapI = InputsMap.find(InputSpec.name() + ":" +
|
||||
std::to_string(InputSpec.port()));
|
||||
if (MapI == InputsMap.end()) {
|
||||
Input[I] = nullptr;
|
||||
continue;
|
||||
}
|
||||
Input[I] = Interpreter->tensor(MapI->second);
|
||||
if (!checkReportAndInvalidate(Input[I], InputSpec))
|
||||
return;
|
||||
std::memset(Input[I]->data.data, 0,
|
||||
InputSpecs[I].getTotalTensorBufferSize());
|
||||
}
|
||||
|
||||
for (size_t I = 0; I < OutputSpecsSize; ++I) {
|
||||
auto OutputSpec = GetOutputSpecs(I);
|
||||
Output[I] = Interpreter->output_tensor(
|
||||
OutputsMap[OutputSpec.name() + ":" +
|
||||
std::to_string(OutputSpec.port())]);
|
||||
if (!checkReportAndInvalidate(Output[I], OutputSpec))
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
TFModelEvaluator::TFModelEvaluator(
|
||||
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
|
||||
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
|
||||
const char *Tags)
|
||||
: Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs,
|
||||
OutputSpecsSize, Tags)) {
|
||||
if (!Impl->isValid())
|
||||
Impl.reset();
|
||||
}
|
||||
|
||||
TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
|
||||
const std::vector<TensorSpec> &InputSpecs,
|
||||
const std::vector<TensorSpec> &OutputSpecs,
|
||||
const char *Tags)
|
||||
: TFModelEvaluator(
|
||||
SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; },
|
||||
OutputSpecs.size(), Tags) {}
|
||||
|
||||
TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {}
|
||||
|
||||
bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TfLiteTensor *Tensor,
|
||||
const TensorSpec &Spec) {
|
||||
if (!Tensor) {
|
||||
errs() << "Could not find TF_Output named: " + Spec.name();
|
||||
IsValid = false;
|
||||
}
|
||||
if (Spec.getTotalTensorBufferSize() != Tensor->bytes)
|
||||
IsValid = false;
|
||||
|
||||
// If the total sizes match, there could still be a mismatch in the shape.
|
||||
// We ignore that for now.
|
||||
|
||||
return IsValid;
|
||||
}
|
||||
|
||||
Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
|
||||
if (!isValid())
|
||||
return None;
|
||||
return EvaluationResult(Impl->evaluate());
|
||||
}
|
||||
|
||||
void *TFModelEvaluator::getUntypedInput(size_t Index) {
|
||||
TfLiteTensor *T = Impl->getInput()[Index];
|
||||
if (!T)
|
||||
return nullptr;
|
||||
return T->data.data;
|
||||
}
|
||||
|
||||
TFModelEvaluator::EvaluationResult::EvaluationResult(
|
||||
std::unique_ptr<EvaluationResultImpl> Impl)
|
||||
: Impl(std::move(Impl)) {}
|
||||
|
||||
TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
|
||||
: Impl(std::move(Other.Impl)) {}
|
||||
|
||||
TFModelEvaluator::EvaluationResult &
|
||||
TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
|
||||
Impl = std::move(Other.Impl);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
|
||||
return Impl->getOutput(Index)->data.data;
|
||||
}
|
||||
|
||||
const void *
|
||||
TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
|
||||
return Impl->getOutput(Index)->data.data;
|
||||
}
|
||||
|
||||
TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
|
||||
TFModelEvaluator::~TFModelEvaluator() {}
|
||||
|
||||
#endif // defined(LLVM_HAVE_TF_API)
|
|
@ -10,7 +10,7 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#include "llvm/Config/config.h"
|
||||
#if defined(LLVM_HAVE_TF_API)
|
||||
#if defined(LLVM_HAVE_TF_API) && !defined(LLVM_HAVE_TFLITE)
|
||||
|
||||
#include "llvm/ADT/Twine.h"
|
||||
#include "llvm/Analysis/Utils/TFUtils.h"
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
"""Convert a saved model to tflite model.
|
||||
|
||||
Usage: python3 saved-model-to-tflite.py <mlgo saved_model_dir> <tflite dest_dir>
|
||||
|
||||
The <tflite dest_dir> will contain:
|
||||
model.tflite: this is the converted saved model
|
||||
output_spec.json: the output spec, copied from the saved_model dir.
|
||||
"""
|
||||
|
||||
import tensorflow as tf
|
||||
import os
|
||||
import sys
|
||||
from tf_agents.policies import greedy_policy
|
||||
|
||||
|
||||
def main(argv):
|
||||
assert len(argv) == 3
|
||||
sm_dir = argv[1]
|
||||
tfl_dir = argv[2]
|
||||
tf.io.gfile.makedirs(tfl_dir)
|
||||
tfl_path = os.path.join(tfl_dir, 'model.tflite')
|
||||
converter = tf.lite.TFLiteConverter.from_saved_model(sm_dir)
|
||||
converter.target_spec.supported_ops = [
|
||||
tf.lite.OpsSet.TFLITE_BUILTINS,
|
||||
]
|
||||
tfl_model = converter.convert()
|
||||
with tf.io.gfile.GFile(tfl_path, 'wb') as f:
|
||||
f.write(tfl_model)
|
||||
|
||||
json_file = 'output_spec.json'
|
||||
src_json = os.path.join(sm_dir, json_file)
|
||||
if tf.io.gfile.exists(src_json):
|
||||
tf.io.gfile.copy(src_json,
|
||||
os.path.join(tfl_dir, json_file))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(sys.argv)
|
|
@ -11,8 +11,9 @@
|
|||
; RUN: sed -i 's/\\n/ /g' %t1
|
||||
; RUN: FileCheck --input-file %t1 %s
|
||||
|
||||
; RUN: rm -rf %t && mkdir %t
|
||||
; RUN: %python %S/../../../lib/Analysis/models/gen-regalloc-eviction-test-model.py %t
|
||||
; RUN: rm -rf %t %t_savedmodel
|
||||
; RUN: %python %S/../../../lib/Analysis/models/gen-regalloc-eviction-test-model.py %t_savedmodel
|
||||
; RUN: %python %S/../../../lib/Analysis/models/saved-model-to-tflite.py %t_savedmodel %t
|
||||
; RUN: llc -mtriple=x86_64-linux-unknown -regalloc=greedy -regalloc-enable-advisor=development \
|
||||
; RUN: -regalloc-training-log=%t2 -tfutils-text-log -regalloc-model=%t < %s
|
||||
; RUN: sed -i 's/ \+/ /g' %t2
|
||||
|
|
|
@ -12,8 +12,9 @@
|
|||
; RUN: FileCheck --input-file %t1 %s --check-prefixes=CHECK,NOML
|
||||
; RUN: diff %t1 %S/Inputs/reference-log-noml.txt
|
||||
|
||||
; RUN: rm -rf %t && mkdir %t
|
||||
; RUN: %python %S/../../../lib/Analysis/models/gen-regalloc-eviction-test-model.py %t
|
||||
; RUN: rm -rf %t_savedmodel %t
|
||||
; RUN: %python %S/../../../lib/Analysis/models/gen-regalloc-eviction-test-model.py %t_savedmodel
|
||||
; RUN: %python %S/../../../lib/Analysis/models/saved-model-to-tflite.py %t_savedmodel %t
|
||||
; RUN: llc -mtriple=x86_64-linux-unknown -regalloc=greedy -regalloc-enable-advisor=development \
|
||||
; RUN: -regalloc-training-log=%t2 -tfutils-text-log -regalloc-model=%t < %S/Inputs/input.ll
|
||||
; RUN: sed -i 's/ \+/ /g' %t2
|
||||
|
|
|
@ -11,7 +11,8 @@
|
|||
; RUN: llc -mtriple=x86_64-linux-unknown -regalloc=greedy -regalloc-enable-advisor=release \
|
||||
; RUN: %S/Inputs/input.ll -o %t.release
|
||||
|
||||
; RUN: rm -rf %t && mkdir %t
|
||||
; RUN: rm -rf %t %t_savedmodel
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/saved-model-to-tflite.py %t_savedmodel %t
|
||||
; RUN: %python %S/../../../lib/Analysis/models/gen-regalloc-eviction-test-model.py %t
|
||||
; RUN: llc -mtriple=x86_64-linux-unknown -regalloc=greedy -regalloc-enable-advisor=development \
|
||||
; RUN: -regalloc-model=%t %S/Inputs/input.ll -o %t.development
|
||||
|
|
|
@ -8,7 +8,9 @@
|
|||
;
|
||||
; Generate mock model
|
||||
; RUN: rm -rf %t
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/gen-inline-oz-test-model.py %t
|
||||
; RUN: rm -rf %t_savedmodel
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/gen-inline-oz-test-model.py %t_savedmodel
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/saved-model-to-tflite.py %t_savedmodel %t
|
||||
;
|
||||
; When the bounds are very wide ("no bounds"), all inlinings happen.
|
||||
; RUN: opt -passes=scc-oz-module-inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-model-under-training=%t -training-log=- -tfutils-text-log -enable-ml-inliner=development -ml-advisor-size-increase-threshold=10.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=NOBOUNDS
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
; Test that we can produce a log if we have or do not have a model, in development mode.
|
||||
; REQUIRES: have_tf_api
|
||||
; Generate mock model
|
||||
; RUN: rm -rf %t
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/gen-inline-oz-test-model.py %t
|
||||
; RUN: rm -rf %t_savedmodel %t
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/gen-inline-oz-test-model.py %t_savedmodel
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/saved-model-to-tflite.py %t_savedmodel %t
|
||||
;
|
||||
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -tfutils-text-log -ml-inliner-model-under-training=%t -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s
|
||||
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -tfutils-text-log -ml-inliner-model-under-training=%t -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-output-spec-override=%S/Inputs/test_output_spec.json -S < %s | FileCheck %s --check-prefixes=EXTRA-OUTPUTS,CHECK
|
||||
|
|
|
@ -6,7 +6,9 @@
|
|||
; for the 'release' mode.
|
||||
;
|
||||
; REQUIRES: have_tf_api
|
||||
; RUN: rm -rf %t && mkdir %t
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/gen-inline-oz-test-model.py %t
|
||||
; RUN: rm -rf %t
|
||||
; RUN: rm -rf %t_savedmodel
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/gen-inline-oz-test-model.py %t_savedmodel
|
||||
; RUN: %python %S/../../../../lib/Analysis/models/saved-model-to-tflite.py %t_savedmodel %t
|
||||
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=default -S < %S/Inputs/test-module.ll 2>&1 | FileCheck %S/Inputs/test-module.ll --check-prefix=DEFAULT
|
||||
; RUN: opt -passes=scc-oz-module-inliner -enable-ml-inliner=development -ml-inliner-model-under-training=%t -S < %S/Inputs/test-module.ll 2>&1 | FileCheck %S/Inputs/test-module.ll --check-prefix=CHECK
|
||||
|
|
Binary file not shown.
|
@ -89,15 +89,6 @@ TEST(TFUtilsTest, EvalError) {
|
|||
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
|
||||
|
||||
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
|
||||
EXPECT_TRUE(Evaluator.isValid());
|
||||
|
||||
int32_t *V = Evaluator.getInput<int32_t>(0);
|
||||
// Fill it up with 1's, we know the output.
|
||||
for (auto I = 0; I < KnownSize; ++I) {
|
||||
V[I] = 1;
|
||||
}
|
||||
auto ER = Evaluator.evaluate();
|
||||
EXPECT_FALSE(ER.hasValue());
|
||||
EXPECT_FALSE(Evaluator.isValid());
|
||||
}
|
||||
|
||||
|
|
|
@ -101,6 +101,9 @@
|
|||
/* Define if LLVM was built with a dependency to the libtensorflow dynamic library */
|
||||
#cmakedefine LLVM_HAVE_TF_API
|
||||
|
||||
/* Define if LLVM is using tflite instead of libtensorflow */
|
||||
#cmakedefine LLVM_HAVE_TFLITE
|
||||
|
||||
/* Define to 1 if you have the <sysexits.h> header file. */
|
||||
#cmakedefine HAVE_SYSEXITS_H ${HAVE_SYSEXITS_H}
|
||||
|
||||
|
|
Loading…
Reference in New Issue