r107173, "fix PR7519: after thrashing around and remembering how all this stuff"
r107216, "fix PR7523, which was caused by the ABI code calling ConvertType instead"

This includes a fix to make ConvertTypeForMem handle the "recursive" case, and call
it as such when lowering function types which have an indirect result.

llvm-svn: 107310
This commit is contained in:
Chris Lattner 2010-06-30 19:14:05 +00:00
parent 02995320e9
commit 5c740f1523
7 changed files with 116 additions and 55 deletions

View File

@ -61,28 +61,31 @@ static CanQualType GetReturnType(QualType RetTy) {
}
const CGFunctionInfo &
CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) {
CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP,
bool IsRecursive) {
return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
llvm::SmallVector<CanQualType, 16>(),
FTNP->getExtInfo());
FTNP->getExtInfo(), IsRecursive);
}
/// \param Args - contains any initial parameters besides those
/// in the formal type
static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
llvm::SmallVectorImpl<CanQualType> &ArgTys,
CanQual<FunctionProtoType> FTP) {
CanQual<FunctionProtoType> FTP,
bool IsRecursive = false) {
// FIXME: Kill copy.
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTys.push_back(FTP->getArgType(i));
CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo(), IsRecursive);
}
const CGFunctionInfo &
CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) {
CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP,
bool IsRecursive) {
llvm::SmallVector<CanQualType, 16> ArgTys;
return ::getFunctionInfo(*this, ArgTys, FTP);
return ::getFunctionInfo(*this, ArgTys, FTP, IsRecursive);
}
static CallingConv getCallingConventionForDecl(const Decl *D) {
@ -215,7 +218,8 @@ const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
const llvm::SmallVectorImpl<CanQualType> &ArgTys,
const FunctionType::ExtInfo &Info) {
const FunctionType::ExtInfo &Info,
bool IsRecursive) {
#ifndef NDEBUG
for (llvm::SmallVectorImpl<CanQualType>::const_iterator
I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
@ -243,8 +247,17 @@ const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
// various situations, pass it in.
llvm::SmallVector<const llvm::Type *, 8> PreferredArgTypes;
for (llvm::SmallVectorImpl<CanQualType>::const_iterator
I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
PreferredArgTypes.push_back(ConvertType(*I));
I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) {
// If this is being called from the guts of the ConvertType loop, make sure
// to call ConvertTypeRecursive so we don't get into issues with cyclic
// pointer type structures.
const llvm::Type *ArgType;
if (IsRecursive)
ArgType = ConvertTypeRecursive(*I);
else
ArgType = ConvertType(*I);
PreferredArgTypes.push_back(ArgType);
}
// Compute ABI information.
getABIInfo().computeInfo(*FI, getContext(), TheModule.getContext(),
@ -274,7 +287,8 @@ CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
/***/
void CodeGenTypes::GetExpandedTypes(QualType Ty,
std::vector<const llvm::Type*> &ArgTys) {
std::vector<const llvm::Type*> &ArgTys,
bool IsRecursive) {
const RecordType *RT = Ty->getAsStructureType();
assert(RT && "Can only expand structure types.");
const RecordDecl *RD = RT->getDecl();
@ -289,9 +303,9 @@ void CodeGenTypes::GetExpandedTypes(QualType Ty,
QualType FT = FD->getType();
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
GetExpandedTypes(FT, ArgTys);
GetExpandedTypes(FT, ArgTys, IsRecursive);
} else {
ArgTys.push_back(ConvertType(FT));
ArgTys.push_back(ConvertType(FT, IsRecursive));
}
}
}
@ -554,11 +568,12 @@ const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
Variadic = FPT->isVariadic();
return GetFunctionType(FI, Variadic);
return GetFunctionType(FI, Variadic, false);
}
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic,
bool IsRecursive) {
std::vector<const llvm::Type*> ArgTys;
const llvm::Type *ResultType = 0;
@ -571,13 +586,13 @@ CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
case ABIArgInfo::Extend:
case ABIArgInfo::Direct:
ResultType = ConvertType(RetTy);
ResultType = ConvertType(RetTy, IsRecursive);
break;
case ABIArgInfo::Indirect: {
assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
ResultType = llvm::Type::getVoidTy(getLLVMContext());
const llvm::Type *STy = ConvertType(RetTy);
const llvm::Type *STy = ConvertType(RetTy, IsRecursive);
ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
break;
}
@ -615,18 +630,18 @@ CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
case ABIArgInfo::Indirect: {
// indirect arguments are always on the stack, which is addr space #0.
const llvm::Type *LTy = ConvertTypeForMem(it->type);
const llvm::Type *LTy = ConvertTypeForMem(it->type, IsRecursive);
ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
break;
}
case ABIArgInfo::Extend:
case ABIArgInfo::Direct:
ArgTys.push_back(ConvertType(it->type));
ArgTys.push_back(ConvertType(it->type, IsRecursive));
break;
case ABIArgInfo::Expand:
GetExpandedTypes(it->type, ArgTys);
GetExpandedTypes(it->type, ArgTys, IsRecursive);
break;
}
}
@ -639,7 +654,7 @@ CodeGenTypes::GetFunctionTypeForVTable(const CXXMethodDecl *MD) {
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
if (!VerifyFuncTypeComplete(FPT))
return GetFunctionType(getFunctionInfo(MD), FPT->isVariadic());
return GetFunctionType(getFunctionInfo(MD), FPT->isVariadic(), false);
return llvm::OpaqueType::get(getLLVMContext());
}
@ -774,7 +789,7 @@ void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
// FIXME: This is rather inefficient. Do we ever actually need to do
// anything here? The result should be just reconstructed on the other
// side, so extension should be a non-issue.
getTypes().GetExpandedTypes(ParamType, Tys);
getTypes().GetExpandedTypes(ParamType, Tys, false);
Index += Tys.size();
continue;
}

View File

@ -872,6 +872,7 @@ CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
std::vector<const llvm::Type*>(), false);
IsIncompleteFunction = true;
}
llvm::Function *F = llvm::Function::Create(FTy,
llvm::Function::ExternalLinkage,
MangledName, &getModule());
@ -932,6 +933,7 @@ llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
// If there was no specific requested type, just convert it now.
if (!Ty)
Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
llvm::StringRef MangledName = getMangledName(GD);
return GetOrCreateLLVMFunction(MangledName, Ty, GD);
}

View File

@ -43,10 +43,15 @@ CodeGenTypes::~CodeGenTypes() {
}
/// ConvertType - Convert the specified type to its LLVM form.
const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
llvm::PATypeHolder Result = ConvertTypeRecursive(T);
const llvm::Type *CodeGenTypes::ConvertType(QualType T, bool IsRecursive) {
const llvm::Type *RawResult = ConvertTypeRecursive(T);
if (IsRecursive || PointersToResolve.empty())
return RawResult;
// Any pointers that were converted defered evaluation of their pointee type,
llvm::PATypeHolder Result = RawResult;
// Any pointers that were converted deferred evaluation of their pointee type,
// creating an opaque type instead. This is in order to avoid problems with
// circular types. Loop through all these defered pointees, if any, and
// resolve them now.
@ -80,21 +85,12 @@ const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
return ResultType;
}
const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) {
const llvm::Type *ResultType = ConvertTypeRecursive(T);
if (ResultType->isIntegerTy(1))
return llvm::IntegerType::get(getLLVMContext(),
(unsigned)Context.getTypeSize(T));
// FIXME: Should assert that the llvm type and AST type has the same size.
return ResultType;
}
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type. For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
const llvm::Type *R = ConvertType(T);
const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool IsRecursive){
const llvm::Type *R = ConvertType(T, IsRecursive);
// If this is a non-bool type, don't map it.
if (!R->isIntegerTy(1))
@ -284,7 +280,8 @@ const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
assert(A.getIndexTypeCVRQualifiers() == 0 &&
"FIXME: We only handle trivial array types so far!");
// int X[] -> [0 x int]
return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0);
return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()),
0);
}
case Type::ConstantArray: {
const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
@ -299,7 +296,11 @@ const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
}
case Type::FunctionNoProto:
case Type::FunctionProto: {
// First, check whether we can build the full function type.
// First, check whether we can build the full function type. If the
// function type depends on an incomplete type (e.g. a struct or enum), we
// cannot lower the function type. Instead, turn it into an Opaque pointer
// and have UpdateCompletedType revisit the function type when/if the opaque
// argument type is defined.
if (const TagType *TT = VerifyFuncTypeComplete(&Ty)) {
// This function's type depends on an incomplete tag type; make sure
// we have an opaque type corresponding to the tag type.
@ -309,17 +310,25 @@ const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
FunctionTypes.insert(std::make_pair(&Ty, ResultType));
return ResultType;
}
// The function type can be built; call the appropriate routines to
// build it.
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty))
return GetFunctionType(getFunctionInfo(
CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT,0))),
FPT->isVariadic());
const CGFunctionInfo *FI;
bool isVariadic;
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty)) {
FI = &getFunctionInfo(
CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)),
true /*Recursive*/);
isVariadic = FPT->isVariadic();
} else {
const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
FI = &getFunctionInfo(
CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)),
true /*Recursive*/);
isVariadic = true;
}
const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
return GetFunctionType(getFunctionInfo(
CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT,0))),
true);
return GetFunctionType(*FI, isVariadic, true);
}
case Type::ObjCObject:

View File

@ -106,19 +106,22 @@ public:
llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
/// ConvertType - Convert type T into a llvm::Type.
const llvm::Type *ConvertType(QualType T);
const llvm::Type *ConvertType(QualType T, bool IsRecursive = false);
const llvm::Type *ConvertTypeRecursive(QualType T);
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type. For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
const llvm::Type *ConvertTypeForMem(QualType T);
const llvm::Type *ConvertTypeForMemRecursive(QualType T);
const llvm::Type *ConvertTypeForMem(QualType T, bool IsRecursive = false);
const llvm::Type *ConvertTypeForMemRecursive(QualType T) {
return ConvertTypeForMem(T, true);
}
/// GetFunctionType - Get the LLVM function type for \arg Info.
const llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info,
bool IsVariadic);
bool IsVariadic,
bool IsRecursive = false);
const llvm::FunctionType *GetFunctionType(GlobalDecl GD);
@ -154,8 +157,11 @@ public:
return getFunctionInfo(Ty->getResultType(), Args,
Ty->getExtInfo());
}
const CGFunctionInfo &getFunctionInfo(CanQual<FunctionProtoType> Ty);
const CGFunctionInfo &getFunctionInfo(CanQual<FunctionNoProtoType> Ty);
const CGFunctionInfo &getFunctionInfo(CanQual<FunctionProtoType> Ty,
bool IsRecursive = false);
const CGFunctionInfo &getFunctionInfo(CanQual<FunctionNoProtoType> Ty,
bool IsRecursive = false);
// getFunctionInfo - Get the function info for a member function.
const CGFunctionInfo &getFunctionInfo(const CXXRecordDecl *RD,
@ -176,7 +182,8 @@ public:
/// \param ArgTys - must all actually be canonical as params
const CGFunctionInfo &getFunctionInfo(CanQualType RetTy,
const llvm::SmallVectorImpl<CanQualType> &ArgTys,
const FunctionType::ExtInfo &Info);
const FunctionType::ExtInfo &Info,
bool IsRecursive = false);
/// \brief Compute a new LLVM record layout object for the given record.
CGRecordLayout *ComputeRecordLayout(const RecordDecl *D);
@ -189,7 +196,8 @@ public: // These are internal details of CGT that shouldn't be used externally.
/// GetExpandedTypes - Expand the type \arg Ty into the LLVM
/// argument types it would be passed as on the provided vector \arg
/// ArgTys. See ABIArgInfo::Expand.
void GetExpandedTypes(QualType Ty, std::vector<const llvm::Type*> &ArgTys);
void GetExpandedTypes(QualType Ty, std::vector<const llvm::Type*> &ArgTys,
bool IsRecursive);
/// ContainsPointerToDataMember - Return whether the given type contains a
/// pointer to a data member.

View File

@ -830,8 +830,7 @@ X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
return SSE;
}
void X86_64ABIInfo::classify(QualType Ty,
uint64_t OffsetBase,
void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
Class &Lo, Class &Hi) const {
// FIXME: This code can be simplified by introducing a simple value class for
// Class pairs with appropriate constructor methods for the various

View File

@ -89,3 +89,16 @@ struct test7s { int a; int b; } test7[] = {
struct test8s { int f0; char f1; } test8g = {};
// PR7519
struct S {
void (*x) (struct S *);
};
extern struct S *global_dc;
void cp_diagnostic_starter(struct S *);
void init_error(void) {
global_dc->x = cp_diagnostic_starter;
}

View File

@ -30,3 +30,18 @@ typedef int s4::* s4_mdp;
typedef int (s4::*s4_mfp)();
s4_mdp f4_0(s4_mdp a) { return a; }
s4_mfp f4_1(s4_mfp a) { return a; }
namespace PR7523 {
struct StringRef {
char *a;
};
void AddKeyword(StringRef, int x);
void foo() {
// CHECK: define void @_ZN6PR75233fooEv()
// CHECK: call void @_ZN6PR752310AddKeywordENS_9StringRefEi(i8* {{.*}}, i32 4)
AddKeyword(StringRef(), 4);
}
}