[clang-tidy] Migrate UseAuto from clang-modernize to clang-tidy.

http://reviews.llvm.org/D12231

llvm-svn: 245703
This commit is contained in:
Angel Garcia Gomez 2015-08-21 15:08:51 +00:00
parent 36b5042753
commit 5b9d33a5a1
7 changed files with 1076 additions and 0 deletions

View File

@ -5,6 +5,7 @@ add_clang_library(clangTidyModernizeModule
LoopConvertUtils.cpp
ModernizeTidyModule.cpp
PassByValueCheck.cpp
UseAutoCheck.cpp
UseNullptrCheck.cpp
LINK_LIBS

View File

@ -12,6 +12,7 @@
#include "../ClangTidyModuleRegistry.h"
#include "LoopConvertCheck.h"
#include "PassByValueCheck.h"
#include "UseAutoCheck.h"
#include "UseNullptrCheck.h"
using namespace clang::ast_matchers;
@ -25,6 +26,7 @@ public:
void addCheckFactories(ClangTidyCheckFactories &CheckFactories) override {
CheckFactories.registerCheck<LoopConvertCheck>("modernize-loop-convert");
CheckFactories.registerCheck<PassByValueCheck>("modernize-pass-by-value");
CheckFactories.registerCheck<UseAutoCheck>("modernize-use-auto");
CheckFactories.registerCheck<UseNullptrCheck>("modernize-use-nullptr");
}

View File

@ -0,0 +1,368 @@
//===--- UseAutoCheck.cpp - clang-tidy-------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "UseAutoCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
using namespace clang;
using namespace clang::ast_matchers;
using namespace clang::ast_matchers::internal;
namespace clang {
namespace tidy {
namespace modernize {
namespace {
const char IteratorDeclStmtId[] = "iterator_decl";
const char DeclWithNewId[] = "decl_new";
/// \brief Matches variable declarations that have explicit initializers that
/// are not initializer lists.
///
/// Given
/// \code
/// iterator I = Container.begin();
/// MyType A(42);
/// MyType B{2};
/// MyType C;
/// \endcode
///
/// varDecl(hasWrittenNonListInitializer()) maches \c I and \c A but not \c B
/// or \c C.
AST_MATCHER(VarDecl, hasWrittenNonListInitializer) {
const Expr *Init = Node.getAnyInitializer();
if (!Init)
return false;
// The following test is based on DeclPrinter::VisitVarDecl() to find if an
// initializer is implicit or not.
if (const auto *Construct = dyn_cast<CXXConstructExpr>(Init)) {
return !Construct->isListInitialization() && Construct->getNumArgs() > 0 &&
!Construct->getArg(0)->isDefaultArgument();
}
return Node.getInitStyle() != VarDecl::ListInit;
}
/// \brief Matches QualTypes that are type sugar for QualTypes that match \c
/// SugarMatcher.
///
/// Given
/// \code
/// class C {};
/// typedef C my_type;
/// typedef my_type my_other_type;
/// \endcode
///
/// qualType(isSugarFor(recordType(hasDeclaration(namedDecl(hasName("C"))))))
/// matches \c my_type and \c my_other_type.
AST_MATCHER_P(QualType, isSugarFor, Matcher<QualType>, SugarMatcher) {
QualType QT = Node;
while (true) {
if (SugarMatcher.matches(QT, Finder, Builder))
return true;
QualType NewQT = QT.getSingleStepDesugaredType(Finder->getASTContext());
if (NewQT == QT)
return false;
QT = NewQT;
}
}
/// \brief Matches named declarations that have one of the standard iterator
/// names: iterator, reverse_iterator, const_iterator, const_reverse_iterator.
///
/// Given
/// \code
/// iterator I;
/// const_iterator CI;
/// \endcode
///
/// namedDecl(hasStdIteratorName()) matches \c I and \c CI.
AST_MATCHER(NamedDecl, hasStdIteratorName) {
static const char *IteratorNames[] = {"iterator", "reverse_iterator",
"const_iterator",
"const_reverse_iterator"};
for (const char *Name : IteratorNames) {
if (hasName(Name).matches(Node, Finder, Builder))
return true;
}
return false;
}
/// \brief Matches named declarations that have one of the standard container
/// names.
///
/// Given
/// \code
/// class vector {};
/// class forward_list {};
/// class my_ver{};
/// \endcode
///
/// recordDecl(hasStdContainerName()) matches \c vector and \c forward_list
/// but not \c my_vec.
AST_MATCHER(NamedDecl, hasStdContainerName) {
static const char *ContainerNames[] = {"array", "deque",
"forward_list", "list",
"vector",
"map", "multimap",
"set", "multiset",
"unordered_map", "unordered_multimap",
"unordered_set", "unordered_multiset",
"queue", "priority_queue",
"stack"};
for (const char *Name : ContainerNames) {
if (hasName(Name).matches(Node, Finder, Builder))
return true;
}
return false;
}
/// Matches declarations whose declaration context is the C++ standard library
/// namespace std.
///
/// Note that inline namespaces are silently ignored during the lookup since
/// both libstdc++ and libc++ are known to use them for versioning purposes.
///
/// Given:
/// \code
/// namespace ns {
/// struct my_type {};
/// using namespace std;
/// }
///
/// using std::vector;
/// using ns:my_type;
/// using ns::list;
/// \code
///
/// usingDecl(hasAnyUsingShadowDecl(hasTargetDecl(isFromStdNamespace())))
/// matches "using std::vector" and "using ns::list".
AST_MATCHER(Decl, isFromStdNamespace) {
const DeclContext *D = Node.getDeclContext();
while (D->isInlineNamespace())
D = D->getParent();
if (!D->isNamespace() || !D->getParent()->isTranslationUnit())
return false;
const IdentifierInfo *Info = cast<NamespaceDecl>(D)->getIdentifier();
return (Info && Info->isStr("std"));
}
/// \brief Returns a DeclarationMatcher that matches standard iterators nested
/// inside records with a standard container name.
DeclarationMatcher standardIterator() {
return allOf(
namedDecl(hasStdIteratorName()),
hasDeclContext(recordDecl(hasStdContainerName(), isFromStdNamespace())));
}
/// \brief Returns a TypeMatcher that matches typedefs for standard iterators
/// inside records with a standard container name.
TypeMatcher typedefIterator() {
return typedefType(hasDeclaration(standardIterator()));
}
/// \brief Returns a TypeMatcher that matches records named for standard
/// iterators nested inside records named for standard containers.
TypeMatcher nestedIterator() {
return recordType(hasDeclaration(standardIterator()));
}
/// \brief Returns a TypeMatcher that matches types declared with using
/// declarations and which name standard iterators for standard containers.
TypeMatcher iteratorFromUsingDeclaration() {
auto HasIteratorDecl = hasDeclaration(namedDecl(hasStdIteratorName()));
// Types resulting from using declarations are represented by elaboratedType.
return elaboratedType(allOf(
// Unwrap the nested name specifier to test for one of the standard
// containers.
hasQualifier(specifiesType(templateSpecializationType(hasDeclaration(
namedDecl(hasStdContainerName(), isFromStdNamespace()))))),
// the named type is what comes after the final '::' in the type. It
// should name one of the standard iterator names.
namesType(
anyOf(typedefType(HasIteratorDecl), recordType(HasIteratorDecl)))));
}
/// \brief This matcher returns declaration statements that contain variable
/// declarations with written non-list initializer for standard iterators.
StatementMatcher makeIteratorDeclMatcher() {
return declStmt(
// At least one varDecl should be a child of the declStmt to ensure
// it's a declaration list and avoid matching other declarations,
// e.g. using directives.
has(varDecl()),
unless(has(varDecl(anyOf(
unless(hasWrittenNonListInitializer()), hasType(autoType()),
unless(hasType(
isSugarFor(anyOf(typedefIterator(), nestedIterator(),
iteratorFromUsingDeclaration())))))))))
.bind(IteratorDeclStmtId);
}
StatementMatcher makeDeclWithNewMatcher() {
return declStmt(has(varDecl()),
unless(has(varDecl(anyOf(
unless(hasInitializer(ignoringParenImpCasts(newExpr()))),
// FIXME: TypeLoc information is not reliable where CV
// qualifiers are concerned so these types can't be
// handled for now.
hasType(pointerType(
pointee(hasCanonicalType(hasLocalQualifiers())))),
// FIXME: Handle function pointers. For now we ignore them
// because the replacement replaces the entire type
// specifier source range which includes the identifier.
hasType(pointsTo(
pointsTo(parenType(innerType(functionType()))))))))))
.bind(DeclWithNewId);
}
} // namespace
void UseAutoCheck::registerMatchers(MatchFinder *Finder) {
Finder->addMatcher(makeIteratorDeclMatcher(), this);
Finder->addMatcher(makeDeclWithNewMatcher(), this);
}
void UseAutoCheck::replaceIterators(const DeclStmt *D, ASTContext *Context) {
for (const auto *Dec : D->decls()) {
const auto *V = cast<VarDecl>(Dec);
const Expr *ExprInit = V->getInit();
// Skip expressions with cleanups from the intializer expression.
if (const auto *E = dyn_cast<ExprWithCleanups>(ExprInit))
ExprInit = E->getSubExpr();
const auto *Construct = dyn_cast<CXXConstructExpr>(ExprInit);
if (!Construct)
continue;
// Ensure that the constructor receives a single argument.
if (Construct->getNumArgs() != 1)
return;
// Drill down to the as-written initializer.
const Expr *E = (*Construct->arg_begin())->IgnoreParenImpCasts();
if (E != E->IgnoreConversionOperator()) {
// We hit a conversion operator. Early-out now as they imply an implicit
// conversion from a different type. Could also mean an explicit
// conversion from the same type but that's pretty rare.
return;
}
if (const auto *NestedConstruct = dyn_cast<CXXConstructExpr>(E)) {
// If we ran into an implicit conversion contructor, can't convert.
//
// FIXME: The following only checks if the constructor can be used
// implicitly, not if it actually was. Cases where the converting
// constructor was used explicitly won't get converted.
if (NestedConstruct->getConstructor()->isConvertingConstructor(false))
return;
}
if (!Context->hasSameType(V->getType(), E->getType()))
return;
}
// Get the type location using the first declaration.
const auto *V = cast<VarDecl>(*D->decl_begin());
// WARNING: TypeLoc::getSourceRange() will include the identifier for things
// like function pointers. Not a concern since this action only works with
// iterators but something to keep in mind in the future.
SourceRange Range(V->getTypeSourceInfo()->getTypeLoc().getSourceRange());
diag(Range.getBegin(), "use auto when declaring iterators")
<< FixItHint::CreateReplacement(Range, "auto");
}
void UseAutoCheck::replaceNew(const DeclStmt *D, ASTContext *Context) {
const auto *FirstDecl = cast<VarDecl>(*D->decl_begin());
// Ensure that there is at least one VarDecl within the DeclStmt.
if (!FirstDecl)
return;
const QualType FirstDeclType = FirstDecl->getType().getCanonicalType();
std::vector<SourceLocation> StarLocations;
for (const auto *Dec : D->decls()) {
const auto *V = cast<VarDecl>(Dec);
// Ensure that every DeclStmt child is a VarDecl.
if (!V)
return;
const auto *NewExpr = cast<CXXNewExpr>(V->getInit()->IgnoreParenImpCasts());
// Ensure that every VarDecl has a CXXNewExpr initializer.
if (!NewExpr)
return;
// If VarDecl and Initializer have mismatching unqualified types.
if (!Context->hasSameUnqualifiedType(V->getType(), NewExpr->getType()))
return;
// Remove explicitly written '*' from declarations where there's more than
// one declaration in the declaration list.
if (Dec == *D->decl_begin())
continue;
// All subsequent declarations should match the same non-decorated type.
if (FirstDeclType != V->getType().getCanonicalType())
return;
auto Q = V->getTypeSourceInfo()->getTypeLoc().getAs<PointerTypeLoc>();
while (!Q.isNull()) {
StarLocations.push_back(Q.getStarLoc());
Q = Q.getNextTypeLoc().getAs<PointerTypeLoc>();
}
}
// FIXME: There is, however, one case we can address: when the VarDecl pointee
// is the same as the initializer, just more CV-qualified. However, TypeLoc
// information is not reliable where CV qualifiers are concerned so we can't
// do anything about this case for now.
SourceRange Range(
FirstDecl->getTypeSourceInfo()->getTypeLoc().getSourceRange());
auto Diag = diag(Range.getBegin(), "use auto when initializing with new"
" to avoid duplicating the type name");
// Space after 'auto' to handle cases where the '*' in the pointer type is
// next to the identifier. This avoids changing 'int *p' into 'autop'.
Diag << FixItHint::CreateReplacement(Range, "auto ");
// Remove '*' from declarations using the saved star locations.
for (const auto &Loc : StarLocations) {
Diag << FixItHint::CreateReplacement(Loc, "");
}
}
void UseAutoCheck::check(const MatchFinder::MatchResult &Result) {
if (const auto *Decl = Result.Nodes.getNodeAs<DeclStmt>(IteratorDeclStmtId)) {
replaceIterators(Decl, Result.Context);
} else if (const auto *Decl =
Result.Nodes.getNodeAs<DeclStmt>(DeclWithNewId)) {
replaceNew(Decl, Result.Context);
} else {
llvm_unreachable("Bad Callback. No node provided.");
}
}
} // namespace modernize
} // namespace tidy
} // namespace clang

View File

@ -0,0 +1,36 @@
//===--- UseAutoCheck.h - clang-tidy-----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_USE_AUTO_H
#define LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_USE_AUTO_H
#include "../ClangTidy.h"
namespace clang {
namespace tidy {
namespace modernize {
class UseAutoCheck : public ClangTidyCheck {
public:
UseAutoCheck(StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context) {}
void registerMatchers(ast_matchers::MatchFinder *Finder) override;
void check(const ast_matchers::MatchFinder::MatchResult &Result) override;
private:
void replaceIterators(const DeclStmt *D, ASTContext *Context);
void replaceNew(const DeclStmt *D, ASTContext *Context);
};
} // namespace modernize
} // namespace tidy
} // namespace clang
#endif // LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_USE_AUTO_H

View File

@ -0,0 +1,253 @@
#ifndef CONTAINERS_H
#define CONTAINERS_H
namespace std {
template <typename T>
class iterator {
public:
iterator() {}
iterator(const iterator<T> &iter) : ptr(iter.ptr) {}
typedef T value_type;
typedef T *pointer;
typedef T &reference;
reference operator*() const { return *ptr; }
pointer operator->() const { return ptr; }
iterator &operator++() {
++ptr;
return *this;
}
iterator &operator--() {
--ptr;
return *this;
}
iterator operator++(int) {
iterator res(*this);
++ptr;
return res;
}
iterator operator--(int) {
iterator res(*this);
--ptr;
return res;
}
bool operator!=(const iterator<T> &iter) const {
return ptr != iter.operator->();
}
private:
T *ptr;
};
template <class Iterator>
class const_iterator {
public:
const_iterator() {}
const_iterator(const Iterator &iter) : iter(iter) {}
const_iterator(const const_iterator<Iterator> &citer) : iter(citer.iter) {}
typedef const typename Iterator::value_type value_type;
typedef const typename Iterator::pointer pointer;
typedef const typename Iterator::reference reference;
reference operator*() const { return *iter; }
pointer operator->() const { return iter.operator->(); }
const_iterator &operator++() { return ++iter; }
const_iterator &operator--() { return --iter; }
const_iterator operator++(int) { return iter--; }
const_iterator operator--(int) { return iter--; }
bool operator!=(const Iterator &it) const {
return iter->operator->() != it.operator->();
}
bool operator!=(const const_iterator<Iterator> &it) const {
return iter.operator->() != it.operator->();
}
private:
Iterator iter;
};
template <class Iterator>
class forward_iterable {
public:
forward_iterable() {}
typedef Iterator iterator;
typedef const_iterator<Iterator> const_iterator;
iterator begin() { return _begin; }
iterator end() { return _end; }
const_iterator begin() const { return _begin; }
const_iterator end() const { return _end; }
const_iterator cbegin() const { return _begin; }
const_iterator cend() const { return _end; }
private:
iterator _begin, _end;
};
template <class Iterator>
class reverse_iterator {
public:
reverse_iterator() {}
reverse_iterator(const Iterator &iter) : iter(iter) {}
reverse_iterator(const reverse_iterator<Iterator> &rit) : iter(rit.iter) {}
typedef typename Iterator::value_type value_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;
reference operator*() { return *iter; }
pointer operator->() { return iter.operator->(); }
reverse_iterator &operator++() { return --iter; }
reverse_iterator &operator--() { return ++iter; }
reverse_iterator operator++(int) { return iter--; }
reverse_iterator operator--(int) { return iter++; }
private:
Iterator iter;
};
template <class Iterator>
class backward_iterable {
public:
backward_iterable() {}
typedef reverse_iterator<Iterator> reverse_iterator;
typedef const_iterator<reverse_iterator> const_reverse_iterator;
reverse_iterator rbegin() { return _rbegin; }
reverse_iterator rend() { return _rend; }
const_reverse_iterator rbegin() const { return _rbegin; }
const_reverse_iterator rend() const { return _rend; }
const_reverse_iterator crbegin() const { return _rbegin; }
const_reverse_iterator crend() const { return _rend; }
private:
reverse_iterator _rbegin, _rend;
};
template <class Iterator>
class bidirectional_iterable : public forward_iterable<Iterator>,
public backward_iterable<Iterator> {};
template <typename A, typename B>
struct pair {
pair(A f, B s) : first(f), second(s) {}
A first;
B second;
};
class string {
public:
string() {}
string(const char *) {}
};
template <typename T, int n>
class array : public backward_iterable<iterator<T>> {
public:
array() {}
typedef T *iterator;
typedef const T *const_iterator;
iterator begin() { return &v[0]; }
iterator end() { return &v[n - 1]; }
const_iterator begin() const { return &v[0]; }
const_iterator end() const { return &v[n - 1]; }
const_iterator cbegin() const { return &v[0]; }
const_iterator cend() const { return &v[n - 1]; }
private:
T v[n];
};
template <typename T>
class deque : public bidirectional_iterable<iterator<T>> {
public:
deque() {}
};
template <typename T>
class list : public bidirectional_iterable<iterator<T>> {
public:
list() {}
};
template <typename T>
class forward_list : public forward_iterable<iterator<T>> {
public:
forward_list() {}
};
template <typename T>
class vector : public bidirectional_iterable<iterator<T>> {
public:
vector() {}
};
template <typename T>
class set : public bidirectional_iterable<iterator<T>> {
public:
set() {}
};
template <typename T>
class multiset : public bidirectional_iterable<iterator<T>> {
public:
multiset() {}
};
template <typename key, typename value>
class map : public bidirectional_iterable<iterator<pair<key, value>>> {
public:
map() {}
iterator<pair<key, value>> find(const key &) {}
const_iterator<iterator<pair<key, value>>> find(const key &) const {}
};
template <typename key, typename value>
class multimap : public bidirectional_iterable<iterator<pair<key, value>>> {
public:
multimap() {}
};
template <typename T>
class unordered_set : public forward_iterable<iterator<T>> {
public:
unordered_set() {}
};
template <typename T>
class unordered_multiset : public forward_iterable<iterator<T>> {
public:
unordered_multiset() {}
};
template <typename key, typename value>
class unordered_map : public forward_iterable<iterator<pair<key, value>>> {
public:
unordered_map() {}
};
template <typename key, typename value>
class unordered_multimap : public forward_iterable<iterator<pair<key, value>>> {
public:
unordered_multimap() {}
};
} // namespace std
#endif // CONTAINERS_H

View File

@ -0,0 +1,320 @@
// RUN: %python %S/check_clang_tidy.py %s modernize-use-auto %t -- \
// RUN: -std=c++11 -I %S/Inputs/modernize-use-auto
#include "containers.h"
void f_array() {
std::array<int, 4> C;
std::array<int, 4>::iterator ArrayI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators [modernize-use-auto]
// CHECK-FIXES: auto ArrayI1 = C.begin();
std::array<int, 5>::reverse_iterator ArrayI2 = C.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto ArrayI2 = C.rbegin();
const std::array<int, 3> D;
std::array<int, 3>::const_iterator ArrayI3 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto ArrayI3 = D.begin();
std::array<int, 5>::const_reverse_iterator ArrayI4 = D.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto ArrayI4 = D.rbegin();
}
void f_deque() {
std::deque<int> C;
std::deque<int>::iterator DequeI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto DequeI1 = C.begin();
std::deque<int>::reverse_iterator DequeI2 = C.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto DequeI2 = C.rbegin();
const std::deque<int> D;
std::deque<int>::const_iterator DequeI3 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto DequeI3 = D.begin();
std::deque<int>::const_reverse_iterator DequeI4 = D.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto DequeI4 = D.rbegin();
}
void f_forward_list() {
std::forward_list<int> C;
std::forward_list<int>::iterator FListI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto FListI1 = C.begin();
const std::forward_list<int> D;
std::forward_list<int>::const_iterator FListI2 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto FListI2 = D.begin();
}
void f_list() {
std::list<int> C;
std::list<int>::iterator ListI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto ListI1 = C.begin();
std::list<int>::reverse_iterator ListI2 = C.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto ListI2 = C.rbegin();
const std::list<int> D;
std::list<int>::const_iterator ListI3 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto ListI3 = D.begin();
std::list<int>::const_reverse_iterator ListI4 = D.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto ListI4 = D.rbegin();
}
void f_vector() {
std::vector<int> C;
std::vector<int>::iterator VecI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto VecI1 = C.begin();
std::vector<int>::reverse_iterator VecI2 = C.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto VecI2 = C.rbegin();
const std::vector<int> D;
std::vector<int>::const_iterator VecI3 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto VecI3 = D.begin();
std::vector<int>::const_reverse_iterator VecI4 = D.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto VecI4 = D.rbegin();
}
void f_map() {
std::map<int, int> C;
std::map<int, int>::iterator MapI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MapI1 = C.begin();
std::map<int, int>::reverse_iterator MapI2 = C.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MapI2 = C.rbegin();
const std::map<int, int> D;
std::map<int, int>::const_iterator MapI3 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MapI3 = D.begin();
std::map<int, int>::const_reverse_iterator MapI4 = D.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MapI4 = D.rbegin();
}
void f_multimap() {
std::multimap<int, int> C;
std::multimap<int, int>::iterator MMapI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MMapI1 = C.begin();
std::multimap<int, int>::reverse_iterator MMapI2 = C.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MMapI2 = C.rbegin();
const std::multimap<int, int> D;
std::multimap<int, int>::const_iterator MMapI3 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MMapI3 = D.begin();
std::multimap<int, int>::const_reverse_iterator MMapI4 = D.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MMapI4 = D.rbegin();
}
void f_set() {
std::set<int> C;
std::set<int>::iterator SetI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto SetI1 = C.begin();
std::set<int>::reverse_iterator SetI2 = C.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto SetI2 = C.rbegin();
const std::set<int> D;
std::set<int>::const_iterator SetI3 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto SetI3 = D.begin();
std::set<int>::const_reverse_iterator SetI4 = D.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto SetI4 = D.rbegin();
}
void f_multiset() {
std::multiset<int> C;
std::multiset<int>::iterator MSetI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MSetI1 = C.begin();
std::multiset<int>::reverse_iterator MSetI2 = C.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MSetI2 = C.rbegin();
const std::multiset<int> D;
std::multiset<int>::const_iterator MSetI3 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MSetI3 = D.begin();
std::multiset<int>::const_reverse_iterator MSetI4 = D.rbegin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto MSetI4 = D.rbegin();
}
void f_unordered_map() {
std::unordered_map<int, int> C;
std::unordered_map<int, int>::iterator UMapI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto UMapI1 = C.begin();
const std::unordered_map<int, int> D;
std::unordered_map<int, int>::const_iterator UMapI2 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto UMapI2 = D.begin();
}
void f_unordered_multimap() {
std::unordered_multimap<int, int> C;
std::unordered_multimap<int, int>::iterator UMMapI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto UMMapI1 = C.begin();
const std::unordered_multimap<int, int> D;
std::unordered_multimap<int, int>::const_iterator UMMapI2 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto UMMapI2 = D.begin();
}
void f_unordered_set() {
std::unordered_set<int> C;
std::unordered_set<int>::iterator USetI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto USetI1 = C.begin();
const std::unordered_set<int> D;
std::unordered_set<int>::const_iterator USetI2 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto USetI2 = D.begin();
}
void f_unordered_multiset() {
std::unordered_multiset<int> C;
std::unordered_multiset<int>::iterator UMSetI1 = C.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto UMSetI1 = C.begin();
const std::unordered_multiset<int> D;
std::unordered_multiset<int>::const_iterator UMSetI2 = D.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto UMSetI2 = D.begin();
}
typedef std::vector<int>::iterator int_iterator;
std::vector<int> Vec;
std::unordered_map<int, int> Map;
void sugar() {
// Types with more sugar should work. Types with less should not.
int_iterator more_sugar = Vec.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto more_sugar = Vec.begin();
}
void initializer_list() {
// Initialization from initializer lists isn't allowed. Using 'auto' would
// result in std::initializer_list being deduced for the type.
std::unordered_map<int, int>::iterator I{Map.begin()};
std::unordered_map<int, int>::iterator I2 = {Map.begin()};
}
void construction() {
// Various forms of construction. Default constructors and constructors with
// all-default parameters shouldn't get transformed. Construction from other
// types is also not allowed.
std::unordered_map<int, int>::iterator copy(Map.begin());
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto copy(Map.begin());
std::unordered_map<int, int>::iterator def;
std::unordered_map<int, int>::const_iterator constI;
// Implicit conversion.
std::unordered_map<int, int>::const_iterator constI2 = def;
std::unordered_map<int, int>::const_iterator constI3(def);
// Explicit conversion
std::unordered_map<int, int>::const_iterator constI4
= std::unordered_map<int, int>::const_iterator(def);
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto constI4
// CHECK-FIXES-NEXT: = std::unordered_map<int, int>::const_iterator(def);
}
void pointer_to_iterator() {
int_iterator I = Vec.begin();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto I = Vec.begin();
// Pointers and references to iterators are not transformed.
int_iterator *IPtr = &I;
int_iterator &IRef = I;
}
void loop() {
for (std::vector<int>::iterator I = Vec.begin(); I != Vec.end(); ++I) {
// CHECK-MESSAGES: :[[@LINE-1]]:8: warning: use auto when declaring iterators
// CHECK-FIXES: for (auto I = Vec.begin(); I != Vec.end(); ++I)
}
for (int_iterator I = Vec.begin(), E = Vec.end(); I != E; ++I) {
// CHECK-MESSAGES: :[[@LINE-1]]:8: warning: use auto when declaring iterators
// CHECK-FIXES: for (auto I = Vec.begin(), E = Vec.end(); I != E; ++I)
}
std::vector<std::vector<int>::iterator> IterVec;
for (std::vector<int>::iterator I : IterVec) {
// CHECK-MESSAGES: :[[@LINE-1]]:8: warning: use auto when declaring iterators
// CHECK-FIXES: for (auto I : IterVec)
}
}
void cv_qualifiers() {
// Make sure references and cv qualifiers don't get removed (i.e. replaced
// with just 'auto').
const auto & I = Vec.begin();
auto && I2 = Vec.begin();
}
void cleanup() {
// Passing a string as an argument to introduce a temporary object that will
// create an expression with cleanups.
std::map<std::string, int> MapFind;
std::map<std::string, int>::iterator I = MapFind.find("foo");
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto I = MapFind.find("foo");
}
void declaration_lists() {
// Declaration lists that match the declaration type with written no-list
// initializer are transformed.
std::vector<int>::iterator I = Vec.begin(), E = Vec.end();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when declaring iterators
// CHECK-FIXES: auto I = Vec.begin(), E = Vec.end();
// Declaration lists with non-initialized variables should not be transformed.
std::vector<int>::iterator J = Vec.begin(), K;
}

View File

@ -0,0 +1,96 @@
// RUN: %python %S/check_clang_tidy.py %s modernize-use-auto %t
class MyType {};
class MyDerivedType : public MyType {};
// FIXME: the replacement sometimes results in two consecutive spaces after
// the word 'auto' (due to the presence of spaces at both sides of '*').
void auto_new() {
MyType *a_new = new MyType();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when initializing with new
// CHECK-FIXES: auto a_new = new MyType();
static MyType *a_static = new MyType();
// CHECK-MESSAGES: :[[@LINE-1]]:10: warning: use auto when initializing with new
// CHECK-FIXES: static auto a_static = new MyType();
MyType *derived = new MyDerivedType();
void *vd = new MyType();
// CV-qualifier tests.
//
// NOTE : the form "type const" is expected here because of a deficiency in
// TypeLoc where CV qualifiers are not considered part of the type location
// info. That is, all that is being replaced in each case is "MyType *" and
// not "MyType * const".
static MyType * const d_static = new MyType();
// CHECK-MESSAGES: :[[@LINE-1]]:10: warning: use auto when initializing with new
// CHECK-FIXES: static auto const d_static = new MyType();
MyType * const a_const = new MyType();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when initializing with new
// CHECK-FIXES: auto const a_const = new MyType();
MyType * volatile vol = new MyType();
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when initializing with new
// CHECK-FIXES: auto volatile vol = new MyType();
int (**func)(int, int) = new (int(*[5])(int,int));
int *array = new int[5];
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when initializing with new
// CHECK-FIXES: auto array = new int[5];
MyType *ptr(new MyType);
// CHECK-MESSAGES: :[[@LINE-1]]:3: warning: use auto when initializing with new
// CHECK-FIXES: auto ptr(new MyType);
MyType *ptr2{new MyType};
{
// Test for declaration lists.
MyType *a = new MyType(), *b = new MyType(), *c = new MyType();
// CHECK-MESSAGES: :[[@LINE-1]]:5: warning: use auto when initializing with new
// CHECK-FIXES: auto a = new MyType(), b = new MyType(), c = new MyType();
// Non-initialized declaration should not be transformed.
MyType *d = new MyType(), *e;
MyType **f = new MyType*(), **g = new MyType*();
// CHECK-MESSAGES: :[[@LINE-1]]:5: warning: use auto when initializing with new
// CHECK-FIXES: auto f = new MyType*(), g = new MyType*();
// Mismatching types in declaration lists should not be transformed.
MyType *h = new MyType(), **i = new MyType*();
// '*' shouldn't be removed in case of mismatching types with multiple
// declarations.
MyType *j = new MyType(), *k = new MyType(), **l = new MyType*();
}
{
// Test for typedefs.
typedef int * int_p;
int_p a = new int;
// CHECK-MESSAGES: :[[@LINE-1]]:5: warning: use auto when initializing with new
// CHECK-FIXES: auto a = new int;
int_p *b = new int*;
// CHECK-MESSAGES: :[[@LINE-1]]:5: warning: use auto when initializing with new
// CHECK-FIXES: auto b = new int*;
// Test for typedefs in declarations lists.
int_p c = new int, d = new int;
// CHECK-MESSAGES: :[[@LINE-1]]:5: warning: use auto when initializing with new
// CHECK-FIXES: auto c = new int, d = new int;
// Different types should not be transformed.
int_p e = new int, *f = new int_p;
int_p *g = new int*, *h = new int_p;
// CHECK-MESSAGES: :[[@LINE-1]]:5: warning: use auto when initializing with new
// CHECK-FIXES: auto g = new int*, h = new int_p;
}
}