forked from OSchip/llvm-project
[MLIR] Add function to create Float16 array attribute
This patch adds a new function mlirDenseElementsAttrFloat16Get(), which accepts the shaped type, the number of Float16 values, and a pointer to an array of Float16 values, each of which is a uint16_t value. This commit is repeating https://reviews.llvm.org/D123981 + #761 but for Float16 Differential Revision: https://reviews.llvm.org/D130069
This commit is contained in:
parent
459cfa5e94
commit
5b0d6bf210
|
@ -381,6 +381,8 @@ MLIR_CAPI_EXPORTED MlirAttribute mlirDenseElementsAttrDoubleGet(
|
|||
MlirType shapedType, intptr_t numElements, const double *elements);
|
||||
MLIR_CAPI_EXPORTED MlirAttribute mlirDenseElementsAttrBFloat16Get(
|
||||
MlirType shapedType, intptr_t numElements, const uint16_t *elements);
|
||||
MLIR_CAPI_EXPORTED MlirAttribute mlirDenseElementsAttrFloat16Get(
|
||||
MlirType shapedType, intptr_t numElements, const uint16_t *elements);
|
||||
|
||||
/// Creates a dense elements attribute with the given shaped type from string
|
||||
/// elements.
|
||||
|
|
|
@ -479,6 +479,13 @@ MlirAttribute mlirDenseElementsAttrBFloat16Get(MlirType shapedType,
|
|||
const void *buffer = static_cast<const void *>(elements);
|
||||
return mlirDenseElementsAttrRawBufferGet(shapedType, bufferSize, buffer);
|
||||
}
|
||||
MlirAttribute mlirDenseElementsAttrFloat16Get(MlirType shapedType,
|
||||
intptr_t numElements,
|
||||
const uint16_t *elements) {
|
||||
size_t bufferSize = numElements * 2;
|
||||
const void *buffer = static_cast<const void *>(elements);
|
||||
return mlirDenseElementsAttrRawBufferGet(shapedType, bufferSize, buffer);
|
||||
}
|
||||
|
||||
MlirAttribute mlirDenseElementsAttrStringGet(MlirType shapedType,
|
||||
intptr_t numElements,
|
||||
|
|
|
@ -959,6 +959,7 @@ int printBuiltinAttributes(MlirContext ctx) {
|
|||
float floats[] = {0.0f, 1.0f};
|
||||
double doubles[] = {0.0, 1.0};
|
||||
uint16_t bf16s[] = {0x0, 0x3f80};
|
||||
uint16_t f16s[] = {0x0, 0x3c00};
|
||||
MlirAttribute encoding = mlirAttributeGetNull();
|
||||
MlirAttribute boolElements = mlirDenseElementsAttrBoolGet(
|
||||
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 1), encoding),
|
||||
|
@ -1000,6 +1001,9 @@ int printBuiltinAttributes(MlirContext ctx) {
|
|||
MlirAttribute bf16Elements = mlirDenseElementsAttrBFloat16Get(
|
||||
mlirRankedTensorTypeGet(2, shape, mlirBF16TypeGet(ctx), encoding), 2,
|
||||
bf16s);
|
||||
MlirAttribute f16Elements = mlirDenseElementsAttrFloat16Get(
|
||||
mlirRankedTensorTypeGet(2, shape, mlirF16TypeGet(ctx), encoding), 2,
|
||||
f16s);
|
||||
|
||||
if (!mlirAttributeIsADenseElements(boolElements) ||
|
||||
!mlirAttributeIsADenseElements(uint8Elements) ||
|
||||
|
@ -1010,7 +1014,8 @@ int printBuiltinAttributes(MlirContext ctx) {
|
|||
!mlirAttributeIsADenseElements(int64Elements) ||
|
||||
!mlirAttributeIsADenseElements(floatElements) ||
|
||||
!mlirAttributeIsADenseElements(doubleElements) ||
|
||||
!mlirAttributeIsADenseElements(bf16Elements))
|
||||
!mlirAttributeIsADenseElements(bf16Elements) ||
|
||||
!mlirAttributeIsADenseElements(f16Elements))
|
||||
return 14;
|
||||
|
||||
if (mlirDenseElementsAttrGetBoolValue(boolElements, 1) != 1 ||
|
||||
|
@ -1037,6 +1042,7 @@ int printBuiltinAttributes(MlirContext ctx) {
|
|||
mlirAttributeDump(floatElements);
|
||||
mlirAttributeDump(doubleElements);
|
||||
mlirAttributeDump(bf16Elements);
|
||||
mlirAttributeDump(f16Elements);
|
||||
// CHECK: dense<{{\[}}[false, true]]> : tensor<1x2xi1>
|
||||
// CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xui8>
|
||||
// CHECK: dense<{{\[}}[0, 1]]> : tensor<1x2xi8>
|
||||
|
@ -1047,6 +1053,7 @@ int printBuiltinAttributes(MlirContext ctx) {
|
|||
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf32>
|
||||
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf64>
|
||||
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xbf16>
|
||||
// CHECK: dense<{{\[}}[0.000000e+00, 1.000000e+00]]> : tensor<1x2xf16>
|
||||
|
||||
MlirAttribute splatBool = mlirDenseElementsAttrBoolSplatGet(
|
||||
mlirRankedTensorTypeGet(2, shape, mlirIntegerTypeGet(ctx, 1), encoding),
|
||||
|
@ -1125,13 +1132,16 @@ int printBuiltinAttributes(MlirContext ctx) {
|
|||
(double *)mlirDenseElementsAttrGetRawData(doubleElements);
|
||||
uint16_t *bf16RawData =
|
||||
(uint16_t *)mlirDenseElementsAttrGetRawData(bf16Elements);
|
||||
uint16_t *f16RawData =
|
||||
(uint16_t *)mlirDenseElementsAttrGetRawData(f16Elements);
|
||||
if (uint8RawData[0] != 0u || uint8RawData[1] != 1u || int8RawData[0] != 0 ||
|
||||
int8RawData[1] != 1 || uint32RawData[0] != 0u || uint32RawData[1] != 1u ||
|
||||
int32RawData[0] != 0 || int32RawData[1] != 1 || uint64RawData[0] != 0u ||
|
||||
uint64RawData[1] != 1u || int64RawData[0] != 0 || int64RawData[1] != 1 ||
|
||||
floatRawData[0] != 0.0f || floatRawData[1] != 1.0f ||
|
||||
doubleRawData[0] != 0.0 || doubleRawData[1] != 1.0 ||
|
||||
bf16RawData[0] != 0 || bf16RawData[1] != 0x3f80)
|
||||
bf16RawData[0] != 0 || bf16RawData[1] != 0x3f80 || f16RawData[0] != 0 ||
|
||||
f16RawData[1] != 0x3c00)
|
||||
return 18;
|
||||
|
||||
mlirAttributeDump(splatBool);
|
||||
|
@ -1156,9 +1166,11 @@ int printBuiltinAttributes(MlirContext ctx) {
|
|||
mlirAttributeDump(mlirElementsAttrGetValue(floatElements, 2, uints64));
|
||||
mlirAttributeDump(mlirElementsAttrGetValue(doubleElements, 2, uints64));
|
||||
mlirAttributeDump(mlirElementsAttrGetValue(bf16Elements, 2, uints64));
|
||||
mlirAttributeDump(mlirElementsAttrGetValue(f16Elements, 2, uints64));
|
||||
// CHECK: 1.000000e+00 : f32
|
||||
// CHECK: 1.000000e+00 : f64
|
||||
// CHECK: 1.000000e+00 : bf16
|
||||
// CHECK: 1.000000e+00 : f16
|
||||
|
||||
int64_t indices[] = {0, 1};
|
||||
int64_t one = 1;
|
||||
|
|
Loading…
Reference in New Issue