Implement support for comparing pointers with <, >, <=, >=, ==, and !=

in C++, taking into account conversions to the "composite pointer
type" so that we can compare, e.g., a pointer to a derived class to a
pointer to a base class. 

Also, upgrade the "comparing distinct pointer types" from a warning to
an error for C++, since this is clearly an error. Turns out that we
hadn't gone through and audited this code for C++, ever. 

Fixes <rdar://problem/6816420>.

llvm-svn: 70829
This commit is contained in:
Douglas Gregor 2009-05-04 06:07:12 +00:00
parent 1d9a267b2e
commit 5b07c7ec05
6 changed files with 129 additions and 3 deletions

View File

@ -1039,6 +1039,8 @@ def ext_typecheck_comparison_of_pointer_integer : Warning<
"comparison between pointer and integer (%0 and %1)">;
def ext_typecheck_comparison_of_distinct_pointers : Warning<
"comparison of distinct pointer types (%0 and %1)">;
def err_typecheck_comparison_of_distinct_pointers : Error<
"comparison of distinct pointer types (%0 and %1)">;
def err_typecheck_vector_comparison : Error<
"comparison of vector types (%0 and %1) not supported yet">;
def err_typecheck_assign_const : Error<"read-only variable is not assignable">;

View File

@ -2424,6 +2424,8 @@ public:
QualType rhsType);
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
QualType CompositePointerType(Expr *LHS, Expr *RHS,
bool LHSIsNull, bool RHSIsNull);
bool PerformImplicitConversion(Expr *&From, QualType ToType,
const char *Flavor,

View File

@ -3653,7 +3653,7 @@ QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
return LHSTy;
}
// C99 6.5.8
// C99 6.5.8, C++ [expr.rel]
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
unsigned OpaqueOpc, bool isRelational) {
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
@ -3758,6 +3758,31 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
QualType RCanPointeeTy =
Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
// Simple check: if the pointee types are identical, we're done.
if (LCanPointeeTy == RCanPointeeTy)
return ResultTy;
if (getLangOptions().CPlusPlus) {
// C++ [expr.rel]p2:
// [...] Pointer conversions (4.10) and qualification
// conversions (4.4) are performed on pointer operands (or on
// a pointer operand and a null pointer constant) to bring
// them to their composite pointer type. [...]
//
// C++ [expr.eq]p2 uses the same notion for (in)equality
// comparisons of pointers.
QualType T = CompositePointerType(lex, rex, LHSIsNull, RHSIsNull);
if (T.isNull()) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
ImpCastExprToType(lex, T);
ImpCastExprToType(rex, T);
return ResultTy;
}
if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
!LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
!Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),

View File

@ -768,6 +768,77 @@ Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
return false;
}
/// \brief Determine the composite pointer type (C++ [expr.rel]p2)
/// given the left- and right-hand expressions in a relational
/// operation.
///
/// While the notion of a composite pointer type is only described for
/// relational operators (<, >, <=, >=), the same computation is used
/// to determine the "common type" used for the equality operators
/// (==, !=) when comparing pointers.
///
/// \param LHS the left-hand operand.
/// \param RHS the right-hand operand.
/// \param LHSIsNull whether \p LHS is the NULL pointer constant
/// \param RHSIsNull whether \p RHS is the NULL pointer constant
///
/// \returns the composite pointer type, if any, or the null type if
/// no such type exists. It is the caller's responsibility to emit
/// diagnostic.
QualType Sema::CompositePointerType(Expr *LHS, Expr *RHS,
bool LHSIsNull, bool RHSIsNull) {
// First, determine whether LHS and RHS have pointer types, and what
// types they point to.
QualType LHSPointee;
QualType RHSPointee;
if (const PointerType *LHSPtr = LHS->getType()->getAsPointerType())
LHSPointee = LHSPtr->getPointeeType();
if (const PointerType *RHSPtr = RHS->getType()->getAsPointerType())
RHSPointee = RHSPtr->getPointeeType();
// C++ [expr.rel]p2:
// [...] If one operand is a null pointer constant, the composite
// pointer type is the type of the other operand.
if (LHSIsNull && !RHSPointee.isNull())
return RHS->getType();
if (RHSIsNull && !LHSPointee.isNull())
return LHS->getType();
// If neither LHS nor RHS has pointer type, we're done.
if (LHSPointee.isNull() && RHSPointee.isNull())
return QualType();
// [...] Otherwise, if one of the operands has type "pointer to cv1
// void", then the other has type "pointer to cv2 T" and the
// composite pointer type is "pointer to cv12 void", where cv12 is
// the union of cv1 and cv2.
QualType LHSPointeeCanon = Context.getCanonicalType(LHSPointee);
QualType RHSPointeeCanon = Context.getCanonicalType(RHSPointee);
unsigned CVQuals =
(LHSPointeeCanon.getCVRQualifiers() | RHSPointeeCanon.getCVRQualifiers());
if (LHSPointeeCanon->isVoidType() || RHSPointeeCanon->isVoidType())
return Context.getPointerType(Context.VoidTy.getQualifiedType(CVQuals));
// [...] Otherwise, the composite pointer type is a pointer type
// similar (4.4) to the type of one of the operands, with a
// cv-qualification signature (4.4) that is the union of the
// cv-qualification signatures of the operand types.
QualType FullyQualifiedLHSType
= Context.getPointerType(LHSPointee.getQualifiedType(CVQuals));
QualType CompositePointerType;
bool IncompatibleObjC = false;
if (IsPointerConversion(RHS, RHS->getType(), FullyQualifiedLHSType,
CompositePointerType, IncompatibleObjC))
return CompositePointerType;
QualType FullyQualifiedRHSType
= Context.getPointerType(RHSPointee.getQualifiedType(CVQuals));
if (IsPointerConversion(LHS, LHS->getType(), FullyQualifiedRHSType,
CompositePointerType, IncompatibleObjC))
return CompositePointerType;
return QualType();
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType. Returns true if there was an
/// error, false otherwise. The expression From is replaced with the

View File

@ -0,0 +1,27 @@
// RUN: clang-cc -fsyntax-only -verify %s
class Base { };
class Derived1 : public Base { };
class Derived2 : public Base { };
void f0(volatile Base *b, Derived1 *d1, const Derived2 *d2) {
if (b > d1)
return;
if (d1 <= b)
return;
if (b > d2)
return;
if (d1 >= d2) // expected-error{{comparison of distinct}}
return;
}
void f1(volatile Base *b, Derived1 *d1, const Derived2 *d2) {
if (b == d1)
return;
if (d1 == b)
return;
if (b != d2)
return;
if (d1 == d2) // expected-error{{comparison of distinct}}
return;
}

View File

@ -38,10 +38,9 @@ void test_S5_scope() {
S4 *s4; // expected-error{{use of undeclared identifier 'S4'}}
}
// FIXME: the warning below should be an error!
int test_funcparam_scope(struct S5 * s5) {
struct S5 { int y; } *s5_2 = 0;
if (s5 == s5_2) return 1; // expected-warning {{comparison of distinct pointer types ('struct S5 *' and 'struct S5 *')}}
if (s5 == s5_2) return 1; // expected-error {{comparison of distinct pointer types ('struct S5 *' and 'struct S5 *')}}
return 0;
}