[DA] DivergenceAnalysis for unstructured, reducible CFGs

Summary:
This is patch 2 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).

This patch contains a generic divergence analysis implementation for
unstructured, reducible Control-Flow Graphs. It contains two new classes.
The `SyncDependenceAnalysis` class lazily computes sync dependences, which
relate divergent branches to points of joining divergent control. The
`DivergenceAnalysis` class contains the generic divergence analysis
implementation.

Reviewers: nhaehnle

Reviewed By: nhaehnle

Subscribers: sameerds, kristina, nhaehnle, xbolva00, tschuett, mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D51491

llvm-svn: 344734
This commit is contained in:
Nicolai Haehnle 2018-10-18 09:38:44 +00:00
parent 547f89d607
commit 59041687be
8 changed files with 1508 additions and 0 deletions

View File

@ -296,12 +296,15 @@ class ReversePostOrderTraversal {
public:
using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator;
ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); }
// Because we want a reverse post order, use reverse iterators from the vector
rpo_iterator begin() { return Blocks.rbegin(); }
const_rpo_iterator begin() const { return Blocks.crbegin(); }
rpo_iterator end() { return Blocks.rend(); }
const_rpo_iterator end() const { return Blocks.crend(); }
};
} // end namespace llvm

View File

@ -0,0 +1,178 @@
//===- llvm/Analysis/DivergenceAnalysis.h - Divergence Analysis -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// The divergence analysis determines which instructions and branches are
// divergent given a set of divergent source instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DIVERGENCE_ANALYSIS_H
#define LLVM_ANALYSIS_DIVERGENCE_ANALYSIS_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/Analysis/SyncDependenceAnalysis.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include <vector>
namespace llvm {
class Module;
class Value;
class Instruction;
class Loop;
class raw_ostream;
class TargetTransformInfo;
/// \brief Generic divergence analysis for reducible CFGs.
///
/// This analysis propagates divergence in a data-parallel context from sources
/// of divergence to all users. It requires reducible CFGs. All assignments
/// should be in SSA form.
class DivergenceAnalysis {
public:
/// \brief This instance will analyze the whole function \p F or the loop \p
/// RegionLoop.
///
/// \param RegionLoop if non-null the analysis is restricted to \p RegionLoop.
/// Otherwise the whole function is analyzed.
/// \param IsLCSSAForm whether the analysis may assume that the IR in the
/// region in in LCSSA form.
DivergenceAnalysis(const Function &F, const Loop *RegionLoop,
const DominatorTree &DT, const LoopInfo &LI,
SyncDependenceAnalysis &SDA, bool IsLCSSAForm);
/// \brief The loop that defines the analyzed region (if any).
const Loop *getRegionLoop() const { return RegionLoop; }
const Function &getFunction() const { return F; }
/// \brief Whether \p BB is part of the region.
bool inRegion(const BasicBlock &BB) const;
/// \brief Whether \p I is part of the region.
bool inRegion(const Instruction &I) const;
/// \brief Mark \p UniVal as a value that is always uniform.
void addUniformOverride(const Value &UniVal);
/// \brief Mark \p DivVal as a value that is always divergent.
void markDivergent(const Value &DivVal);
/// \brief Propagate divergence to all instructions in the region.
/// Divergence is seeded by calls to \p markDivergent.
void compute();
/// \brief Whether any value was marked or analyzed to be divergent.
bool hasDetectedDivergence() const { return !DivergentValues.empty(); }
/// \brief Whether \p Val will always return a uniform value regardless of its
/// operands
bool isAlwaysUniform(const Value &Val) const;
/// \brief Whether \p Val is a divergent value
bool isDivergent(const Value &Val) const;
void print(raw_ostream &OS, const Module *) const;
private:
bool updateTerminator(const TerminatorInst &Term) const;
bool updatePHINode(const PHINode &Phi) const;
/// \brief Computes whether \p Inst is divergent based on the
/// divergence of its operands.
///
/// \returns Whether \p Inst is divergent.
///
/// This should only be called for non-phi, non-terminator instructions.
bool updateNormalInstruction(const Instruction &Inst) const;
/// \brief Mark users of live-out users as divergent.
///
/// \param LoopHeader the header of the divergent loop.
///
/// Marks all users of live-out values of the loop headed by \p LoopHeader
/// as divergent and puts them on the worklist.
void taintLoopLiveOuts(const BasicBlock &LoopHeader);
/// \brief Push all users of \p Val (in the region) to the worklist
void pushUsers(const Value &I);
/// \brief Push all phi nodes in @block to the worklist
void pushPHINodes(const BasicBlock &Block);
/// \brief Mark \p Block as join divergent
///
/// A block is join divergent if two threads may reach it from different
/// incoming blocks at the same time.
void markBlockJoinDivergent(const BasicBlock &Block) {
DivergentJoinBlocks.insert(&Block);
}
/// \brief Whether \p Val is divergent when read in \p ObservingBlock.
bool isTemporalDivergent(const BasicBlock &ObservingBlock,
const Value &Val) const;
/// \brief Whether \p Block is join divergent
///
/// (see markBlockJoinDivergent).
bool isJoinDivergent(const BasicBlock &Block) const {
return DivergentJoinBlocks.find(&Block) != DivergentJoinBlocks.end();
}
/// \brief Propagate control-induced divergence to users (phi nodes and
/// instructions).
//
// \param JoinBlock is a divergent loop exit or join point of two disjoint
// paths.
// \returns Whether \p JoinBlock is a divergent loop exit of \p TermLoop.
bool propagateJoinDivergence(const BasicBlock &JoinBlock,
const Loop *TermLoop);
/// \brief Propagate induced value divergence due to control divergence in \p
/// Term.
void propagateBranchDivergence(const TerminatorInst &Term);
/// \brief Propagate divergent caused by a divergent loop exit.
///
/// \param ExitingLoop is a divergent loop.
void propagateLoopDivergence(const Loop &ExitingLoop);
private:
const Function &F;
// If regionLoop != nullptr, analysis is only performed within \p RegionLoop.
// Otw, analyze the whole function
const Loop *RegionLoop;
const DominatorTree &DT;
const LoopInfo &LI;
// Recognized divergent loops
DenseSet<const Loop *> DivergentLoops;
// The SDA links divergent branches to divergent control-flow joins.
SyncDependenceAnalysis &SDA;
// Use simplified code path for LCSSA form.
bool IsLCSSAForm;
// Set of known-uniform values.
DenseSet<const Value *> UniformOverrides;
// Blocks with joining divergent control from different predecessors.
DenseSet<const BasicBlock *> DivergentJoinBlocks;
// Detected/marked divergent values.
DenseSet<const Value *> DivergentValues;
// Internal worklist for divergence propagation.
std::vector<const Instruction *> Worklist;
};
} // namespace llvm
#endif // LLVM_ANALYSIS_DIVERGENCE_ANALYSIS_H

View File

@ -0,0 +1,88 @@
//===- SyncDependenceAnalysis.h - Divergent Branch Dependence -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// This file defines the SyncDependenceAnalysis class, which computes for
// every divergent branch the set of phi nodes that the branch will make
// divergent.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SYNC_DEPENDENCE_ANALYSIS_H
#define LLVM_ANALYSIS_SYNC_DEPENDENCE_ANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/LoopInfo.h"
#include <memory>
namespace llvm {
class BasicBlock;
class DominatorTree;
class Loop;
class PostDominatorTree;
class TerminatorInst;
class TerminatorInst;
using ConstBlockSet = SmallPtrSet<const BasicBlock *, 4>;
/// \brief Relates points of divergent control to join points in
/// reducible CFGs.
///
/// This analysis relates points of divergent control to points of converging
/// divergent control. The analysis requires all loops to be reducible.
class SyncDependenceAnalysis {
void visitSuccessor(const BasicBlock &succBlock, const Loop *termLoop,
const BasicBlock *defBlock);
public:
bool inRegion(const BasicBlock &BB) const;
~SyncDependenceAnalysis();
SyncDependenceAnalysis(const DominatorTree &DT, const PostDominatorTree &PDT,
const LoopInfo &LI);
/// \brief Computes divergent join points and loop exits caused by branch
/// divergence in \p Term.
///
/// The set of blocks which are reachable by disjoint paths from \p Term.
/// The set also contains loop exits if there two disjoint paths:
/// one from \p Term to the loop exit and another from \p Term to the loop
/// header. Those exit blocks are added to the returned set.
/// If L is the parent loop of \p Term and an exit of L is in the returned
/// set then L is a divergent loop.
const ConstBlockSet &join_blocks(const TerminatorInst &Term);
/// \brief Computes divergent join points and loop exits (in the surrounding
/// loop) caused by the divergent loop exits of\p Loop.
///
/// The set of blocks which are reachable by disjoint paths from the
/// loop exits of \p Loop.
/// This treats the loop as a single node in \p Loop's parent loop.
/// The returned set has the same properties as for join_blocks(TermInst&).
const ConstBlockSet &join_blocks(const Loop &Loop);
private:
static ConstBlockSet EmptyBlockSet;
ReversePostOrderTraversal<const Function *> FuncRPOT;
const DominatorTree &DT;
const PostDominatorTree &PDT;
const LoopInfo &LI;
std::map<const Loop *, std::unique_ptr<ConstBlockSet>> CachedLoopExitJoins;
std::map<const TerminatorInst *, std::unique_ptr<ConstBlockSet>>
CachedBranchJoins;
};
} // namespace llvm
#endif // LLVM_ANALYSIS_SYNC_DEPENDENCE_ANALYSIS_H

View File

@ -25,6 +25,7 @@ add_llvm_library(LLVMAnalysis
Delinearization.cpp
DemandedBits.cpp
DependenceAnalysis.cpp
DivergenceAnalysis.cpp
DomPrinter.cpp
DominanceFrontier.cpp
EHPersonalities.cpp
@ -80,6 +81,7 @@ add_llvm_library(LLVMAnalysis
ScalarEvolutionAliasAnalysis.cpp
ScalarEvolutionExpander.cpp
ScalarEvolutionNormalization.cpp
SyncDependenceAnalysis.cpp
SyntheticCountsUtils.cpp
TargetLibraryInfo.cpp
TargetTransformInfo.cpp

View File

@ -0,0 +1,425 @@
//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a general divergence analysis for loop vectorization
// and GPU programs. It determines which branches and values in a loop or GPU
// program are divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they re-converge.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can interfere with thread re-convergence.
// Therefore, an analysis that computes which branches in a GPU program are
// divergent can help the compiler to selectively run these optimizations.
//
// This implementation is derived from the Vectorization Analysis of the
// Region Vectorizer (RV). That implementation in turn is based on the approach
// described in
//
// Improving Performance of OpenCL on CPUs
// Ralf Karrenberg and Sebastian Hack
// CC '12
//
// This DivergenceAnalysis implementation is generic in the sense that it does
// not itself identify original sources of divergence.
// Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
// (GPUDivergenceAnalysis) for GPU programs, identify the sources of divergence
// (e.g., special variables that hold the thread ID or the iteration variable).
//
// The generic implementation propagates divergence to variables that are data
// or sync dependent on a source of divergence.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The sync dependence detection (which branch induces divergence in which join
// points) is implemented in the SyncDependenceAnalysis.
//
// The current DivergenceAnalysis implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
// non-kernel-entry function and the return value of a function call as
// divergent.
// 2. memory as black box. It conservatively considers values loaded from
// generic or local address as divergent. This can be improved by leveraging
// pointer analysis and/or by modelling non-escaping memory objects in SSA
// as done in RV.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "divergence-analysis"
// class DivergenceAnalysis
DivergenceAnalysis::DivergenceAnalysis(
const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
: F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
IsLCSSAForm(IsLCSSAForm) {}
void DivergenceAnalysis::markDivergent(const Value &DivVal) {
assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
DivergentValues.insert(&DivVal);
}
void DivergenceAnalysis::addUniformOverride(const Value &UniVal) {
UniformOverrides.insert(&UniVal);
}
bool DivergenceAnalysis::updateTerminator(const TerminatorInst &Term) const {
if (Term.getNumSuccessors() <= 1)
return false;
if (auto *BranchTerm = dyn_cast<BranchInst>(&Term)) {
assert(BranchTerm->isConditional());
return isDivergent(*BranchTerm->getCondition());
}
if (auto *SwitchTerm = dyn_cast<SwitchInst>(&Term)) {
return isDivergent(*SwitchTerm->getCondition());
}
if (isa<InvokeInst>(Term)) {
return false; // ignore abnormal executions through landingpad
}
llvm_unreachable("unexpected terminator");
}
bool DivergenceAnalysis::updateNormalInstruction(const Instruction &I) const {
// TODO function calls with side effects, etc
for (const auto &Op : I.operands()) {
if (isDivergent(*Op))
return true;
}
return false;
}
bool DivergenceAnalysis::isTemporalDivergent(const BasicBlock &ObservingBlock,
const Value &Val) const {
const auto *Inst = dyn_cast<const Instruction>(&Val);
if (!Inst)
return false;
// check whether any divergent loop carrying Val terminates before control
// proceeds to ObservingBlock
for (const auto *Loop = LI.getLoopFor(Inst->getParent());
Loop != RegionLoop && !Loop->contains(&ObservingBlock);
Loop = Loop->getParentLoop()) {
if (DivergentLoops.find(Loop) != DivergentLoops.end())
return true;
}
return false;
}
bool DivergenceAnalysis::updatePHINode(const PHINode &Phi) const {
// joining divergent disjoint path in Phi parent block
if (!Phi.hasConstantOrUndefValue() && isJoinDivergent(*Phi.getParent())) {
return true;
}
// An incoming value could be divergent by itself.
// Otherwise, an incoming value could be uniform within the loop
// that carries its definition but it may appear divergent
// from outside the loop. This happens when divergent loop exits
// drop definitions of that uniform value in different iterations.
//
// for (int i = 0; i < n; ++i) { // 'i' is uniform inside the loop
// if (i % thread_id == 0) break; // divergent loop exit
// }
// int divI = i; // divI is divergent
for (size_t i = 0; i < Phi.getNumIncomingValues(); ++i) {
const auto *InVal = Phi.getIncomingValue(i);
if (isDivergent(*Phi.getIncomingValue(i)) ||
isTemporalDivergent(*Phi.getParent(), *InVal)) {
return true;
}
}
return false;
}
bool DivergenceAnalysis::inRegion(const Instruction &I) const {
return I.getParent() && inRegion(*I.getParent());
}
bool DivergenceAnalysis::inRegion(const BasicBlock &BB) const {
return (!RegionLoop && BB.getParent() == &F) || RegionLoop->contains(&BB);
}
// marks all users of loop-carried values of the loop headed by LoopHeader as
// divergent
void DivergenceAnalysis::taintLoopLiveOuts(const BasicBlock &LoopHeader) {
auto *DivLoop = LI.getLoopFor(&LoopHeader);
assert(DivLoop && "loopHeader is not actually part of a loop");
SmallVector<BasicBlock *, 8> TaintStack;
DivLoop->getExitBlocks(TaintStack);
// Otherwise potential users of loop-carried values could be anywhere in the
// dominance region of DivLoop (including its fringes for phi nodes)
DenseSet<const BasicBlock *> Visited;
for (auto *Block : TaintStack) {
Visited.insert(Block);
}
Visited.insert(&LoopHeader);
while (!TaintStack.empty()) {
auto *UserBlock = TaintStack.back();
TaintStack.pop_back();
// don't spread divergence beyond the region
if (!inRegion(*UserBlock))
continue;
assert(!DivLoop->contains(UserBlock) &&
"irreducible control flow detected");
// phi nodes at the fringes of the dominance region
if (!DT.dominates(&LoopHeader, UserBlock)) {
// all PHI nodes of UserBlock become divergent
for (auto &Phi : UserBlock->phis()) {
Worklist.push_back(&Phi);
}
continue;
}
// taint outside users of values carried by DivLoop
for (auto &I : *UserBlock) {
if (isAlwaysUniform(I))
continue;
if (isDivergent(I))
continue;
for (auto &Op : I.operands()) {
auto *OpInst = dyn_cast<Instruction>(&Op);
if (!OpInst)
continue;
if (DivLoop->contains(OpInst->getParent())) {
markDivergent(I);
pushUsers(I);
break;
}
}
}
// visit all blocks in the dominance region
for (auto *SuccBlock : successors(UserBlock)) {
if (!Visited.insert(SuccBlock).second) {
continue;
}
TaintStack.push_back(SuccBlock);
}
}
}
void DivergenceAnalysis::pushPHINodes(const BasicBlock &Block) {
for (const auto &Phi : Block.phis()) {
if (isDivergent(Phi))
continue;
Worklist.push_back(&Phi);
}
}
void DivergenceAnalysis::pushUsers(const Value &V) {
for (const auto *User : V.users()) {
const auto *UserInst = dyn_cast<const Instruction>(User);
if (!UserInst)
continue;
if (isDivergent(*UserInst))
continue;
// only compute divergent inside loop
if (!inRegion(*UserInst))
continue;
Worklist.push_back(UserInst);
}
}
bool DivergenceAnalysis::propagateJoinDivergence(const BasicBlock &JoinBlock,
const Loop *BranchLoop) {
LLVM_DEBUG(dbgs() << "\tpropJoinDiv " << JoinBlock.getName() << "\n");
// ignore divergence outside the region
if (!inRegion(JoinBlock)) {
return false;
}
// push non-divergent phi nodes in JoinBlock to the worklist
pushPHINodes(JoinBlock);
// JoinBlock is a divergent loop exit
if (BranchLoop && !BranchLoop->contains(&JoinBlock)) {
return true;
}
// disjoint-paths divergent at JoinBlock
markBlockJoinDivergent(JoinBlock);
return false;
}
void DivergenceAnalysis::propagateBranchDivergence(const TerminatorInst &Term) {
LLVM_DEBUG(dbgs() << "propBranchDiv " << Term.getParent()->getName() << "\n");
markDivergent(Term);
const auto *BranchLoop = LI.getLoopFor(Term.getParent());
// whether there is a divergent loop exit from BranchLoop (if any)
bool IsBranchLoopDivergent = false;
// iterate over all blocks reachable by disjoint from Term within the loop
// also iterates over loop exits that become divergent due to Term.
for (const auto *JoinBlock : SDA.join_blocks(Term)) {
IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
}
// Branch loop is a divergent loop due to the divergent branch in Term
if (IsBranchLoopDivergent) {
assert(BranchLoop);
if (!DivergentLoops.insert(BranchLoop).second) {
return;
}
propagateLoopDivergence(*BranchLoop);
}
}
void DivergenceAnalysis::propagateLoopDivergence(const Loop &ExitingLoop) {
LLVM_DEBUG(dbgs() << "propLoopDiv " << ExitingLoop.getName() << "\n");
// don't propagate beyond region
if (!inRegion(*ExitingLoop.getHeader()))
return;
const auto *BranchLoop = ExitingLoop.getParentLoop();
// Uses of loop-carried values could occur anywhere
// within the dominance region of the definition. All loop-carried
// definitions are dominated by the loop header (reducible control).
// Thus all users have to be in the dominance region of the loop header,
// except PHI nodes that can also live at the fringes of the dom region
// (incoming defining value).
if (!IsLCSSAForm)
taintLoopLiveOuts(*ExitingLoop.getHeader());
// whether there is a divergent loop exit from BranchLoop (if any)
bool IsBranchLoopDivergent = false;
// iterate over all blocks reachable by disjoint paths from exits of
// ExitingLoop also iterates over loop exits (of BranchLoop) that in turn
// become divergent.
for (const auto *JoinBlock : SDA.join_blocks(ExitingLoop)) {
IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
}
// Branch loop is a divergent due to divergent loop exit in ExitingLoop
if (IsBranchLoopDivergent) {
assert(BranchLoop);
if (!DivergentLoops.insert(BranchLoop).second) {
return;
}
propagateLoopDivergence(*BranchLoop);
}
}
void DivergenceAnalysis::compute() {
for (auto *DivVal : DivergentValues) {
pushUsers(*DivVal);
}
// propagate divergence
while (!Worklist.empty()) {
const Instruction &I = *Worklist.back();
Worklist.pop_back();
// maintain uniformity of overrides
if (isAlwaysUniform(I))
continue;
bool WasDivergent = isDivergent(I);
if (WasDivergent)
continue;
// propagate divergence caused by terminator
if (isa<TerminatorInst>(I)) {
auto &Term = cast<TerminatorInst>(I);
if (updateTerminator(Term)) {
// propagate control divergence to affected instructions
propagateBranchDivergence(Term);
continue;
}
}
// update divergence of I due to divergent operands
bool DivergentUpd = false;
const auto *Phi = dyn_cast<const PHINode>(&I);
if (Phi) {
DivergentUpd = updatePHINode(*Phi);
} else {
DivergentUpd = updateNormalInstruction(I);
}
// propagate value divergence to users
if (DivergentUpd) {
markDivergent(I);
pushUsers(I);
}
}
}
bool DivergenceAnalysis::isAlwaysUniform(const Value &V) const {
return UniformOverrides.find(&V) != UniformOverrides.end();
}
bool DivergenceAnalysis::isDivergent(const Value &V) const {
return DivergentValues.find(&V) != DivergentValues.end();
}
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
// iterate instructions using instructions() to ensure a deterministic order.
for (auto &I : instructions(F)) {
if (isDivergent(I))
OS << "DIVERGENT:" << I << '\n';
}
}

View File

@ -0,0 +1,380 @@
//===- SyncDependenceAnalysis.cpp - Divergent Branch Dependence Calculation
//--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an algorithm that returns for a divergent branch
// the set of basic blocks whose phi nodes become divergent due to divergent
// control. These are the blocks that are reachable by two disjoint paths from
// the branch or loop exits that have a reaching path that is disjoint from a
// path to the loop latch.
//
// The SyncDependenceAnalysis is used in the DivergenceAnalysis to model
// control-induced divergence in phi nodes.
//
// -- Summary --
// The SyncDependenceAnalysis lazily computes sync dependences [3].
// The analysis evaluates the disjoint path criterion [2] by a reduction
// to SSA construction. The SSA construction algorithm is implemented as
// a simple data-flow analysis [1].
//
// [1] "A Simple, Fast Dominance Algorithm", SPI '01, Cooper, Harvey and Kennedy
// [2] "Efficiently Computing Static Single Assignment Form
// and the Control Dependence Graph", TOPLAS '91,
// Cytron, Ferrante, Rosen, Wegman and Zadeck
// [3] "Improving Performance of OpenCL on CPUs", CC '12, Karrenberg and Hack
// [4] "Divergence Analysis", TOPLAS '13, Sampaio, Souza, Collange and Pereira
//
// -- Sync dependence --
// Sync dependence [4] characterizes the control flow aspect of the
// propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// -- Reduction to SSA construction --
// There are two disjoint paths from A to X, if a certain variant of SSA
// construction places a phi node in X under the following set-up scheme [2].
//
// This variant of SSA construction ignores incoming undef values.
// That is paths from the entry without a definition do not result in
// phi nodes.
//
// entry
// / \
// A \
// / \ Y
// B C /
// \ / \ /
// D E
// \ /
// F
// Assume that A contains a divergent branch. We are interested
// in the set of all blocks where each block is reachable from A
// via two disjoint paths. This would be the set {D, F} in this
// case.
// To generally reduce this query to SSA construction we introduce
// a virtual variable x and assign to x different values in each
// successor block of A.
// entry
// / \
// A \
// / \ Y
// x = 0 x = 1 /
// \ / \ /
// D E
// \ /
// F
// Our flavor of SSA construction for x will construct the following
// entry
// / \
// A \
// / \ Y
// x0 = 0 x1 = 1 /
// \ / \ /
// x2=phi E
// \ /
// x3=phi
// The blocks D and F contain phi nodes and are thus each reachable
// by two disjoins paths from A.
//
// -- Remarks --
// In case of loop exits we need to check the disjoint path criterion for loops
// [2]. To this end, we check whether the definition of x differs between the
// loop exit and the loop header (_after_ SSA construction).
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/SyncDependenceAnalysis.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include <stack>
#include <unordered_set>
#define DEBUG_TYPE "sync-dependence"
namespace llvm {
ConstBlockSet SyncDependenceAnalysis::EmptyBlockSet;
SyncDependenceAnalysis::SyncDependenceAnalysis(const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI)
: FuncRPOT(DT.getRoot()->getParent()), DT(DT), PDT(PDT), LI(LI) {}
SyncDependenceAnalysis::~SyncDependenceAnalysis() {}
using FunctionRPOT = ReversePostOrderTraversal<const Function *>;
// divergence propagator for reducible CFGs
struct DivergencePropagator {
const FunctionRPOT &FuncRPOT;
const DominatorTree &DT;
const PostDominatorTree &PDT;
const LoopInfo &LI;
// identified join points
std::unique_ptr<ConstBlockSet> JoinBlocks;
// reached loop exits (by a path disjoint to a path to the loop header)
SmallPtrSet<const BasicBlock *, 4> ReachedLoopExits;
// if DefMap[B] == C then C is the dominating definition at block B
// if DefMap[B] ~ undef then we haven't seen B yet
// if DefMap[B] == B then B is a join point of disjoint paths from X or B is
// an immediate successor of X (initial value).
using DefiningBlockMap = std::map<const BasicBlock *, const BasicBlock *>;
DefiningBlockMap DefMap;
// all blocks with pending visits
std::unordered_set<const BasicBlock *> PendingUpdates;
DivergencePropagator(const FunctionRPOT &FuncRPOT, const DominatorTree &DT,
const PostDominatorTree &PDT, const LoopInfo &LI)
: FuncRPOT(FuncRPOT), DT(DT), PDT(PDT), LI(LI),
JoinBlocks(new ConstBlockSet) {}
// set the definition at @block and mark @block as pending for a visit
void addPending(const BasicBlock &Block, const BasicBlock &DefBlock) {
bool WasAdded = DefMap.emplace(&Block, &DefBlock).second;
if (WasAdded)
PendingUpdates.insert(&Block);
}
void printDefs(raw_ostream &Out) {
Out << "Propagator::DefMap {\n";
for (const auto *Block : FuncRPOT) {
auto It = DefMap.find(Block);
Out << Block->getName() << " : ";
if (It == DefMap.end()) {
Out << "\n";
} else {
const auto *DefBlock = It->second;
Out << (DefBlock ? DefBlock->getName() : "<null>") << "\n";
}
}
Out << "}\n";
}
// process @succBlock with reaching definition @defBlock
// the original divergent branch was in @parentLoop (if any)
void visitSuccessor(const BasicBlock &SuccBlock, const Loop *ParentLoop,
const BasicBlock &DefBlock) {
// @succBlock is a loop exit
if (ParentLoop && !ParentLoop->contains(&SuccBlock)) {
DefMap.emplace(&SuccBlock, &DefBlock);
ReachedLoopExits.insert(&SuccBlock);
return;
}
// first reaching def?
auto ItLastDef = DefMap.find(&SuccBlock);
if (ItLastDef == DefMap.end()) {
addPending(SuccBlock, DefBlock);
return;
}
// a join of at least two definitions
if (ItLastDef->second != &DefBlock) {
// do we know this join already?
if (!JoinBlocks->insert(&SuccBlock).second)
return;
// update the definition
addPending(SuccBlock, SuccBlock);
}
}
// find all blocks reachable by two disjoint paths from @rootTerm.
// This method works for both divergent TerminatorInsts and loops with
// divergent exits.
// @rootBlock is either the block containing the branch or the header of the
// divergent loop.
// @nodeSuccessors is the set of successors of the node (Loop or Terminator)
// headed by @rootBlock.
// @parentLoop is the parent loop of the Loop or the loop that contains the
// Terminator.
template <typename SuccessorIterable>
std::unique_ptr<ConstBlockSet>
computeJoinPoints(const BasicBlock &RootBlock,
SuccessorIterable NodeSuccessors, const Loop *ParentLoop) {
assert(JoinBlocks);
// immediate post dominator (no join block beyond that block)
const auto *PdNode = PDT.getNode(const_cast<BasicBlock *>(&RootBlock));
const auto *IpdNode = PdNode->getIDom();
const auto *PdBoundBlock = IpdNode ? IpdNode->getBlock() : nullptr;
// bootstrap with branch targets
for (const auto *SuccBlock : NodeSuccessors) {
DefMap.emplace(SuccBlock, SuccBlock);
if (ParentLoop && !ParentLoop->contains(SuccBlock)) {
// immediate loop exit from node.
ReachedLoopExits.insert(SuccBlock);
continue;
} else {
// regular successor
PendingUpdates.insert(SuccBlock);
}
}
auto ItBeginRPO = FuncRPOT.begin();
// skip until term (TODO RPOT won't let us start at @term directly)
for (; *ItBeginRPO != &RootBlock; ++ItBeginRPO) {}
auto ItEndRPO = FuncRPOT.end();
assert(ItBeginRPO != ItEndRPO);
// propagate definitions at the immediate successors of the node in RPO
auto ItBlockRPO = ItBeginRPO;
while (++ItBlockRPO != ItEndRPO && *ItBlockRPO != PdBoundBlock) {
const auto *Block = *ItBlockRPO;
// skip @block if not pending update
auto ItPending = PendingUpdates.find(Block);
if (ItPending == PendingUpdates.end())
continue;
PendingUpdates.erase(ItPending);
// propagate definition at @block to its successors
auto ItDef = DefMap.find(Block);
const auto *DefBlock = ItDef->second;
assert(DefBlock);
auto *BlockLoop = LI.getLoopFor(Block);
if (ParentLoop &&
(ParentLoop != BlockLoop && ParentLoop->contains(BlockLoop))) {
// if the successor is the header of a nested loop pretend its a
// single node with the loop's exits as successors
SmallVector<BasicBlock *, 4> BlockLoopExits;
BlockLoop->getExitBlocks(BlockLoopExits);
for (const auto *BlockLoopExit : BlockLoopExits) {
visitSuccessor(*BlockLoopExit, ParentLoop, *DefBlock);
}
} else {
// the successors are either on the same loop level or loop exits
for (const auto *SuccBlock : successors(Block)) {
visitSuccessor(*SuccBlock, ParentLoop, *DefBlock);
}
}
}
// We need to know the definition at the parent loop header to decide
// whether the definition at the header is different from the definition at
// the loop exits, which would indicate a divergent loop exits.
//
// A // loop header
// |
// B // nested loop header
// |
// C -> X (exit from B loop) -..-> (A latch)
// |
// D -> back to B (B latch)
// |
// proper exit from both loops
//
// D post-dominates B as it is the only proper exit from the "A loop".
// If C has a divergent branch, propagation will therefore stop at D.
// That implies that B will never receive a definition.
// But that definition can only be the same as at D (D itself in thise case)
// because all paths to anywhere have to pass through D.
//
const BasicBlock *ParentLoopHeader =
ParentLoop ? ParentLoop->getHeader() : nullptr;
if (ParentLoop && ParentLoop->contains(PdBoundBlock)) {
DefMap[ParentLoopHeader] = DefMap[PdBoundBlock];
}
// analyze reached loop exits
if (!ReachedLoopExits.empty()) {
assert(ParentLoop);
const auto *HeaderDefBlock = DefMap[ParentLoopHeader];
LLVM_DEBUG(printDefs(dbgs()));
assert(HeaderDefBlock && "no definition in header of carrying loop");
for (const auto *ExitBlock : ReachedLoopExits) {
auto ItExitDef = DefMap.find(ExitBlock);
assert((ItExitDef != DefMap.end()) &&
"no reaching def at reachable loop exit");
if (ItExitDef->second != HeaderDefBlock) {
JoinBlocks->insert(ExitBlock);
}
}
}
return std::move(JoinBlocks);
}
};
const ConstBlockSet &SyncDependenceAnalysis::join_blocks(const Loop &Loop) {
using LoopExitVec = SmallVector<BasicBlock *, 4>;
LoopExitVec LoopExits;
Loop.getExitBlocks(LoopExits);
if (LoopExits.size() < 1) {
return EmptyBlockSet;
}
// already available in cache?
auto ItCached = CachedLoopExitJoins.find(&Loop);
if (ItCached != CachedLoopExitJoins.end())
return *ItCached->second;
// compute all join points
DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
auto JoinBlocks = Propagator.computeJoinPoints<const LoopExitVec &>(
*Loop.getHeader(), LoopExits, Loop.getParentLoop());
auto ItInserted = CachedLoopExitJoins.emplace(&Loop, std::move(JoinBlocks));
assert(ItInserted.second);
return *ItInserted.first->second;
}
const ConstBlockSet &
SyncDependenceAnalysis::join_blocks(const TerminatorInst &Term) {
// trivial case
if (Term.getNumSuccessors() < 1) {
return EmptyBlockSet;
}
// already available in cache?
auto ItCached = CachedBranchJoins.find(&Term);
if (ItCached != CachedBranchJoins.end())
return *ItCached->second;
// compute all join points
DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
const auto &TermBlock = *Term.getParent();
auto JoinBlocks = Propagator.computeJoinPoints<succ_const_range>(
TermBlock, successors(Term.getParent()), LI.getLoopFor(&TermBlock));
auto ItInserted = CachedBranchJoins.emplace(&Term, std::move(JoinBlocks));
assert(ItInserted.second);
return *ItInserted.first->second;
}
} // namespace llvm

View File

@ -14,6 +14,7 @@ add_llvm_unittest(AnalysisTests
CallGraphTest.cpp
CFGTest.cpp
CGSCCPassManagerTest.cpp
DivergenceAnalysisTest.cpp
GlobalsModRefTest.cpp
ValueLatticeTest.cpp
LazyCallGraphTest.cpp

View File

@ -0,0 +1,431 @@
//===- DivergenceAnalysisTest.cpp - DivergenceAnalysis unit tests ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/SyncDependenceAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
namespace llvm {
namespace {
BasicBlock *GetBlockByName(StringRef BlockName, Function &F) {
for (auto &BB : F) {
if (BB.getName() != BlockName)
continue;
return &BB;
}
return nullptr;
}
// We use this fixture to ensure that we clean up DivergenceAnalysis before
// deleting the PassManager.
class DivergenceAnalysisTest : public testing::Test {
protected:
LLVMContext Context;
Module M;
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI;
std::unique_ptr<DominatorTree> DT;
std::unique_ptr<PostDominatorTree> PDT;
std::unique_ptr<LoopInfo> LI;
std::unique_ptr<SyncDependenceAnalysis> SDA;
DivergenceAnalysisTest() : M("", Context), TLII(), TLI(TLII) {}
DivergenceAnalysis buildDA(Function &F, bool IsLCSSA) {
DT.reset(new DominatorTree(F));
PDT.reset(new PostDominatorTree(F));
LI.reset(new LoopInfo(*DT));
SDA.reset(new SyncDependenceAnalysis(*DT, *PDT, *LI));
return DivergenceAnalysis(F, nullptr, *DT, *LI, *SDA, IsLCSSA);
}
void runWithDA(
Module &M, StringRef FuncName, bool IsLCSSA,
function_ref<void(Function &F, LoopInfo &LI, DivergenceAnalysis &DA)>
Test) {
auto *F = M.getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
DivergenceAnalysis DA = buildDA(*F, IsLCSSA);
Test(*F, *LI, DA);
}
};
// Simple initial state test
TEST_F(DivergenceAnalysisTest, DAInitialState) {
IntegerType *IntTy = IntegerType::getInt32Ty(Context);
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Context), {IntTy}, false);
Function *F = cast<Function>(M.getOrInsertFunction("f", FTy));
BasicBlock *BB = BasicBlock::Create(Context, "entry", F);
ReturnInst::Create(Context, nullptr, BB);
DivergenceAnalysis DA = buildDA(*F, false);
// Whole function region
EXPECT_EQ(DA.getRegionLoop(), nullptr);
// No divergence in initial state
EXPECT_FALSE(DA.hasDetectedDivergence());
// No spurious divergence
DA.compute();
EXPECT_FALSE(DA.hasDetectedDivergence());
// Detected divergence after marking
Argument &arg = *F->arg_begin();
DA.markDivergent(arg);
EXPECT_TRUE(DA.hasDetectedDivergence());
EXPECT_TRUE(DA.isDivergent(arg));
DA.compute();
EXPECT_TRUE(DA.hasDetectedDivergence());
EXPECT_TRUE(DA.isDivergent(arg));
}
TEST_F(DivergenceAnalysisTest, DANoLCSSA) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(
"target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
" "
"define i32 @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) "
" local_unnamed_addr { "
"entry: "
" br label %loop.ph "
" "
"loop.ph: "
" br label %loop "
" "
"loop: "
" %iv0 = phi i32 [ %iv0.inc, %loop ], [ 0, %loop.ph ] "
" %iv1 = phi i32 [ %iv1.inc, %loop ], [ -2147483648, %loop.ph ] "
" %iv0.inc = add i32 %iv0, 1 "
" %iv1.inc = add i32 %iv1, 3 "
" %cond.cont = icmp slt i32 %iv0, %n "
" br i1 %cond.cont, label %loop, label %for.end.loopexit "
" "
"for.end.loopexit: "
" ret i32 %iv0 "
"} ",
Err, C);
Function *F = M->getFunction("f_1");
DivergenceAnalysis DA = buildDA(*F, false);
EXPECT_FALSE(DA.hasDetectedDivergence());
auto ItArg = F->arg_begin();
ItArg++;
auto &NArg = *ItArg;
// Seed divergence in argument %n
DA.markDivergent(NArg);
DA.compute();
EXPECT_TRUE(DA.hasDetectedDivergence());
// Verify that "ret %iv.0" is divergent
auto ItBlock = F->begin();
std::advance(ItBlock, 3);
auto &ExitBlock = *GetBlockByName("for.end.loopexit", *F);
auto &RetInst = *cast<ReturnInst>(ExitBlock.begin());
EXPECT_TRUE(DA.isDivergent(RetInst));
}
TEST_F(DivergenceAnalysisTest, DALCSSA) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(
"target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
" "
"define i32 @f_lcssa(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) "
" local_unnamed_addr { "
"entry: "
" br label %loop.ph "
" "
"loop.ph: "
" br label %loop "
" "
"loop: "
" %iv0 = phi i32 [ %iv0.inc, %loop ], [ 0, %loop.ph ] "
" %iv1 = phi i32 [ %iv1.inc, %loop ], [ -2147483648, %loop.ph ] "
" %iv0.inc = add i32 %iv0, 1 "
" %iv1.inc = add i32 %iv1, 3 "
" %cond.cont = icmp slt i32 %iv0, %n "
" br i1 %cond.cont, label %loop, label %for.end.loopexit "
" "
"for.end.loopexit: "
" %val.ret = phi i32 [ %iv0, %loop ] "
" br label %detached.return "
" "
"detached.return: "
" ret i32 %val.ret "
"} ",
Err, C);
Function *F = M->getFunction("f_lcssa");
DivergenceAnalysis DA = buildDA(*F, true);
EXPECT_FALSE(DA.hasDetectedDivergence());
auto ItArg = F->arg_begin();
ItArg++;
auto &NArg = *ItArg;
// Seed divergence in argument %n
DA.markDivergent(NArg);
DA.compute();
EXPECT_TRUE(DA.hasDetectedDivergence());
// Verify that "ret %iv.0" is divergent
auto ItBlock = F->begin();
std::advance(ItBlock, 4);
auto &ExitBlock = *GetBlockByName("detached.return", *F);
auto &RetInst = *cast<ReturnInst>(ExitBlock.begin());
EXPECT_TRUE(DA.isDivergent(RetInst));
}
TEST_F(DivergenceAnalysisTest, DAJoinDivergence) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(
"target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
" "
"define void @f_1(i1 %a, i1 %b, i1 %c) "
" local_unnamed_addr { "
"A: "
" br i1 %a, label %B, label %C "
" "
"B: "
" br i1 %b, label %C, label %D "
" "
"C: "
" %c.join = phi i32 [ 0, %A ], [ 1, %B ] "
" br i1 %c, label %D, label %E "
" "
"D: "
" %d.join = phi i32 [ 0, %B ], [ 1, %C ] "
" br label %E "
" "
"E: "
" %e.join = phi i32 [ 0, %C ], [ 1, %D ] "
" ret void "
"} "
" "
"define void @f_2(i1 %a, i1 %b, i1 %c) "
" local_unnamed_addr { "
"A: "
" br i1 %a, label %B, label %E "
" "
"B: "
" br i1 %b, label %C, label %D "
" "
"C: "
" br label %D "
" "
"D: "
" %d.join = phi i32 [ 0, %B ], [ 1, %C ] "
" br label %E "
" "
"E: "
" %e.join = phi i32 [ 0, %A ], [ 1, %D ] "
" ret void "
"} "
" "
"define void @f_3(i1 %a, i1 %b, i1 %c)"
" local_unnamed_addr { "
"A: "
" br i1 %a, label %B, label %C "
" "
"B: "
" br label %C "
" "
"C: "
" %c.join = phi i32 [ 0, %A ], [ 1, %B ] "
" br i1 %c, label %D, label %E "
" "
"D: "
" br label %E "
" "
"E: "
" %e.join = phi i32 [ 0, %C ], [ 1, %D ] "
" ret void "
"} ",
Err, C);
// Maps divergent conditions to the basic blocks whose Phi nodes become
// divergent. Blocks need to be listed in IR order.
using SmallBlockVec = SmallVector<const BasicBlock *, 4>;
using InducedDivJoinMap = std::map<const Value *, SmallBlockVec>;
// Actual function performing the checks.
auto CheckDivergenceFunc = [this](Function &F,
InducedDivJoinMap &ExpectedDivJoins) {
for (auto &ItCase : ExpectedDivJoins) {
auto *DivVal = ItCase.first;
auto DA = buildDA(F, false);
DA.markDivergent(*DivVal);
DA.compute();
// List of basic blocks that shall host divergent Phi nodes.
auto ItDivJoins = ItCase.second.begin();
for (auto &BB : F) {
auto *Phi = dyn_cast<PHINode>(BB.begin());
if (!Phi)
continue;
if (&BB == *ItDivJoins) {
EXPECT_TRUE(DA.isDivergent(*Phi));
// Advance to next block with expected divergent PHI node.
++ItDivJoins;
} else {
EXPECT_FALSE(DA.isDivergent(*Phi));
}
}
}
};
{
auto *F = M->getFunction("f_1");
auto ItBlocks = F->begin();
ItBlocks++; // Skip A
ItBlocks++; // Skip B
auto *C = &*ItBlocks++;
auto *D = &*ItBlocks++;
auto *E = &*ItBlocks;
auto ItArg = F->arg_begin();
auto *AArg = &*ItArg++;
auto *BArg = &*ItArg++;
auto *CArg = &*ItArg;
InducedDivJoinMap DivJoins;
DivJoins.emplace(AArg, SmallBlockVec({C, D, E}));
DivJoins.emplace(BArg, SmallBlockVec({D, E}));
DivJoins.emplace(CArg, SmallBlockVec({E}));
CheckDivergenceFunc(*F, DivJoins);
}
{
auto *F = M->getFunction("f_2");
auto ItBlocks = F->begin();
ItBlocks++; // Skip A
ItBlocks++; // Skip B
ItBlocks++; // Skip C
auto *D = &*ItBlocks++;
auto *E = &*ItBlocks;
auto ItArg = F->arg_begin();
auto *AArg = &*ItArg++;
auto *BArg = &*ItArg++;
auto *CArg = &*ItArg;
InducedDivJoinMap DivJoins;
DivJoins.emplace(AArg, SmallBlockVec({E}));
DivJoins.emplace(BArg, SmallBlockVec({D}));
DivJoins.emplace(CArg, SmallBlockVec({}));
CheckDivergenceFunc(*F, DivJoins);
}
{
auto *F = M->getFunction("f_3");
auto ItBlocks = F->begin();
ItBlocks++; // Skip A
ItBlocks++; // Skip B
auto *C = &*ItBlocks++;
ItBlocks++; // Skip D
auto *E = &*ItBlocks;
auto ItArg = F->arg_begin();
auto *AArg = &*ItArg++;
auto *BArg = &*ItArg++;
auto *CArg = &*ItArg;
InducedDivJoinMap DivJoins;
DivJoins.emplace(AArg, SmallBlockVec({C}));
DivJoins.emplace(BArg, SmallBlockVec({}));
DivJoins.emplace(CArg, SmallBlockVec({E}));
CheckDivergenceFunc(*F, DivJoins);
}
}
TEST_F(DivergenceAnalysisTest, DASwitchUnreachableDefault) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(
"target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" "
" "
"define void @switch_unreachable_default(i32 %cond) local_unnamed_addr { "
"entry: "
" switch i32 %cond, label %sw.default [ "
" i32 0, label %sw.bb0 "
" i32 1, label %sw.bb1 "
" ] "
" "
"sw.bb0: "
" br label %sw.epilog "
" "
"sw.bb1: "
" br label %sw.epilog "
" "
"sw.default: "
" unreachable "
" "
"sw.epilog: "
" %div.dbl = phi double [ 0.0, %sw.bb0], [ -1.0, %sw.bb1 ] "
" ret void "
"}",
Err, C);
auto *F = M->getFunction("switch_unreachable_default");
auto &CondArg = *F->arg_begin();
auto DA = buildDA(*F, false);
EXPECT_FALSE(DA.hasDetectedDivergence());
DA.markDivergent(CondArg);
DA.compute();
// Still %CondArg is divergent.
EXPECT_TRUE(DA.hasDetectedDivergence());
// The join uni.dbl is not divergent (see D52221)
auto &ExitBlock = *GetBlockByName("sw.epilog", *F);
auto &DivDblPhi = *cast<PHINode>(ExitBlock.begin());
EXPECT_TRUE(DA.isDivergent(DivDblPhi));
}
} // end anonymous namespace
} // end namespace llvm