From 57470abc412520762ca35c6c34c235e548e7d0a6 Mon Sep 17 00:00:00 2001 From: Alexander Belyaev Date: Thu, 25 Nov 2021 11:42:16 +0100 Subject: [PATCH] [mlir] Move memref.[tensor_load|buffer_cast|clone] to "bufferization" dialect. https://llvm.discourse.group/t/rfc-dialect-for-bufferization-related-ops/4712 Differential Revision: https://reviews.llvm.org/D114552 --- mlir/docs/BufferDeallocationInternals.md | 36 +-- mlir/docs/Bufferization.md | 12 +- .../Dialect/Arithmetic/Transforms/Passes.td | 3 +- .../Bufferization/IR/AllocationOpInterface.h | 1 - .../Bufferization/IR/AllocationOpInterface.td | 5 +- .../Dialect/Bufferization/IR/Bufferization.h | 29 ++ .../Bufferization/IR/BufferizationBase.td | 31 ++ .../Bufferization/IR/BufferizationOps.td | 159 +++++++++ .../Dialect/Bufferization/IR/CMakeLists.txt | 2 + mlir/include/mlir/Dialect/Linalg/Passes.td | 3 +- mlir/include/mlir/Dialect/MemRef/IR/MemRef.h | 14 +- .../mlir/Dialect/MemRef/IR/MemRefBase.td | 2 +- .../mlir/Dialect/MemRef/IR/MemRefOps.td | 139 -------- mlir/include/mlir/Dialect/SCF/Passes.td | 3 +- .../mlir/Dialect/Shape/Transforms/Passes.td | 3 +- .../Dialect/SparseTensor/Transforms/Passes.td | 2 + .../Dialect/StandardOps/Transforms/Passes.td | 9 +- .../mlir/Dialect/Tensor/Transforms/Passes.td | 6 +- mlir/include/mlir/InitAllDialects.h | 2 + mlir/lib/Dialect/Affine/IR/AffineOps.cpp | 1 + .../Arithmetic/Transforms/Bufferize.cpp | 1 + .../Arithmetic/Transforms/PassDetail.h | 4 + .../Bufferization/IR/BufferizationDialect.cpp | 25 ++ .../Bufferization/IR/BufferizationOps.cpp | 305 ++++++++++++++++++ .../Dialect/Bufferization/IR/CMakeLists.txt | 10 +- .../Linalg/Analysis/DependenceAnalysis.cpp | 4 +- .../BufferizableOpInterface.cpp | 5 +- .../ComprehensiveBufferize/CMakeLists.txt | 1 + .../ComprehensiveBufferize.cpp | 51 +-- .../Dialect/Linalg/IR/LinalgInterfaces.cpp | 1 + .../Dialect/Linalg/Transforms/Bufferize.cpp | 1 + .../Transforms/ComprehensiveBufferizePass.cpp | 7 +- .../Dialect/Linalg/Transforms/PassDetail.h | 4 + mlir/lib/Dialect/MemRef/IR/MemRefDialect.cpp | 1 - mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp | 287 +--------------- mlir/lib/Dialect/SCF/CMakeLists.txt | 1 + mlir/lib/Dialect/SCF/SCF.cpp | 62 ++-- mlir/lib/Dialect/SCF/Transforms/Bufferize.cpp | 1 + mlir/lib/Dialect/SCF/Transforms/PassDetail.h | 4 + .../Dialect/Shape/Transforms/Bufferize.cpp | 1 + .../lib/Dialect/Shape/Transforms/PassDetail.h | 4 + .../Transforms/SparseTensorConversion.cpp | 3 +- .../Transforms/SparseTensorPasses.cpp | 6 +- .../Transforms/Sparsification.cpp | 9 +- .../StandardOps/Transforms/Bufferize.cpp | 1 + .../StandardOps/Transforms/FuncBufferize.cpp | 5 +- .../StandardOps/Transforms/PassDetail.h | 4 + .../Transforms/TensorConstantBufferize.cpp | 1 + .../Dialect/Tensor/Transforms/Bufferize.cpp | 1 + .../Dialect/Tensor/Transforms/PassDetail.h | 4 + ...rTransferPermutationMapRewritePatterns.cpp | 1 + mlir/lib/Transforms/BufferDeallocation.cpp | 19 +- mlir/lib/Transforms/Bufferize.cpp | 17 +- mlir/lib/Transforms/CMakeLists.txt | 2 +- mlir/test/Dialect/Arithmetic/bufferize.mlir | 4 +- .../Dialect/Bufferization/canonicalize.mlir | 245 ++++++++++++++ mlir/test/Dialect/Bufferization/ops.mlir | 24 ++ mlir/test/Dialect/Linalg/bufferize.mlir | 45 +-- .../test/Dialect/Linalg/lower-pad-tensor.mlir | 4 +- mlir/test/Dialect/MemRef/canonicalize.mlir | 241 -------------- mlir/test/Dialect/MemRef/ops.mlir | 16 - mlir/test/Dialect/SCF/bufferize.mlir | 22 +- mlir/test/Dialect/SCF/canonicalize.mlir | 16 +- mlir/test/Dialect/Shape/bufferize.mlir | 4 +- .../SparseTensor/conversion_sparse2dense.mlir | 14 +- mlir/test/Dialect/SparseTensor/dense.mlir | 12 +- mlir/test/Dialect/SparseTensor/sparse_1d.mlir | 100 +++--- mlir/test/Dialect/SparseTensor/sparse_2d.mlir | 94 +++--- mlir/test/Dialect/SparseTensor/sparse_3d.mlir | 122 +++---- .../Dialect/SparseTensor/sparse_affine.mlir | 18 +- .../Dialect/SparseTensor/sparse_fp_ops.mlir | 38 +-- .../Dialect/SparseTensor/sparse_int_ops.mlir | 56 ++-- .../Dialect/SparseTensor/sparse_kernels.mlir | 18 +- .../Dialect/SparseTensor/sparse_lower.mlir | 12 +- .../SparseTensor/sparse_lower_col.mlir | 12 +- .../SparseTensor/sparse_lower_inplace.mlir | 12 +- mlir/test/Dialect/SparseTensor/sparse_nd.mlir | 6 +- .../Dialect/SparseTensor/sparse_perm.mlir | 8 +- .../SparseTensor/sparse_perm_lower.mlir | 8 +- .../Dialect/SparseTensor/sparse_scalars.mlir | 6 +- .../SparseTensor/sparse_vector_chain.mlir | 4 +- mlir/test/Dialect/Standard/bufferize.mlir | 6 +- .../test/Dialect/Standard/func-bufferize.mlir | 2 +- .../Standard/tensor-constant-bufferize.mlir | 2 +- mlir/test/Dialect/Tensor/bufferize.mlir | 24 +- mlir/test/IR/core-ops.mlir | 12 +- .../Dialect/SparseTensor/CPU/sparse_cast.mlir | 20 +- .../CPU/sparse_conversion_sparse2dense.mlir | 16 +- .../CPU/sparse_filter_conv2d.mlir | 2 +- .../SparseTensor/CPU/sparse_flatten.mlir | 4 +- .../SparseTensor/CPU/sparse_matrix_ops.mlir | 2 +- .../SparseTensor/CPU/sparse_matvec.mlir | 6 +- .../SparseTensor/CPU/sparse_mttkrp.mlir | 8 +- .../CPU/sparse_quantized_matmul.mlir | 2 +- .../SparseTensor/CPU/sparse_reductions.mlir | 14 +- .../CPU/sparse_sampled_matmul.mlir | 8 +- .../CPU/sparse_sampled_mm_fusion.mlir | 4 +- .../Dialect/SparseTensor/CPU/sparse_spmm.mlir | 6 +- .../Dialect/SparseTensor/CPU/sparse_sum.mlir | 4 +- .../SparseTensor/CPU/sparse_vector_ops.mlir | 6 +- mlir/test/Transforms/buffer-deallocation.mlir | 74 ++--- mlir/test/Transforms/canonicalize.mlir | 22 +- .../test/Transforms/finalizing-bufferize.mlir | 8 +- .../Dialect/Vector/TestVectorTransforms.cpp | 2 +- mlir/test/mlir-opt/commandline.mlir | 1 + .../llvm-project-overlay/mlir/BUILD.bazel | 99 +++++- 106 files changed, 1580 insertions(+), 1250 deletions(-) create mode 100644 mlir/include/mlir/Dialect/Bufferization/IR/Bufferization.h create mode 100644 mlir/include/mlir/Dialect/Bufferization/IR/BufferizationBase.td create mode 100644 mlir/include/mlir/Dialect/Bufferization/IR/BufferizationOps.td create mode 100644 mlir/lib/Dialect/Bufferization/IR/BufferizationDialect.cpp create mode 100644 mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp create mode 100644 mlir/test/Dialect/Bufferization/canonicalize.mlir create mode 100644 mlir/test/Dialect/Bufferization/ops.mlir diff --git a/mlir/docs/BufferDeallocationInternals.md b/mlir/docs/BufferDeallocationInternals.md index bbaed44fdb23..0ed1d70976bd 100644 --- a/mlir/docs/BufferDeallocationInternals.md +++ b/mlir/docs/BufferDeallocationInternals.md @@ -236,12 +236,12 @@ func @branch(%arg0: i1) { cond_br %arg0, ^bb1, ^bb2 ^bb1: %1 = memref.alloc() : memref<2xf32> - %3 = memref.clone %1 : (memref<2xf32>) -> (memref<2xf32>) + %3 = bufferization.clone %1 : (memref<2xf32>) -> (memref<2xf32>) memref.dealloc %1 : memref<2xf32> // %1 can be safely freed here br ^bb3(%3 : memref<2xf32>) ^bb2: use(%0) - %4 = memref.clone %0 : (memref<2xf32>) -> (memref<2xf32>) + %4 = bufferization.clone %0 : (memref<2xf32>) -> (memref<2xf32>) br ^bb3(%4 : memref<2xf32>) ^bb3(%2: memref<2xf32>): … @@ -309,7 +309,7 @@ func @condBranchDynamicTypeNested( cond_br %arg0, ^bb1, ^bb2(%arg3 : index) ^bb1: // temp buffer required due to alias %3 - %5 = memref.clone %arg1 : (memref) -> (memref) + %5 = bufferization.clone %arg1 : (memref) -> (memref) br ^bb6(%5 : memref) ^bb2(%0: index): %1 = memref.alloc(%0) : memref @@ -320,7 +320,7 @@ func @condBranchDynamicTypeNested( ^bb4: br ^bb5(%1 : memref) ^bb5(%2: memref): - %6 = memref.clone %1 : (memref) -> (memref) + %6 = bufferization.clone %1 : (memref) -> (memref) memref.dealloc %1 : memref br ^bb6(%6 : memref) ^bb6(%3: memref): @@ -477,15 +477,15 @@ func @inner_region_control_flow_div( %0 = memref.alloc(%arg0, %arg0) : memref %1 = custom.region_if %0 : memref -> (memref) then(%arg2 : memref) { - %4 = memref.clone %arg2 : (memref) -> (memref) + %4 = bufferization.clone %arg2 : (memref) -> (memref) custom.region_if_yield %4 : memref } else(%arg3 : memref) { %2 = memref.alloc(%arg0, %arg1) : memref - %5 = memref.clone %2 : (memref) -> (memref) + %5 = bufferization.clone %2 : (memref) -> (memref) memref.dealloc %2 : memref custom.region_if_yield %5 : memref } join(%arg4: memref) { - %4 = memref.clone %arg4 : (memref) -> (memref) + %4 = bufferization.clone %arg4 : (memref) -> (memref) memref.dealloc %arg4 : memref custom.region_if_yield %4 : memref } @@ -553,21 +553,21 @@ func @loop_nested_if( %step: index, %buf: memref<2xf32>, %res: memref<2xf32>) { - %4 = memref.clone %buf : (memref<2xf32>) -> (memref<2xf32>) + %4 = bufferization.clone %buf : (memref<2xf32>) -> (memref<2xf32>) %0 = scf.for %i = %lb to %ub step %step iter_args(%iterBuf = %4) -> memref<2xf32> { %1 = arith.cmpi "eq", %i, %ub : index %2 = scf.if %1 -> (memref<2xf32>) { %3 = memref.alloc() : memref<2xf32> // makes %2 a critical alias use(%3) - %5 = memref.clone %3 : (memref<2xf32>) -> (memref<2xf32>) + %5 = bufferization.clone %3 : (memref<2xf32>) -> (memref<2xf32>) memref.dealloc %3 : memref<2xf32> scf.yield %5 : memref<2xf32> } else { - %6 = memref.clone %iterBuf : (memref<2xf32>) -> (memref<2xf32>) + %6 = bufferization.clone %iterBuf : (memref<2xf32>) -> (memref<2xf32>) scf.yield %6 : memref<2xf32> } - %7 = memref.clone %2 : (memref<2xf32>) -> (memref<2xf32>) + %7 = bufferization.clone %2 : (memref<2xf32>) -> (memref<2xf32>) memref.dealloc %2 : memref<2xf32> memref.dealloc %iterBuf : memref<2xf32> // free backedge iteration variable scf.yield %7 : memref<2xf32> @@ -626,7 +626,7 @@ and can be removed. ```mlir func @dynamic_allocation(%arg0: index, %arg1: index) -> memref { %1 = memref.alloc(%arg0, %arg1) : memref - %2 = memref.clone %1 : (memref) -> (memref) + %2 = bufferization.clone %1 : (memref) -> (memref) memref.dealloc %1 : memref return %2 : memref } @@ -667,7 +667,7 @@ func @reuseTarget(%arg0: memref<2xf32>, %result: memref<2xf32>){ %tmp2 = math.exp %gen2_arg0 : f32 test.yield %tmp2 : f32 }: memref<2xf32>, memref<2xf32> - %result = memref.clone %temp : (memref<2xf32>) -> (memref<2xf32>) + %result = bufferization.clone %temp : (memref<2xf32>) -> (memref<2xf32>) memref.dealloc %temp : memref<2xf32> return } @@ -693,8 +693,8 @@ func @reuseTarget(%arg0: memref<2xf32>, %result: memref<2xf32>){ ## Known Limitations BufferDeallocation introduces additional clones from “memref” dialect -(“memref.clone”). Analogous, all deallocations use the “memref” dialect-free -operation “memref.dealloc”. The actual copy process is realized using -“test.copy”. Furthermore, buffers are essentially immutable after their creation -in a block. Another limitations are known in the case using unstructered control -flow. +(“bufferization.clone”). Analogous, all deallocations use the “memref” +dialect-free operation “memref.dealloc”. The actual copy process is realized +using “test.copy”. Furthermore, buffers are essentially immutable after their +creation in a block. Another limitations are known in the case using +unstructered control flow. diff --git a/mlir/docs/Bufferization.md b/mlir/docs/Bufferization.md index b5e3677bd906..e00cc3a8b5da 100644 --- a/mlir/docs/Bufferization.md +++ b/mlir/docs/Bufferization.md @@ -191,8 +191,8 @@ One convenient utility provided by the MLIR bufferization infrastructure is the `BufferizeTypeConverter`, which comes pre-loaded with the necessary conversions and materializations between `tensor` and `memref`. -In this case, the `MemRefOpsDialect` is marked as legal, so the -`memref.tensor_load` and `memref.buffer_cast` ops, which are inserted +In this case, the `BufferizationOpsDialect` is marked as legal, so the +`bufferization.to_tensor` and `bufferization.to_memref` ops, which are inserted automatically by the dialect conversion framework as materializations, are legal. There is a helper `populateBufferizeMaterializationLegality` ([code](https://github.com/llvm/llvm-project/blob/a0b65a7bcd6065688189b3d678c42ed6af9603db/mlir/include/mlir/Transforms/Bufferize.h#L53)) @@ -252,9 +252,9 @@ from the program. The easiest way to write a finalizing bufferize pass is to not write one at all! MLIR provides a pass `finalizing-bufferize` which eliminates the -`memref.tensor_load` / `memref.buffer_cast` materialization ops inserted by -partial bufferization passes and emits an error if that is not sufficient to -remove all tensors from the program. +`bufferization.to_tensor` / `bufferization.to_memref` materialization ops +inserted by partial bufferization passes and emits an error if that is not +sufficient to remove all tensors from the program. This pass is sufficient when partial bufferization passes have bufferized all the ops in the program, leaving behind only the materializations. When possible, @@ -272,7 +272,7 @@ downstream projects structured this way. This structure is not recommended in new code. A helper, `populateEliminateBufferizeMaterializationsPatterns` ([code](https://github.com/llvm/llvm-project/blob/a0b65a7bcd6065688189b3d678c42ed6af9603db/mlir/include/mlir/Transforms/Bufferize.h#L58)) is available for such passes to provide patterns that eliminate -`memref.tensor_load` and `memref.buffer_cast`. +`bufferization.to_tensor` and `bufferization.to_memref`. ## Changes since [the talk](#the-talk) diff --git a/mlir/include/mlir/Dialect/Arithmetic/Transforms/Passes.td b/mlir/include/mlir/Dialect/Arithmetic/Transforms/Passes.td index 2bc6ce6086e3..6bf61133b85b 100644 --- a/mlir/include/mlir/Dialect/Arithmetic/Transforms/Passes.td +++ b/mlir/include/mlir/Dialect/Arithmetic/Transforms/Passes.td @@ -14,7 +14,8 @@ include "mlir/Pass/PassBase.td" def ArithmeticBufferize : FunctionPass<"arith-bufferize"> { let summary = "Bufferize Arithmetic dialect ops."; let constructor = "mlir::arith::createArithmeticBufferizePass()"; - let dependentDialects = ["memref::MemRefDialect"]; + let dependentDialects = ["bufferization::BufferizationDialect", + "memref::MemRefDialect"]; } def ArithmeticExpandOps : FunctionPass<"arith-expand"> { diff --git a/mlir/include/mlir/Dialect/Bufferization/IR/AllocationOpInterface.h b/mlir/include/mlir/Dialect/Bufferization/IR/AllocationOpInterface.h index cfba581568f1..bfb0762211d3 100644 --- a/mlir/include/mlir/Dialect/Bufferization/IR/AllocationOpInterface.h +++ b/mlir/include/mlir/Dialect/Bufferization/IR/AllocationOpInterface.h @@ -13,7 +13,6 @@ #ifndef MLIR_DIALECT_BUFFERIZATION_IR_ALLOCATIONOPINTERFACE_H_ #define MLIR_DIALECT_BUFFERIZATION_IR_ALLOCATIONOPINTERFACE_H_ -#include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/IR/Builders.h" #include "mlir/Dialect/Bufferization/IR/AllocationOpInterface.h.inc" diff --git a/mlir/include/mlir/Dialect/Bufferization/IR/AllocationOpInterface.td b/mlir/include/mlir/Dialect/Bufferization/IR/AllocationOpInterface.td index 87531951ea57..b30adaeae174 100644 --- a/mlir/include/mlir/Dialect/Bufferization/IR/AllocationOpInterface.td +++ b/mlir/include/mlir/Dialect/Bufferization/IR/AllocationOpInterface.td @@ -50,10 +50,7 @@ def AllocationOpInterface : OpInterface<"AllocationOpInterface"> { }], "::mlir::Optional<::mlir::Value>", "buildClone", (ins "::mlir::OpBuilder&":$builder, "::mlir::Value":$alloc), [{}], - /*defaultImplementation=*/[{ - return builder.create(alloc.getLoc(), alloc) - .getResult(); - }] + /*defaultImplementation=*/[{ return llvm::None; }] > ]; } diff --git a/mlir/include/mlir/Dialect/Bufferization/IR/Bufferization.h b/mlir/include/mlir/Dialect/Bufferization/IR/Bufferization.h new file mode 100644 index 000000000000..21aeb91ff229 --- /dev/null +++ b/mlir/include/mlir/Dialect/Bufferization/IR/Bufferization.h @@ -0,0 +1,29 @@ +//===- Bufferization.h - Bufferization dialect ------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_DIALECT_BUFFERIZATION_IR_BUFFERIZATION_H_ +#define MLIR_DIALECT_BUFFERIZATION_IR_BUFFERIZATION_H_ + +#include "mlir/Dialect/Bufferization/IR/AllocationOpInterface.h" +#include "mlir/Dialect/MemRef/IR/MemRef.h" +#include "mlir/Dialect/Tensor/IR/Tensor.h" + +//===----------------------------------------------------------------------===// +// Bufferization Dialect +//===----------------------------------------------------------------------===// + +#include "mlir/Dialect/Bufferization/IR/BufferizationOpsDialect.h.inc" + +//===----------------------------------------------------------------------===// +// Bufferization Dialect Operations +//===----------------------------------------------------------------------===// + +#define GET_OP_CLASSES +#include "mlir/Dialect/Bufferization/IR/BufferizationOps.h.inc" + +#endif // MLIR_DIALECT_BUFFERIZATION_IR_BUFFERIZATION_H_ diff --git a/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationBase.td b/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationBase.td new file mode 100644 index 000000000000..06635918f282 --- /dev/null +++ b/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationBase.td @@ -0,0 +1,31 @@ +//===- BufferizationBase.td - Bufferization dialect base ---*- tablegen -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#ifndef BUFFERIZATION_BASE +#define BUFFERIZATION_BASE + +include "mlir/IR/OpBase.td" + +def Bufferization_Dialect : Dialect { + let name = "bufferization"; + let cppNamespace = "::mlir::bufferization"; + let description = [{ + Bufferization in MLIR is the process of converting the `tensor` type to the + `memref` type. + The `bufferization` dialect is intended to collect operations/interfaces + specific to the bufferization passes. + + Overview of the bufferization infrastructure and important conceptual + details related to using the MLIR dialect conversion infrastructure can be + found in [bufferization](Bufferization.md) and [buffer + deallocation](BufferDeallocationInternals.md). + }]; + let dependentDialects = ["memref::MemRefDialect", "tensor::TensorDialect"]; +} + +#endif // BUFFERIZATION_BASE diff --git a/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationOps.td b/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationOps.td new file mode 100644 index 000000000000..e04eab8b5649 --- /dev/null +++ b/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationOps.td @@ -0,0 +1,159 @@ +//===- BufferizationOps.td - Bufferization op definitions ----------*- tablegen -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#ifndef BUFFERIZATION_OPS +#define BUFFERIZATION_OPS + +include "mlir/Dialect/Bufferization/IR/AllocationOpInterface.td" +include "mlir/Dialect/Bufferization/IR/BufferizationBase.td" +include "mlir/Interfaces/SideEffectInterfaces.td" +include "mlir/Interfaces/CopyOpInterface.td" + +class Bufferization_Op traits = []> + : Op; + +//===----------------------------------------------------------------------===// +// CloneOp +//===----------------------------------------------------------------------===// + +def Bufferization_CloneOp : Bufferization_Op<"clone", [ + CopyOpInterface, + DeclareOpInterfaceMethods, + DeclareOpInterfaceMethods + ]> { + let builders = [ + OpBuilder<(ins "Value":$value), [{ + return build($_builder, $_state, value.getType(), value); + }]>]; + + let description = [{ + Clones the data in the input view into an implicitly defined output view. + + Usage: + + ```mlir + %arg1 = bufferization.clone %arg0 : memref to memref + ``` + + Valid implementations of this operation may alias the input and output + views or create an actual copy. Mutating the source or result + of the clone operation after the clone operation thus leads to undefined + behavior. + }]; + + let arguments = (ins Arg:$input); + let results = (outs Arg:$output); + + let extraClassDeclaration = [{ + Value getSource() { return input(); } + Value getTarget() { return output(); } + }]; + + let assemblyFormat = "$input attr-dict `:` type($input) `to` type($output)"; + + let hasFolder = 1; + let verifier = ?; + let hasCanonicalizer = 1; +} +//===----------------------------------------------------------------------===// +// ToTensorOp +//===----------------------------------------------------------------------===// + +def Bufferization_ToTensorOp : Bufferization_Op<"to_tensor", + [SameOperandsAndResultShape, SameOperandsAndResultElementType, + TypesMatchWith<"result type matches tensor equivalent of 'memref'", + "memref", "result", + "memref::getTensorTypeFromMemRefType($_self)">]> { + let summary = "memref to tensor operation"; + let description = [{ + Create a tensor from a memref, making an independent copy of the element + data. The result value is a tensor whose shape and element type match the + memref operand. + + The opposite of this op is to_memref. Together, these two ops are + useful for source/target materializations when doing type conversions + involving tensors and memrefs. + + Example: + + ```mlir + // Produces a value of tensor<4x?xf32> type. + %12 = bufferization.to_tensor %10 : memref<4x?xf32, #layout, memspace0> + ``` + + If tensor load is used in the bufferization steps, mutating the source + buffer after loading leads to undefined behavior. + }]; + + let arguments = (ins Arg:$memref); + let results = (outs AnyTensor:$result); + // MemrefToTensor is fully verified by traits. + let verifier = ?; + + let builders = [ + OpBuilder<(ins "Value":$memref), [{ + $_state.addOperands(memref); + $_state.addTypes(memref::getTensorTypeFromMemRefType(memref.getType())); + }]>]; + + let extraClassDeclaration = [{ + /// The result of a to_tensor is always a tensor. + TensorType getType() { + Type resultType = getResult().getType(); + if (resultType.isa()) + return resultType.cast(); + return {}; + } + }]; + + let assemblyFormat = "$memref attr-dict `:` type($memref)"; + + let hasCanonicalizer = 1; + let hasFolder = 1; +} + + +//===----------------------------------------------------------------------===// +// ToMemrefOp +//===----------------------------------------------------------------------===// + +def Bufferization_ToMemrefOp : Bufferization_Op<"to_memref", + [SameOperandsAndResultShape, SameOperandsAndResultElementType, NoSideEffect, + TypesMatchWith<"type of 'tensor' is the tensor equivalent of 'memref'", + "memref", "tensor", + "memref::getTensorTypeFromMemRefType($_self)">]> { + let summary = "tensor to memref cast operation"; + let description = [{ + Casts a tensor to a memref. + + ```mlir + // Result type is tensor<4x?xf32> + %12 = bufferization.to_memref %10 : memref<4x?xf32, #map0, 42> + ``` + + Note, that mutating the result of the to_buffer operation leads to + undefined behavior. + + This operation is a specialized variant of the built-in + unrealized_conversion_cast and is intended for use in the context of + gradual bufferization. + }]; + + let arguments = (ins AnyTensor:$tensor); + let results = (outs AnyRankedOrUnrankedMemRef:$memref); + // This op is fully verified by traits. + let verifier = ?; + + let assemblyFormat = "$tensor attr-dict `:` type($memref)"; + + let hasFolder = 1; + let hasCanonicalizer = 1; +} + +#endif // BUFFERIZATION_OPS diff --git a/mlir/include/mlir/Dialect/Bufferization/IR/CMakeLists.txt b/mlir/include/mlir/Dialect/Bufferization/IR/CMakeLists.txt index ab8eefd6c610..82017e7431f0 100644 --- a/mlir/include/mlir/Dialect/Bufferization/IR/CMakeLists.txt +++ b/mlir/include/mlir/Dialect/Bufferization/IR/CMakeLists.txt @@ -1 +1,3 @@ +add_mlir_dialect(BufferizationOps bufferization) +add_mlir_doc(BufferizationOps BufferizationOps Dialects/ -gen-dialect-doc) add_mlir_interface(AllocationOpInterface) diff --git a/mlir/include/mlir/Dialect/Linalg/Passes.td b/mlir/include/mlir/Dialect/Linalg/Passes.td index 593fb89debae..37bb40eb799b 100644 --- a/mlir/include/mlir/Dialect/Linalg/Passes.td +++ b/mlir/include/mlir/Dialect/Linalg/Passes.td @@ -147,8 +147,9 @@ def LinalgBufferize : Pass<"linalg-bufferize", "FuncOp"> { let summary = "Bufferize the linalg dialect"; let constructor = "mlir::createLinalgBufferizePass()"; let dependentDialects = [ - "linalg::LinalgDialect", "AffineDialect", + "bufferization::BufferizationDialect", + "linalg::LinalgDialect", "memref::MemRefDialect", ]; } diff --git a/mlir/include/mlir/Dialect/MemRef/IR/MemRef.h b/mlir/include/mlir/Dialect/MemRef/IR/MemRef.h index 04bcabf3b474..bf472ac64104 100644 --- a/mlir/include/mlir/Dialect/MemRef/IR/MemRef.h +++ b/mlir/include/mlir/Dialect/MemRef/IR/MemRef.h @@ -10,7 +10,6 @@ #define MLIR_DIALECT_MEMREF_IR_MEMREF_H_ #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" -#include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" #include "mlir/IR/Dialect.h" #include "mlir/Interfaces/CallInterfaces.h" @@ -32,6 +31,19 @@ raw_ostream &operator<<(raw_ostream &os, const Range &range); /// with `b` at location `loc`. SmallVector getOrCreateRanges(OffsetSizeAndStrideOpInterface op, OpBuilder &b, Location loc); + +namespace memref { + +/// This is a common utility used for patterns of the form +/// "someop(memref.cast) -> someop". It folds the source of any memref.cast +/// into the root operation directly. +LogicalResult foldMemRefCast(Operation *op, Value inner = nullptr); + +/// Return an unranked/ranked tensor type for the given unranked/ranked memref +/// type. +Type getTensorTypeFromMemRefType(Type type); + +} // namespace memref } // namespace mlir //===----------------------------------------------------------------------===// diff --git a/mlir/include/mlir/Dialect/MemRef/IR/MemRefBase.td b/mlir/include/mlir/Dialect/MemRef/IR/MemRefBase.td index 2e417b239796..1f7538836bfc 100644 --- a/mlir/include/mlir/Dialect/MemRef/IR/MemRefBase.td +++ b/mlir/include/mlir/Dialect/MemRef/IR/MemRefBase.td @@ -19,7 +19,7 @@ def MemRef_Dialect : Dialect { manipulation ops, which are not strongly associated with any particular other dialect or domain abstraction. }]; - let dependentDialects = ["arith::ArithmeticDialect", "tensor::TensorDialect"]; + let dependentDialects = ["arith::ArithmeticDialect"]; let hasConstantMaterializer = 1; } diff --git a/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td b/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td index bc74b4d3ada5..3b6cc7ab440e 100644 --- a/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td +++ b/mlir/include/mlir/Dialect/MemRef/IR/MemRefOps.td @@ -285,43 +285,6 @@ def MemRef_AllocaScopeReturnOp : MemRef_Op<"alloca_scope.return", let verifier = ?; } -//===----------------------------------------------------------------------===// -// BufferCastOp -//===----------------------------------------------------------------------===// - -def MemRef_BufferCastOp : MemRef_Op<"buffer_cast", - [SameOperandsAndResultShape, SameOperandsAndResultElementType, NoSideEffect, - TypesMatchWith<"type of 'tensor' is the tensor equivalent of 'memref'", - "memref", "tensor", - "getTensorTypeFromMemRefType($_self)">]> { - let summary = "tensor to memref cast operation"; - let description = [{ - Casts a tensor to a memref. - - ```mlir - // Result type is tensor<4x?xf32> - %12 = memref.buffer_cast %10 : memref<4x?xf32, #map0, 42> - ``` - - Note, that mutating the result of the buffer cast operation leads to - undefined behavior. - - This operation is a specialized variant of the built-in - unrealized_conversion_cast and is intended for use in the context of - gradual bufferization. - }]; - - let arguments = (ins AnyTensor:$tensor); - let results = (outs AnyRankedOrUnrankedMemRef:$memref); - // This op is fully verified by traits. - let verifier = ?; - - let assemblyFormat = "$tensor attr-dict `:` type($memref)"; - - let hasFolder = 1; - let hasCanonicalizer = 1; -} - //===----------------------------------------------------------------------===// // CastOp //===----------------------------------------------------------------------===// @@ -408,49 +371,6 @@ def MemRef_CastOp : MemRef_Op<"cast", [ let hasFolder = 1; } -//===----------------------------------------------------------------------===// -// CloneOp -//===----------------------------------------------------------------------===// - -def CloneOp : MemRef_Op<"clone", [ - CopyOpInterface, - DeclareOpInterfaceMethods, - ]> { - let builders = [ - OpBuilder<(ins "Value":$value), [{ - return build($_builder, $_state, value.getType(), value); - }]>]; - - let description = [{ - Clones the data in the input view into an implicitly defined output view. - - Usage: - - ```mlir - %arg1 = memref.clone %arg0 : memref to memref - ``` - - Valid implementations of this operation may alias the input and output - views or create an actual copy. Mutating the source or result - of the clone operation after the clone operation thus leads to undefined - behavior. - }]; - - let arguments = (ins Arg:$input); - let results = (outs Arg:$output); - - let extraClassDeclaration = [{ - Value getSource() { return input(); } - Value getTarget() { return output(); } - }]; - - let assemblyFormat = "$input attr-dict `:` type($input) `to` type($output)"; - - let hasFolder = 1; - let verifier = ?; - let hasCanonicalizer = 1; -} - //===----------------------------------------------------------------------===// // CopyOp //===----------------------------------------------------------------------===// @@ -940,7 +860,6 @@ def LoadOp : MemRef_Op<"load", operand_range getIndices() { return {operand_begin() + 1, operand_end()}; } }]; - let hasCanonicalizer = 1; let hasFolder = 1; let assemblyFormat = "$memref `[` $indices `]` attr-dict `:` type($memref)"; @@ -1593,64 +1512,6 @@ def SubViewOp : BaseOpWithOffsetSizesAndStrides< let hasFolder = 1; } -//===----------------------------------------------------------------------===// -// TensorLoadOp -//===----------------------------------------------------------------------===// - -def TensorLoadOp : MemRef_Op<"tensor_load", - [SameOperandsAndResultShape, SameOperandsAndResultElementType, - TypesMatchWith<"result type matches tensor equivalent of 'memref'", - "memref", "result", - "getTensorTypeFromMemRefType($_self)">]> { - let summary = "tensor load operation"; - let description = [{ - Create a tensor from a memref, making an independent copy of the element - data. The result value is a tensor whose shape and element type match the - memref operand. - - The opposite of this op is buffer_cast. Together, these two ops are - useful for source/target materializations when doing type conversions - involving tensors and memrefs. - - Example: - - ```mlir - // Produces a value of tensor<4x?xf32> type. - %12 = memref.tensor_load %10 : memref<4x?xf32, #layout, memspace0> - ``` - - If tensor load is used in the bufferization steps, mutating the source - buffer after loading leads to undefined behavior. - }]; - - let arguments = (ins Arg:$memref); - let results = (outs AnyTensor:$result); - // TensorLoadOp is fully verified by traits. - let verifier = ?; - - let builders = [ - OpBuilder<(ins "Value":$memref), [{ - $_state.addOperands(memref); - $_state.addTypes(getTensorTypeFromMemRefType(memref.getType())); - }]>]; - - let extraClassDeclaration = [{ - /// The result of a tensor_load is always a tensor. - TensorType getType() { - Type resultType = getResult().getType(); - if (resultType.isa()) - return resultType.cast(); - return {}; - } - }]; - - let assemblyFormat = "$memref attr-dict `:` type($memref)"; - - let hasCanonicalizer = 1; - let hasFolder = 1; -} - //===----------------------------------------------------------------------===// // TensorStoreOp //===----------------------------------------------------------------------===// diff --git a/mlir/include/mlir/Dialect/SCF/Passes.td b/mlir/include/mlir/Dialect/SCF/Passes.td index cf388c95f049..487b40edc8cf 100644 --- a/mlir/include/mlir/Dialect/SCF/Passes.td +++ b/mlir/include/mlir/Dialect/SCF/Passes.td @@ -14,7 +14,8 @@ include "mlir/Pass/PassBase.td" def SCFBufferize : FunctionPass<"scf-bufferize"> { let summary = "Bufferize the scf dialect."; let constructor = "mlir::createSCFBufferizePass()"; - let dependentDialects = ["memref::MemRefDialect"]; + let dependentDialects = ["bufferization::BufferizationDialect", + "memref::MemRefDialect"]; } // Note: Making these canonicalization patterns would require a dependency diff --git a/mlir/include/mlir/Dialect/Shape/Transforms/Passes.td b/mlir/include/mlir/Dialect/Shape/Transforms/Passes.td index 685f0d0da120..19c226c38fac 100644 --- a/mlir/include/mlir/Dialect/Shape/Transforms/Passes.td +++ b/mlir/include/mlir/Dialect/Shape/Transforms/Passes.td @@ -25,6 +25,7 @@ def ShapeToShapeLowering : FunctionPass<"shape-to-shape-lowering"> { def ShapeBufferize : FunctionPass<"shape-bufferize"> { let summary = "Bufferize the shape dialect."; let constructor = "mlir::createShapeBufferizePass()"; - let dependentDialects = ["memref::MemRefDialect"]; + let dependentDialects = ["bufferization::BufferizationDialect", + "memref::MemRefDialect"]; } #endif // MLIR_DIALECT_SHAPE_TRANSFORMS_PASSES diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td index 414b757dcec7..31b08af00ae3 100644 --- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td +++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td @@ -55,6 +55,7 @@ def Sparsification : Pass<"sparsification", "ModuleOp"> { let dependentDialects = [ "AffineDialect", "arith::ArithmeticDialect", + "bufferization::BufferizationDialect", "LLVM::LLVMDialect", "memref::MemRefDialect", "scf::SCFDialect", @@ -105,6 +106,7 @@ def SparseTensorConversion : Pass<"sparse-tensor-conversion", "ModuleOp"> { let constructor = "mlir::createSparseTensorConversionPass()"; let dependentDialects = [ "arith::ArithmeticDialect", + "bufferization::BufferizationDialect", "LLVM::LLVMDialect", "linalg::LinalgDialect", "memref::MemRefDialect", diff --git a/mlir/include/mlir/Dialect/StandardOps/Transforms/Passes.td b/mlir/include/mlir/Dialect/StandardOps/Transforms/Passes.td index 286b68559177..d8e0e7e6b15d 100644 --- a/mlir/include/mlir/Dialect/StandardOps/Transforms/Passes.td +++ b/mlir/include/mlir/Dialect/StandardOps/Transforms/Passes.td @@ -14,7 +14,8 @@ include "mlir/Pass/PassBase.td" def StdBufferize : FunctionPass<"std-bufferize"> { let summary = "Bufferize the std dialect"; let constructor = "mlir::createStdBufferizePass()"; - let dependentDialects = ["memref::MemRefDialect", "scf::SCFDialect"]; + let dependentDialects = ["bufferization::BufferizationDialect", + "memref::MemRefDialect", "scf::SCFDialect"]; } def StdExpandOps : FunctionPass<"std-expand"> { @@ -47,7 +48,8 @@ def FuncBufferize : Pass<"func-bufferize", "ModuleOp"> { whether they need rewriting. }]; let constructor = "mlir::createFuncBufferizePass()"; - let dependentDialects = ["memref::MemRefDialect"]; + let dependentDialects = ["bufferization::BufferizationDialect", + "memref::MemRefDialect"]; } def TensorConstantBufferize : Pass<"tensor-constant-bufferize", "ModuleOp"> { @@ -61,7 +63,8 @@ def TensorConstantBufferize : Pass<"tensor-constant-bufferize", "ModuleOp"> { function granularity. }]; let constructor = "mlir::createTensorConstantBufferizePass()"; - let dependentDialects = ["memref::MemRefDialect"]; + let dependentDialects = ["bufferization::BufferizationDialect", + "memref::MemRefDialect"]; let options = [ Option<"alignment", "alignment", "unsigned", /*default=*/"0", "Create global memrefs with a specified alignment">, diff --git a/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.td index 47ac075373ef..a1f646c0f0f3 100644 --- a/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.td +++ b/mlir/include/mlir/Dialect/Tensor/Transforms/Passes.td @@ -14,7 +14,11 @@ include "mlir/Pass/PassBase.td" def TensorBufferize : FunctionPass<"tensor-bufferize"> { let summary = "Bufferize the `tensor` dialect"; let constructor = "mlir::createTensorBufferizePass()"; - let dependentDialects = ["scf::SCFDialect", "memref::MemRefDialect"]; + let dependentDialects = [ + "bufferization::BufferizationDialect", + "memref::MemRefDialect", + "scf::SCFDialect" + ]; } #endif // MLIR_DIALECT_TENSOR_TRANSFORMS_PASSES diff --git a/mlir/include/mlir/InitAllDialects.h b/mlir/include/mlir/InitAllDialects.h index 211693119c02..208c31e04427 100644 --- a/mlir/include/mlir/InitAllDialects.h +++ b/mlir/include/mlir/InitAllDialects.h @@ -20,6 +20,7 @@ #include "mlir/Dialect/ArmNeon/ArmNeonDialect.h" #include "mlir/Dialect/ArmSVE/ArmSVEDialect.h" #include "mlir/Dialect/Async/IR/Async.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/DLTI/DLTI.h" #include "mlir/Dialect/EmitC/IR/EmitC.h" @@ -57,6 +58,7 @@ inline void registerAllDialects(DialectRegistry ®istry) { amx::AMXDialect, arm_neon::ArmNeonDialect, async::AsyncDialect, + bufferization::BufferizationDialect, complex::ComplexDialect, DLTIDialect, emitc::EmitCDialect, diff --git a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp index 2ca0474d9868..48affcd2c1ee 100644 --- a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp +++ b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp @@ -11,6 +11,7 @@ #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" +#include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/IntegerSet.h" diff --git a/mlir/lib/Dialect/Arithmetic/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Arithmetic/Transforms/Bufferize.cpp index 37d2b8883708..89ab08d3129b 100644 --- a/mlir/lib/Dialect/Arithmetic/Transforms/Bufferize.cpp +++ b/mlir/lib/Dialect/Arithmetic/Transforms/Bufferize.cpp @@ -9,6 +9,7 @@ #include "mlir/Transforms/Bufferize.h" #include "PassDetail.h" #include "mlir/Dialect/Arithmetic/Transforms/Passes.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" using namespace mlir; diff --git a/mlir/lib/Dialect/Arithmetic/Transforms/PassDetail.h b/mlir/lib/Dialect/Arithmetic/Transforms/PassDetail.h index 6a94c2af3d2c..1f3f27466bf0 100644 --- a/mlir/lib/Dialect/Arithmetic/Transforms/PassDetail.h +++ b/mlir/lib/Dialect/Arithmetic/Transforms/PassDetail.h @@ -15,6 +15,10 @@ namespace mlir { class StandardOpsDialect; +namespace bufferization { +class BufferizationDialect; +} // end namespace bufferization + namespace memref { class MemRefDialect; } // end namespace memref diff --git a/mlir/lib/Dialect/Bufferization/IR/BufferizationDialect.cpp b/mlir/lib/Dialect/Bufferization/IR/BufferizationDialect.cpp new file mode 100644 index 000000000000..fd9b0d635d27 --- /dev/null +++ b/mlir/lib/Dialect/Bufferization/IR/BufferizationDialect.cpp @@ -0,0 +1,25 @@ +//===----------------------------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" + +using namespace mlir; +using namespace mlir::bufferization; + +#include "mlir/Dialect/Bufferization/IR/BufferizationOpsDialect.cpp.inc" + +//===----------------------------------------------------------------------===// +// Bufferization Dialect +//===----------------------------------------------------------------------===// + +void mlir::bufferization::BufferizationDialect::initialize() { + addOperations< +#define GET_OP_LIST +#include "mlir/Dialect/Bufferization/IR/BufferizationOps.cpp.inc" + >(); +} diff --git a/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp b/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp new file mode 100644 index 000000000000..5f93007b8e4a --- /dev/null +++ b/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp @@ -0,0 +1,305 @@ + +//===----------------------------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" +#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" + +using namespace mlir; +using namespace mlir::bufferization; + +//===----------------------------------------------------------------------===// +// CloneOp +//===----------------------------------------------------------------------===// + +void CloneOp::getEffects( + SmallVectorImpl> + &effects) { + effects.emplace_back(MemoryEffects::Read::get(), input(), + SideEffects::DefaultResource::get()); + effects.emplace_back(MemoryEffects::Write::get(), output(), + SideEffects::DefaultResource::get()); + effects.emplace_back(MemoryEffects::Allocate::get(), output(), + SideEffects::DefaultResource::get()); +} + +OpFoldResult CloneOp::fold(ArrayRef operands) { + return succeeded(memref::foldMemRefCast(*this)) ? getResult() : Value(); +} + +namespace { + +/// Merge the clone and its source (by converting the clone to a cast) when +/// possible. +struct SimplifyClones : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; + + LogicalResult matchAndRewrite(CloneOp cloneOp, + PatternRewriter &rewriter) const override { + if (cloneOp.use_empty()) { + rewriter.eraseOp(cloneOp); + return success(); + } + + Value source = cloneOp.input(); + + // This only finds dealloc operations for the immediate value. It should + // also consider aliases. That would also make the safety check below + // redundant. + llvm::Optional maybeCloneDeallocOp = + findDealloc(cloneOp.output()); + // Skip if either of them has > 1 deallocate operations. + if (!maybeCloneDeallocOp.hasValue()) + return failure(); + llvm::Optional maybeSourceDeallocOp = findDealloc(source); + if (!maybeSourceDeallocOp.hasValue()) + return failure(); + Operation *cloneDeallocOp = *maybeCloneDeallocOp; + Operation *sourceDeallocOp = *maybeSourceDeallocOp; + + // If both are deallocated in the same block, their in-block lifetimes + // might not fully overlap, so we cannot decide which one to drop. + if (cloneDeallocOp && sourceDeallocOp && + cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock()) + return failure(); + + Block *currentBlock = cloneOp->getBlock(); + Operation *redundantDealloc = nullptr; + if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) { + redundantDealloc = cloneDeallocOp; + } else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) { + redundantDealloc = sourceDeallocOp; + } + + if (!redundantDealloc) + return failure(); + + // Safety check that there are no other deallocations inbetween + // cloneOp and redundantDealloc, as otherwise we might deallocate an alias + // of source before the uses of the clone. With alias information, we could + // restrict this to only fail of the dealloc's operand is an alias + // of the source. + for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc; + pos = pos->getNextNode()) { + auto effectInterface = dyn_cast(pos); + if (!effectInterface) + continue; + if (effectInterface.hasEffect()) + return failure(); + } + + rewriter.replaceOpWithNewOp(cloneOp, cloneOp.getType(), + source); + rewriter.eraseOp(redundantDealloc); + return success(); + } +}; + +} // namespace. + +void CloneOp::getCanonicalizationPatterns(OwningRewritePatternList &results, + MLIRContext *context) { + results.insert(context); +} + +//===----------------------------------------------------------------------===// +// ToTensorOp +//===----------------------------------------------------------------------===// + +OpFoldResult ToTensorOp::fold(ArrayRef) { + if (auto toMemref = memref().getDefiningOp()) + // Approximate alias analysis by conservatively folding only when no there + // is no interleaved operation. + if (toMemref->getBlock() == this->getOperation()->getBlock() && + toMemref->getNextNode() == this->getOperation()) + return toMemref.tensor(); + return {}; +} + +namespace { + +struct DimOfToTensorFolder : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; + + LogicalResult matchAndRewrite(tensor::DimOp dimOp, + PatternRewriter &rewriter) const override { + auto memrefToTensorOp = dimOp.source().getDefiningOp(); + if (!memrefToTensorOp) + return failure(); + + rewriter.replaceOpWithNewOp(dimOp, memrefToTensorOp.memref(), + dimOp.index()); + return success(); + } +}; + +} // namespace + +void ToTensorOp::getCanonicalizationPatterns(RewritePatternSet &results, + MLIRContext *context) { + results.add(context); +} + +//===----------------------------------------------------------------------===// +// ToMemrefOp +//===----------------------------------------------------------------------===// + +OpFoldResult ToMemrefOp::fold(ArrayRef) { + if (auto memrefToTensor = tensor().getDefiningOp()) + if (memrefToTensor.memref().getType() == getType()) + return memrefToTensor.memref(); + return {}; +} + +namespace { + +/// Replace tensor.cast + to_memref by to_memref + memref.cast. +struct ToMemrefOfCast : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; + + LogicalResult matchAndRewrite(ToMemrefOp toMemref, + PatternRewriter &rewriter) const final { + auto tensorCastOperand = + toMemref.getOperand().getDefiningOp(); + if (!tensorCastOperand) + return failure(); + auto srcTensorType = + tensorCastOperand.getOperand().getType().dyn_cast(); + if (!srcTensorType) + return failure(); + auto memrefType = MemRefType::get(srcTensorType.getShape(), + srcTensorType.getElementType()); + Value memref = rewriter.create(toMemref.getLoc(), memrefType, + tensorCastOperand.getOperand()); + rewriter.replaceOpWithNewOp(toMemref, toMemref.getType(), + memref); + return success(); + } +}; + +/// Canonicalize bufferization.to_tensor + bufferization.to_memref to +/// memref.cast when type mismatches prevent `ToMemrefOp::fold` to kick in. +struct TensorLoadToMemref : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; + + LogicalResult matchAndRewrite(ToMemrefOp toMemref, + PatternRewriter &rewriter) const final { + auto memrefToTensor = toMemref.tensor().getDefiningOp(); + // Bail unless we have a memref_to_tensor + tensor_to_memref with different + // types. `ToMemrefOp::fold` handles the same type case. + if (!memrefToTensor || + memrefToTensor.memref().getType() == toMemref.getType()) + return failure(); + // If types are definitely not cast-compatible, bail. + if (!memref::CastOp::areCastCompatible(memrefToTensor.memref().getType(), + toMemref.getType())) + return failure(); + + // We already know that the types are potentially cast-compatible. However + // in case the affine maps are different, we may need to use a copy if we go + // from dynamic to static offset or stride (the canonicalization cannot know + // at this point that it is really cast compatible). + auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) { + int64_t sourceOffset, targetOffset; + SmallVector sourceStrides, targetStrides; + if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) || + failed(getStridesAndOffset(target, targetStrides, targetOffset))) + return false; + auto dynamicToStatic = [](int64_t a, int64_t b) { + return a == MemRefType::getDynamicStrideOrOffset() && + b != MemRefType::getDynamicStrideOrOffset(); + }; + if (dynamicToStatic(sourceOffset, targetOffset)) + return false; + for (auto it : zip(sourceStrides, targetStrides)) + if (dynamicToStatic(std::get<0>(it), std::get<1>(it))) + return false; + return true; + }; + + auto memrefToTensorType = + memrefToTensor.memref().getType().dyn_cast(); + auto toMemrefType = toMemref.getType().dyn_cast(); + if (memrefToTensorType && toMemrefType && + !isGuaranteedCastCompatible(memrefToTensorType, toMemrefType)) { + MemRefType resultType = toMemrefType; + auto loc = toMemref.getLoc(); + SmallVector dynamicOperands; + for (int i = 0; i < resultType.getRank(); ++i) { + if (resultType.getShape()[i] != ShapedType::kDynamicSize) + continue; + auto index = rewriter.createOrFold(loc, i); + Value size = rewriter.create(loc, memrefToTensor, index); + dynamicOperands.push_back(size); + } + auto copy = + rewriter.create(loc, resultType, dynamicOperands); + rewriter.create(loc, memrefToTensor.memref(), copy); + rewriter.replaceOp(toMemref, {copy}); + } else + rewriter.replaceOpWithNewOp(toMemref, toMemref.getType(), + memrefToTensor.memref()); + return success(); + } +}; + +/// Fold a load on a to_memref operation into an tensor.extract on the +/// corresponding tensor. +struct LoadOfToMemref : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; + + LogicalResult matchAndRewrite(memref::LoadOp load, + PatternRewriter &rewriter) const override { + auto toMemref = load.memref().getDefiningOp(); + if (!toMemref) + return failure(); + + rewriter.replaceOpWithNewOp(load, toMemref.tensor(), + load.indices()); + return success(); + } +}; + +/// Fold dim of a to_memref into the dim of the tensor. +struct DimOfCastOp : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; + + LogicalResult matchAndRewrite(memref::DimOp dimOp, + PatternRewriter &rewriter) const override { + auto castOp = dimOp.source().getDefiningOp(); + if (!castOp) + return failure(); + Value newSource = castOp.getOperand(); + rewriter.replaceOpWithNewOp(dimOp, newSource, dimOp.index()); + return success(); + } +}; + +} // namespace + +void ToMemrefOp::getCanonicalizationPatterns(RewritePatternSet &results, + MLIRContext *context) { + results.add( + context); +} + +Optional CloneOp::buildDealloc(OpBuilder &builder, Value alloc) { + return builder.create(alloc.getLoc(), alloc) + .getOperation(); +} + +Optional CloneOp::buildClone(OpBuilder &builder, Value alloc) { + return builder.create(alloc.getLoc(), alloc).getResult(); +} + +//===----------------------------------------------------------------------===// +// TableGen'd op method definitions +//===----------------------------------------------------------------------===// + +#define GET_OP_CLASSES +#include "mlir/Dialect/Bufferization/IR/BufferizationOps.cpp.inc" diff --git a/mlir/lib/Dialect/Bufferization/IR/CMakeLists.txt b/mlir/lib/Dialect/Bufferization/IR/CMakeLists.txt index 9931ea4e48f4..dd54c1abdbc4 100644 --- a/mlir/lib/Dialect/Bufferization/IR/CMakeLists.txt +++ b/mlir/lib/Dialect/Bufferization/IR/CMakeLists.txt @@ -1,12 +1,18 @@ -add_mlir_library(MLIRAllocationOpInterface +add_mlir_dialect_library(MLIRBufferization AllocationOpInterface.cpp + BufferizationOps.cpp + BufferizationDialect.cpp ADDITIONAL_HEADER_DIRS - ${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/Bufferization/IR + ${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/Bufferization DEPENDS MLIRAllocationOpInterfaceIncGen + MLIRBufferizationOpsIncGen LINK_LIBS PUBLIC + MLIRDialect MLIRIR + MLIRTensor + MLIRMemRef ) diff --git a/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp b/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp index 5423a158a80c..9aa95a42c5a9 100644 --- a/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp +++ b/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp @@ -11,8 +11,8 @@ //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" -#include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/IR/BuiltinOps.h" @@ -49,7 +49,7 @@ Value Aliases::find(Value v) { // the aliasing further. if (isa(defOp)) return v; - if (isa(defOp)) + if (isa(defOp)) return v; if (auto memEffect = dyn_cast(defOp)) { diff --git a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.cpp b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.cpp index 46c881d15c06..d323b94d8d73 100644 --- a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.cpp +++ b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.cpp @@ -8,6 +8,7 @@ #include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/IR/AsmState.h" #include "mlir/IR/BlockAndValueMapping.h" @@ -415,8 +416,8 @@ mlir::linalg::comprehensive_bufferize::bufferize(Operation *op, BufferizationState &state) { OpBuilder b(op->getContext()); - // Skip BufferCast and TensorLoad ops. - if (isa(op)) + // Skip ToMemrefOp and ToTensorOp. + if (isa(op)) return success(); // Check if op has tensor results or operands. diff --git a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/CMakeLists.txt b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/CMakeLists.txt index 7eadebd09aeb..c97be3cc9da4 100644 --- a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/CMakeLists.txt +++ b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/CMakeLists.txt @@ -16,6 +16,7 @@ add_mlir_dialect_library(MLIRBufferizableOpInterface LINK_LIBS PUBLIC MLIRIR + MLIRBufferization MLIRMemRef ) diff --git a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp index fda155c89c7b..1d40aeef56d0 100644 --- a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp +++ b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.cpp @@ -32,9 +32,9 @@ // #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)> // func @foo(%A: tensor {linalg.inplaceable = true}) // -> tensor { -// %0 = memref.buffer_cast %A : memref +// %0 = bufferization.to_memref %A : memref // // ... uses of %0 -// %res = memref.tensor_load %0 : memref +// %res = bufferization.to_tensor %0 : memref // return %res : tensor // } // ``` @@ -57,13 +57,13 @@ // #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)> // func @foo(%A: tensor {linalg.inplaceable = true}) // -> tensor { -// %0 = memref.buffer_cast %A : memref +// %0 = bufferization.to_memref %A : memref // %1 = memref.dim %0, %c0 : memref // %2 = memref.alloc(%1) : memref // %3 = memref.cast %2 : memref to memref // // ... uses of %3 // memref.dealloc %2 : memref -// %res = memref.tensor_load %3 : memref +// %res = bufferization.to_tensor %3 : memref // return %res : tensor // } // ``` @@ -87,11 +87,11 @@ // #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)> // func @foo(%arg0: tensor {linalg.inplaceable = true}) // -> tensor<4xf32> { -// %0 = memref.buffer_cast %arg0 : memref +// %0 = bufferization.to_memref %arg0 : memref // %1 = memref.subview %0[0] [4] [1] : memref to // memref<4xf32, #map> // // ... inplace computes into %1 -// %3 = memref.tensor_load %1 : memref<4xf32, #map> +// %3 = bufferization.to_tensor %1 : memref<4xf32, #map> // return %3 : tensor<4xf32> // } // ``` @@ -110,6 +110,7 @@ #include #include "mlir/Dialect/Affine/IR/AffineOps.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/Utils/StaticValueUtils.h" @@ -648,7 +649,7 @@ static LogicalResult bufferizeFuncOp(FuncOp funcOp, BufferizationState &state) { ? getDynamicMemRefType(rankedTensorType) : getContiguousOrUnrankedMemRefType(tensorType); Value bufferCast = - b.create(funcOp.getLoc(), memRefType, bbArg); + b.create(funcOp.getLoc(), memRefType, bbArg); state.aliasInfo.insertNewBufferEquivalence(bufferCast, bbArg); state.mapBuffer(bbArg, bufferCast); } @@ -932,22 +933,23 @@ static LogicalResult bufferizeFuncOpBoundary( Value memref = frontBlock.addArgument(memrefType); OpBuilder b(funcOp->getContext()); b.setInsertionPointToStart(&frontBlock); - // Replace all uses of bbArg through a BufferCastOp by a memref::CastOp. + // Replace all uses of bbArg through a ToMemrefOp by a memref::CastOp. for (auto &use : llvm::make_early_inc_range(bbArg.getUses())) { - if (auto bufferCastOp = dyn_cast(use.getOwner())) { + if (auto toMemrefOp = + dyn_cast(use.getOwner())) { auto castOp = b.create( - funcOp.getLoc(), bufferCastOp.memref().getType(), memref); - bufferCastOp.memref().replaceAllUsesWith(castOp); + funcOp.getLoc(), toMemrefOp.memref().getType(), memref); + toMemrefOp.memref().replaceAllUsesWith(castOp); aliasInfo.insertNewBufferEquivalence(castOp.dest(), - bufferCastOp.memref()); + toMemrefOp.memref()); } } // Replace all remaining uses by a tensor_load. if (!bbArg.use_empty()) { - auto tensorLoadOp = - b.create(funcOp.getLoc(), memref); - aliasInfo.insertNewBufferEquivalence(tensorLoadOp, bbArg); - bbArg.replaceAllUsesWith(tensorLoadOp); + auto toTensorOp = + b.create(funcOp.getLoc(), memref); + aliasInfo.insertNewBufferEquivalence(toTensorOp, bbArg); + bbArg.replaceAllUsesWith(toTensorOp); } frontBlock.eraseArgument(0); // TODO: add support to erase aliasInfo entries if deemed necessary. @@ -1376,16 +1378,16 @@ struct CallOpInterface // info. state.aliasInfo.insertNewBufferEquivalence(oldRes, buffer); state.mapBuffer(oldRes, buffer); - // Add a TensorLoadOp to kill all uses of the CallOp return. + // Add a ToTensorOp to kill all uses of the CallOp return. // Replace all uses of the CallOp results so we can erase the CallOp. - // This TensorLoadOp must fold/DCE away or bufferization should be + // This ToTensorOp must fold/DCE away or bufferization should be // considered failed. - Value tensorLoad = - b.create(callOp.getLoc(), buffer); - oldRes.replaceAllUsesWith(tensorLoad); + Value toTensor = + b.create(callOp.getLoc(), buffer); + oldRes.replaceAllUsesWith(toTensor); // Add new op equivalence info. - state.aliasInfo.insertNewBufferEquivalence(tensorLoad, buffer); - state.mapBuffer(tensorLoad, buffer); + state.aliasInfo.insertNewBufferEquivalence(toTensor, buffer); + state.mapBuffer(toTensor, buffer); continue; } @@ -1493,7 +1495,8 @@ struct ReturnOpInterface if (!tensorType) continue; Value v = state.lookupBuffer(operand.get()); - Value returnTensor = b.create(returnOp.getLoc(), v); + Value returnTensor = + b.create(returnOp.getLoc(), v); operand.set(returnTensor); state.aliasInfo.insertNewBufferEquivalence(returnTensor, v); state.mapBuffer(returnTensor, v); diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp index 291924b78b1f..30e00081ef3a 100644 --- a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp +++ b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp @@ -11,6 +11,7 @@ #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" +#include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExprVisitor.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/TypeUtilities.h" diff --git a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp index bf067d3e576b..1360ab163103 100644 --- a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp @@ -9,6 +9,7 @@ #include "mlir/Transforms/Bufferize.h" #include "PassDetail.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" diff --git a/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferizePass.cpp b/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferizePass.cpp index d6ab48ae6368..916bc026acbb 100644 --- a/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferizePass.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferizePass.cpp @@ -7,6 +7,8 @@ //===----------------------------------------------------------------------===// #include "PassDetail.h" + +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Linalg/ComprehensiveBufferize/ArithInterfaceImpl.h" #include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h" #include "mlir/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.h" @@ -37,8 +39,9 @@ struct LinalgComprehensiveModuleBufferize void getDependentDialects(DialectRegistry ®istry) const override { registry - .insert(); registerBufferizableOpInterfaceExternalModels(registry); arith_ext::registerBufferizableOpInterfaceExternalModels(registry); diff --git a/mlir/lib/Dialect/Linalg/Transforms/PassDetail.h b/mlir/lib/Dialect/Linalg/Transforms/PassDetail.h index a5acf37f9188..01a8d14111cc 100644 --- a/mlir/lib/Dialect/Linalg/Transforms/PassDetail.h +++ b/mlir/lib/Dialect/Linalg/Transforms/PassDetail.h @@ -22,6 +22,10 @@ namespace arith { class ArithmeticDialect; } // end namespace arith +namespace bufferization { +class BufferizationDialect; +} // end namespace bufferization + namespace linalg { class LinalgDialect; } // end namespace linalg diff --git a/mlir/lib/Dialect/MemRef/IR/MemRefDialect.cpp b/mlir/lib/Dialect/MemRef/IR/MemRefDialect.cpp index f403cb5b1e78..057cb4600adf 100644 --- a/mlir/lib/Dialect/MemRef/IR/MemRefDialect.cpp +++ b/mlir/lib/Dialect/MemRef/IR/MemRefDialect.cpp @@ -7,7 +7,6 @@ //===----------------------------------------------------------------------===// #include "mlir/Dialect/MemRef/IR/MemRef.h" -#include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Transforms/InliningUtils.h" using namespace mlir; diff --git a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp index 123b397ab179..f806cf51a9d0 100644 --- a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp +++ b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp @@ -11,7 +11,6 @@ #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/StandardOps/Utils/Utils.h" -#include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/StaticValueUtils.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" @@ -45,7 +44,7 @@ Operation *MemRefDialect::materializeConstant(OpBuilder &builder, /// This is a common class used for patterns of the form /// "someop(memrefcast) -> someop". It folds the source of any memref.cast /// into the root operation directly. -static LogicalResult foldMemRefCast(Operation *op, Value inner = nullptr) { +LogicalResult mlir::memref::foldMemRefCast(Operation *op, Value inner) { bool folded = false; for (OpOperand &operand : op->getOpOperands()) { auto cast = operand.get().getDefiningOp(); @@ -58,11 +57,9 @@ static LogicalResult foldMemRefCast(Operation *op, Value inner = nullptr) { return success(folded); } -//===----------------------------------------------------------------------===// -// Helpers for GlobalOp -//===----------------------------------------------------------------------===// - -static Type getTensorTypeFromMemRefType(Type type) { +/// Return an unranked/ranked tensor type for the given unranked/ranked memref +/// type. +Type mlir::memref::getTensorTypeFromMemRefType(Type type) { if (auto memref = type.dyn_cast()) return RankedTensorType::get(memref.getShape(), memref.getElementType()); if (auto memref = type.dyn_cast()) @@ -277,113 +274,6 @@ static LogicalResult verify(AssumeAlignmentOp op) { return success(); } -//===----------------------------------------------------------------------===// -// BufferCastOp -//===----------------------------------------------------------------------===// - -OpFoldResult BufferCastOp::fold(ArrayRef) { - if (auto tensorLoad = tensor().getDefiningOp()) - if (tensorLoad.memref().getType() == getType()) - return tensorLoad.memref(); - return {}; -} - -namespace { -/// Replace tensor_cast + buffer_cast by buffer_cast + memref_cast. -struct BufferCast : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(BufferCastOp bufferCast, - PatternRewriter &rewriter) const final { - auto tensorCastOperand = - bufferCast.getOperand().getDefiningOp(); - if (!tensorCastOperand) - return failure(); - auto srcTensorType = - tensorCastOperand.getOperand().getType().dyn_cast(); - if (!srcTensorType) - return failure(); - auto memrefType = MemRefType::get(srcTensorType.getShape(), - srcTensorType.getElementType()); - Value memref = rewriter.create( - bufferCast.getLoc(), memrefType, tensorCastOperand.getOperand()); - rewriter.replaceOpWithNewOp(bufferCast, bufferCast.getType(), - memref); - return success(); - } -}; - -/// Canonicalize memref.tensor_load + memref.buffer_cast to memref.cast when -/// type mismatches prevent `BufferCastOp::fold` to kick in. -struct TensorLoadToMemRef : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(BufferCastOp bufferCast, - PatternRewriter &rewriter) const final { - auto tensorLoad = bufferCast.tensor().getDefiningOp(); - // Bail unless we have a tensor_load + memref.buffer_cast with different - // types. `BufferCastOp::fold` handles the same type case. - if (!tensorLoad || tensorLoad.memref().getType() == bufferCast.getType()) - return failure(); - // If types are definitely not cast-compatible, bail. - if (!CastOp::areCastCompatible(tensorLoad.memref().getType(), - bufferCast.getType())) - return failure(); - - // We already know that the types are potentially cast-compatible. However - // in case the affine maps are different, we may need to use a copy if we go - // from dynamic to static offset or stride (the canonicalization cannot know - // at this point that it is really cast compatible). - auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) { - int64_t sourceOffset, targetOffset; - SmallVector sourceStrides, targetStrides; - if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) || - failed(getStridesAndOffset(target, targetStrides, targetOffset))) - return false; - auto dynamicToStatic = [](int64_t a, int64_t b) { - return a == MemRefType::getDynamicStrideOrOffset() && - b != MemRefType::getDynamicStrideOrOffset(); - }; - if (dynamicToStatic(sourceOffset, targetOffset)) - return false; - for (auto it : zip(sourceStrides, targetStrides)) - if (dynamicToStatic(std::get<0>(it), std::get<1>(it))) - return false; - return true; - }; - - auto tensorLoadType = tensorLoad.memref().getType().dyn_cast(); - auto bufferCastType = bufferCast.getType().dyn_cast(); - if (tensorLoadType && bufferCastType && - !isGuaranteedCastCompatible(tensorLoadType, bufferCastType)) { - MemRefType resultType = bufferCastType; - auto loc = bufferCast.getLoc(); - SmallVector dynamicOperands; - for (int i = 0; i < resultType.getRank(); ++i) { - if (resultType.getShape()[i] != ShapedType::kDynamicSize) - continue; - auto index = rewriter.createOrFold(loc, i); - Value size = rewriter.create(loc, tensorLoad, index); - dynamicOperands.push_back(size); - } - auto copy = - rewriter.create(loc, resultType, dynamicOperands); - rewriter.create(loc, tensorLoad.memref(), copy); - rewriter.replaceOp(bufferCast, {copy}); - } else - rewriter.replaceOpWithNewOp(bufferCast, bufferCast.getType(), - tensorLoad.memref()); - return success(); - } -}; - -} // namespace - -void BufferCastOp::getCanonicalizationPatterns(RewritePatternSet &results, - MLIRContext *context) { - results.add(context); -} - //===----------------------------------------------------------------------===// // CastOp //===----------------------------------------------------------------------===// @@ -551,99 +441,6 @@ OpFoldResult CastOp::fold(ArrayRef operands) { return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); } -//===----------------------------------------------------------------------===// -// CloneOp -//===----------------------------------------------------------------------===// - -void CloneOp::getEffects( - SmallVectorImpl> - &effects) { - effects.emplace_back(MemoryEffects::Read::get(), input(), - SideEffects::DefaultResource::get()); - effects.emplace_back(MemoryEffects::Write::get(), output(), - SideEffects::DefaultResource::get()); - effects.emplace_back(MemoryEffects::Allocate::get(), output(), - SideEffects::DefaultResource::get()); -} - -namespace { -/// Merge the clone and its source (by converting the clone to a cast) when -/// possible. -struct SimplifyClones : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(CloneOp cloneOp, - PatternRewriter &rewriter) const override { - if (cloneOp.use_empty()) { - rewriter.eraseOp(cloneOp); - return success(); - } - - Value source = cloneOp.input(); - - // This only finds dealloc operations for the immediate value. It should - // also consider aliases. That would also make the safety check below - // redundant. - llvm::Optional maybeCloneDeallocOp = - findDealloc(cloneOp.output()); - // Skip if either of them has > 1 deallocate operations. - if (!maybeCloneDeallocOp.hasValue()) - return failure(); - llvm::Optional maybeSourceDeallocOp = findDealloc(source); - if (!maybeSourceDeallocOp.hasValue()) - return failure(); - Operation *cloneDeallocOp = *maybeCloneDeallocOp; - Operation *sourceDeallocOp = *maybeSourceDeallocOp; - - // If both are deallocated in the same block, their in-block lifetimes - // might not fully overlap, so we cannot decide which one to drop. - if (cloneDeallocOp && sourceDeallocOp && - cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock()) - return failure(); - - Block *currentBlock = cloneOp->getBlock(); - Operation *redundantDealloc = nullptr; - if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) { - redundantDealloc = cloneDeallocOp; - } else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) { - redundantDealloc = sourceDeallocOp; - } - - if (!redundantDealloc) - return failure(); - - // Safety check that there are no other deallocations inbetween - // cloneOp and redundantDealloc, as otherwise we might deallocate an alias - // of source before the uses of the clone. With alias information, we could - // restrict this to only fail of the dealloc's operand is an alias - // of the source. - for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc; - pos = pos->getNextNode()) { - auto effectInterface = dyn_cast(pos); - if (!effectInterface) - continue; - if (effectInterface.hasEffect()) - return failure(); - } - - rewriter.replaceOpWithNewOp(cloneOp, cloneOp.getType(), - source); - rewriter.eraseOp(redundantDealloc); - return success(); - } -}; - -} // end anonymous namespace. - -void CloneOp::getCanonicalizationPatterns(OwningRewritePatternList &results, - MLIRContext *context) { - results.insert(context); -} - -OpFoldResult CloneOp::fold(ArrayRef operands) { - return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); -} - //===----------------------------------------------------------------------===// // DeallocOp //===----------------------------------------------------------------------===// @@ -875,25 +672,11 @@ struct DimOfMemRefReshape : public OpRewritePattern { } }; -/// Fold dim of a cast into the dim of the source of the memref cast. -struct DimOfCastOp : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(DimOp dimOp, - PatternRewriter &rewriter) const override { - auto castOp = dimOp.source().getDefiningOp(); - if (!castOp) - return failure(); - Value newSource = castOp.getOperand(); - rewriter.replaceOpWithNewOp(dimOp, newSource, dimOp.index()); - return success(); - } -}; } // end anonymous namespace. void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { - results.add(context); + results.add(context); } // --------------------------------------------------------------------------- @@ -1215,30 +998,6 @@ OpFoldResult LoadOp::fold(ArrayRef cstOperands) { return OpFoldResult(); } -namespace { -/// Fold a load on a buffer_cast operation into an tensor.extract on the -/// corresponding tensor. -struct LoadOfBufferCast : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(LoadOp load, - PatternRewriter &rewriter) const override { - auto buffercast = load.memref().getDefiningOp(); - if (!buffercast) - return failure(); - - rewriter.replaceOpWithNewOp(load, buffercast.tensor(), - load.indices()); - return success(); - } -}; -} // end anonymous namespace. - -void LoadOp::getCanonicalizationPatterns(RewritePatternSet &results, - MLIRContext *context) { - results.add(context); -} - //===----------------------------------------------------------------------===// // PrefetchOp //===----------------------------------------------------------------------===// @@ -2199,42 +1958,6 @@ OpFoldResult SubViewOp::fold(ArrayRef operands) { return {}; } -//===----------------------------------------------------------------------===// -// TensorLoadOp -//===----------------------------------------------------------------------===// - -OpFoldResult TensorLoadOp::fold(ArrayRef) { - if (auto bufferCast = memref().getDefiningOp()) - // Approximate alias analysis by conservatively folding only when no there - // is no interleaved operation. - if (bufferCast->getBlock() == this->getOperation()->getBlock() && - bufferCast->getNextNode() == this->getOperation()) - return bufferCast.tensor(); - return {}; -} - -namespace { -struct DimOfTensorLoadFolder : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(tensor::DimOp dimOp, - PatternRewriter &rewriter) const override { - auto tensorLoadOp = dimOp.source().getDefiningOp(); - if (!tensorLoadOp) - return failure(); - - rewriter.replaceOpWithNewOp(dimOp, tensorLoadOp.memref(), - dimOp.index()); - return success(); - } -}; -} // namespace - -void TensorLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, - MLIRContext *context) { - results.add(context); -} - //===----------------------------------------------------------------------===// // TransposeOp //===----------------------------------------------------------------------===// diff --git a/mlir/lib/Dialect/SCF/CMakeLists.txt b/mlir/lib/Dialect/SCF/CMakeLists.txt index a97de6eca464..2f7506c58c82 100644 --- a/mlir/lib/Dialect/SCF/CMakeLists.txt +++ b/mlir/lib/Dialect/SCF/CMakeLists.txt @@ -9,6 +9,7 @@ add_mlir_dialect_library(MLIRSCF LINK_LIBS PUBLIC MLIRArithmetic + MLIRBufferization MLIRIR MLIRLoopLikeInterface MLIRMemRef diff --git a/mlir/lib/Dialect/SCF/SCF.cpp b/mlir/lib/Dialect/SCF/SCF.cpp index 358d28bcc836..e28accc93fd9 100644 --- a/mlir/lib/Dialect/SCF/SCF.cpp +++ b/mlir/lib/Dialect/SCF/SCF.cpp @@ -8,6 +8,7 @@ #include "mlir/Dialect/SCF/SCF.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" @@ -875,9 +876,10 @@ struct ForOpTensorCastFolder : public OpRewritePattern { } }; -/// Canonicalize the iter_args of an scf::ForOp that involve a tensor_load and -/// for which only the last loop iteration is actually visible outside of the -/// loop. The canonicalization looks for a pattern such as: +/// Canonicalize the iter_args of an scf::ForOp that involve a +/// `bufferization.to_tensor` and for which only the last loop iteration is +/// actually visible outside of the loop. The canonicalization looks for a +/// pattern such as: /// ``` /// %t0 = ... : tensor_type /// %0 = scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) { @@ -885,23 +887,25 @@ struct ForOpTensorCastFolder : public OpRewritePattern { /// // %m is either buffer_cast(%bb00) or defined above the loop /// %m... : memref_type /// ... // uses of %m with potential inplace updates -/// %new_tensor = tensor_load %m : memref_type +/// %new_tensor = bufferization.to_tensor %m : memref_type /// ... /// scf.yield %new_tensor : tensor_type /// } /// ``` /// /// `%bb0` may have either 0 or 1 use. If it has 1 use it must be exactly a -/// `%m = buffer_cast %bb0` op that feeds into the yielded `tensor_load` -/// op. +/// `%m = buffer_cast %bb0` op that feeds into the yielded +/// `bufferization.to_tensor` op. /// /// If no aliasing write to the memref `%m`, from which `%new_tensor`is loaded, -/// occurs between tensor_load and yield then the value %0 visible outside of -/// the loop is the last `tensor_load` produced in the loop. +/// occurs between `bufferization.to_tensor and yield then the value %0 +/// visible outside of the loop is the last `bufferization.to_tensor` +/// produced in the loop. /// /// For now, we approximate the absence of aliasing by only supporting the case -/// when the tensor_load is the operation immediately preceding the yield. -/// +/// when the bufferization.to_tensor is the operation immediately preceding +/// the yield. +// /// The canonicalization rewrites the pattern as: /// ``` /// // %m is either a buffer_cast or defined above @@ -910,7 +914,7 @@ struct ForOpTensorCastFolder : public OpRewritePattern { /// ... // uses of %m with potential inplace updates /// scf.yield %bb0: tensor_type /// } -/// %0 = tensor_load %m : memref_type +/// %0 = bufferization.to_tensor %m : memref_type /// ``` /// /// A later bbArg canonicalization will further rewrite as: @@ -920,7 +924,7 @@ struct ForOpTensorCastFolder : public OpRewritePattern { /// scf.for ... { // no iter_args /// ... // uses of %m with potential inplace updates /// } -/// %0 = tensor_load %m : memref_type +/// %0 = bufferization.to_tensor %m : memref_type /// ``` struct LastTensorLoadCanonicalization : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; @@ -936,39 +940,39 @@ struct LastTensorLoadCanonicalization : public OpRewritePattern { unsigned idx = bbArg.getArgNumber() - /*numIv=*/1; auto yieldOp = cast(forOp.region().front().getTerminator()); Value yieldVal = yieldOp->getOperand(idx); - auto tensorLoadOp = yieldVal.getDefiningOp(); + auto tensorLoadOp = yieldVal.getDefiningOp(); bool isTensor = bbArg.getType().isa(); - memref::BufferCastOp bufferCastOp; + bufferization::ToMemrefOp tensorToMemref; // Either bbArg has no use or it has a single buffer_cast use. if (bbArg.hasOneUse()) - bufferCastOp = - dyn_cast(*bbArg.getUsers().begin()); - if (!isTensor || !tensorLoadOp || (!bbArg.use_empty() && !bufferCastOp)) + tensorToMemref = + dyn_cast(*bbArg.getUsers().begin()); + if (!isTensor || !tensorLoadOp || (!bbArg.use_empty() && !tensorToMemref)) continue; - // If bufferCastOp is present, it must feed into the `tensorLoadOp`. - if (bufferCastOp && tensorLoadOp.memref() != bufferCastOp) + // If tensorToMemref is present, it must feed into the `ToTensorOp`. + if (tensorToMemref && tensorLoadOp.memref() != tensorToMemref) continue; // TODO: Any aliasing write of tensorLoadOp.memref() nested under `forOp` - // must be before `tensorLoadOp` in the block so that the lastWrite + // must be before `ToTensorOp` in the block so that the lastWrite // property is not subject to additional side-effects. - // For now, we only support the case when tensorLoadOp appears immediately - // before the terminator. + // For now, we only support the case when ToTensorOp appears + // immediately before the terminator. if (tensorLoadOp->getNextNode() != yieldOp) continue; - // Clone the optional bufferCastOp before forOp. - if (bufferCastOp) { + // Clone the optional tensorToMemref before forOp. + if (tensorToMemref) { rewriter.setInsertionPoint(forOp); - rewriter.replaceOpWithNewOp( - bufferCastOp, bufferCastOp.memref().getType(), - bufferCastOp.tensor()); + rewriter.replaceOpWithNewOp( + tensorToMemref, tensorToMemref.memref().getType(), + tensorToMemref.tensor()); } // Clone the tensorLoad after forOp. rewriter.setInsertionPointAfter(forOp); - Value newTensorLoad = - rewriter.create(loc, tensorLoadOp.memref()); + Value newTensorLoad = rewriter.create( + loc, tensorLoadOp.memref()); Value forOpResult = forOp.getResult(bbArg.getArgNumber() - /*iv=*/1); replacements.insert(std::make_pair(forOpResult, newTensorLoad)); diff --git a/mlir/lib/Dialect/SCF/Transforms/Bufferize.cpp b/mlir/lib/Dialect/SCF/Transforms/Bufferize.cpp index 9ee807589242..48dbacd8cc5d 100644 --- a/mlir/lib/Dialect/SCF/Transforms/Bufferize.cpp +++ b/mlir/lib/Dialect/SCF/Transforms/Bufferize.cpp @@ -8,6 +8,7 @@ #include "mlir/Transforms/Bufferize.h" #include "PassDetail.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/Passes.h" #include "mlir/Dialect/SCF/SCF.h" diff --git a/mlir/lib/Dialect/SCF/Transforms/PassDetail.h b/mlir/lib/Dialect/SCF/Transforms/PassDetail.h index 7f7d0786c127..7dfdb203ea91 100644 --- a/mlir/lib/Dialect/SCF/Transforms/PassDetail.h +++ b/mlir/lib/Dialect/SCF/Transforms/PassDetail.h @@ -22,6 +22,10 @@ namespace arith { class ArithmeticDialect; } // end namespace arith +namespace bufferization { +class BufferizationDialect; +} // end namespace bufferization + namespace memref { class MemRefDialect; } // end namespace memref diff --git a/mlir/lib/Dialect/Shape/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Shape/Transforms/Bufferize.cpp index ea2f97d7d056..e295a2077928 100644 --- a/mlir/lib/Dialect/Shape/Transforms/Bufferize.cpp +++ b/mlir/lib/Dialect/Shape/Transforms/Bufferize.cpp @@ -8,6 +8,7 @@ #include "mlir/Transforms/Bufferize.h" #include "PassDetail.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/Shape/Transforms/Passes.h" #include "mlir/Pass/Pass.h" diff --git a/mlir/lib/Dialect/Shape/Transforms/PassDetail.h b/mlir/lib/Dialect/Shape/Transforms/PassDetail.h index c7796d4ba82c..6f130c808b0e 100644 --- a/mlir/lib/Dialect/Shape/Transforms/PassDetail.h +++ b/mlir/lib/Dialect/Shape/Transforms/PassDetail.h @@ -13,6 +13,10 @@ namespace mlir { +namespace bufferization { +class BufferizationDialect; +} // end namespace bufferization + namespace memref { class MemRefDialect; } // end namespace memref diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp index 88c0561521d7..0dd611df0a51 100644 --- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp @@ -14,6 +14,7 @@ // //===----------------------------------------------------------------------===// +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" @@ -659,7 +660,7 @@ class SparseTensorConvertConverter : public OpConversionPattern { insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind); rewriter.create(loc); rewriter.setInsertionPointAfter(whileOp); - rewriter.replaceOpWithNewOp(op, resType, dst); + rewriter.replaceOpWithNewOp(op, resType, dst); return success(); } if (!encDst && !encSrc) { diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp index ae7dd0c2dd4d..5e5d056419b2 100644 --- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp @@ -6,6 +6,7 @@ // //===----------------------------------------------------------------------===// +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" @@ -120,8 +121,9 @@ struct SparseTensorConversionPass target.addLegalOp(); - target.addLegalDialect(); + target + .addLegalDialect(); // Populate with rules and apply rewriting rules. populateFuncOpTypeConversionPattern(patterns, converter); populateCallOpTypeConversionPattern(patterns, converter); diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp index 676c86ec2f71..3b7a0cfd41e0 100644 --- a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp @@ -12,6 +12,7 @@ #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" @@ -457,7 +458,7 @@ static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, // the major advantage that the sparse kernel only updates the nonzero // positions for the output tensor. if (isInPlace(tensor)) - return rewriter.create(loc, denseTp, tensor); + return rewriter.create(loc, denseTp, tensor); // By default, a new buffer is allocated which is initialized to the // tensor defined in the outs() clause. This is always correct but // introduces a dense initialization component that may negatively @@ -472,7 +473,7 @@ static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, rewriter.create(loc, zero, alloc); return alloc; } - Value init = rewriter.create(loc, denseTp, tensor); + Value init = rewriter.create(loc, denseTp, tensor); Value alloc = rewriter.create(loc, denseTp, args); rewriter.create(loc, init, alloc); return alloc; @@ -532,7 +533,7 @@ static void genBuffers(Merger &merger, CodeGen &codegen, auto denseTp = MemRefType::get(shape, elementType); if (tensor < op.getNumInputs()) codegen.buffers[tensor] = - rewriter.create(loc, denseTp, t->get()); + rewriter.create(loc, denseTp, t->get()); else codegen.buffers[tensor] = genOutputBuffer(codegen, rewriter, op, denseTp, args); @@ -1466,7 +1467,7 @@ static void genResult(Merger &merger, CodeGen &codegen, // To rematerialize an non-annotated tensor, simply load it // from the bufferized value. Value val = codegen.buffers.back(); // value array - rewriter.replaceOpWithNewOp(op, resType, val); + rewriter.replaceOpWithNewOp(op, resType, val); } } diff --git a/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp b/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp index 1c7eb609c9d0..7df7434a02d0 100644 --- a/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp +++ b/mlir/lib/Dialect/StandardOps/Transforms/Bufferize.cpp @@ -12,6 +12,7 @@ #include "mlir/Transforms/Bufferize.h" #include "PassDetail.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/SCF.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" diff --git a/mlir/lib/Dialect/StandardOps/Transforms/FuncBufferize.cpp b/mlir/lib/Dialect/StandardOps/Transforms/FuncBufferize.cpp index 1b07ccd9c1ed..6140723875c4 100644 --- a/mlir/lib/Dialect/StandardOps/Transforms/FuncBufferize.cpp +++ b/mlir/lib/Dialect/StandardOps/Transforms/FuncBufferize.cpp @@ -11,7 +11,7 @@ //===----------------------------------------------------------------------===// #include "PassDetail.h" -#include "mlir/Dialect/MemRef/IR/MemRef.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" #include "mlir/Dialect/StandardOps/Transforms/Passes.h" @@ -42,7 +42,8 @@ struct FuncBufferizePass : public FuncBufferizeBase { populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter); populateReturnOpTypeConversionPattern(patterns, typeConverter); - target.addLegalOp(); + target.addLegalOp(); target.markUnknownOpDynamicallyLegal([&](Operation *op) { return isNotBranchOpInterfaceOrReturnLikeOp(op) || diff --git a/mlir/lib/Dialect/StandardOps/Transforms/PassDetail.h b/mlir/lib/Dialect/StandardOps/Transforms/PassDetail.h index 7cff00a0a06c..38bf42c567d4 100644 --- a/mlir/lib/Dialect/StandardOps/Transforms/PassDetail.h +++ b/mlir/lib/Dialect/StandardOps/Transforms/PassDetail.h @@ -16,6 +16,10 @@ namespace mlir { class AtomicRMWOp; +namespace bufferization { +class BufferizationDialect; +} // end namespace bufferization + namespace memref { class MemRefDialect; } // end namespace memref diff --git a/mlir/lib/Dialect/StandardOps/Transforms/TensorConstantBufferize.cpp b/mlir/lib/Dialect/StandardOps/Transforms/TensorConstantBufferize.cpp index 7c921774b84b..1b7f10f8cbf8 100644 --- a/mlir/lib/Dialect/StandardOps/Transforms/TensorConstantBufferize.cpp +++ b/mlir/lib/Dialect/StandardOps/Transforms/TensorConstantBufferize.cpp @@ -11,6 +11,7 @@ //===----------------------------------------------------------------------===// #include "PassDetail.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/StandardOps/Transforms/Passes.h" diff --git a/mlir/lib/Dialect/Tensor/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Tensor/Transforms/Bufferize.cpp index cc9fdf371f0d..3e31016962af 100644 --- a/mlir/lib/Dialect/Tensor/Transforms/Bufferize.cpp +++ b/mlir/lib/Dialect/Tensor/Transforms/Bufferize.cpp @@ -13,6 +13,7 @@ #include "mlir/Transforms/Bufferize.h" #include "PassDetail.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/SCF.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" diff --git a/mlir/lib/Dialect/Tensor/Transforms/PassDetail.h b/mlir/lib/Dialect/Tensor/Transforms/PassDetail.h index 4850676c0839..5c95f2434795 100644 --- a/mlir/lib/Dialect/Tensor/Transforms/PassDetail.h +++ b/mlir/lib/Dialect/Tensor/Transforms/PassDetail.h @@ -13,6 +13,10 @@ namespace mlir { +namespace bufferization { +class BufferizationDialect; +} // end namespace bufferization + namespace memref { class MemRefDialect; } // end namespace memref diff --git a/mlir/lib/Dialect/Vector/VectorTransferPermutationMapRewritePatterns.cpp b/mlir/lib/Dialect/Vector/VectorTransferPermutationMapRewritePatterns.cpp index a27ebfc8e5c6..e8817e71ce2a 100644 --- a/mlir/lib/Dialect/Vector/VectorTransferPermutationMapRewritePatterns.cpp +++ b/mlir/lib/Dialect/Vector/VectorTransferPermutationMapRewritePatterns.cpp @@ -13,6 +13,7 @@ #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" +#include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Vector/VectorTransforms.h" #include "mlir/Interfaces/VectorInterfaces.h" diff --git a/mlir/lib/Transforms/BufferDeallocation.cpp b/mlir/lib/Transforms/BufferDeallocation.cpp index 9b020c7ef6fc..dd33661574d3 100644 --- a/mlir/lib/Transforms/BufferDeallocation.cpp +++ b/mlir/lib/Transforms/BufferDeallocation.cpp @@ -53,6 +53,7 @@ #include "PassDetail.h" #include "mlir/Dialect/Bufferization/IR/AllocationOpInterface.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/IR/Operation.h" @@ -581,7 +582,7 @@ private: /// Builds a clone operation compatible with the given allocation value. If /// there is no registered AllocationOpInterface implementation for the given /// value (e.g. in the case of a function parameter), this method builds a - /// memref::CloneOp. + /// bufferization::CloneOp. FailureOr buildClone(Operation *op, Value alloc) { OpBuilder builder(op); auto it = aliasToAllocations.find(alloc); @@ -596,7 +597,8 @@ private: "are not supported"); } // Build a "default" CloneOp for unknown allocation sources. - return builder.create(alloc.getLoc(), alloc).getResult(); + return builder.create(alloc.getLoc(), alloc) + .getResult(); } /// The dominator info to find the appropriate start operation to move the @@ -618,14 +620,17 @@ private: // BufferDeallocationPass //===----------------------------------------------------------------------===// -template struct DefaultAllocationInterface : public bufferization::AllocationOpInterface::ExternalModel< - DefaultAllocationInterface, T> { + DefaultAllocationInterface, memref::AllocOp> { static Optional buildDealloc(OpBuilder &builder, Value alloc) { return builder.create(alloc.getLoc(), alloc) .getOperation(); } + static Optional buildClone(OpBuilder &builder, Value alloc) { + return builder.create(alloc.getLoc(), alloc) + .getResult(); + } }; /// The actual buffer deallocation pass that inserts and moves dealloc nodes @@ -633,11 +638,9 @@ struct DefaultAllocationInterface /// necessary. It uses the algorithm described at the top of the file. struct BufferDeallocationPass : BufferDeallocationBase { void getDependentDialects(DialectRegistry ®istry) const override { + registry.insert(); registry.insert(); - registry.addOpInterface>(); - registry.addOpInterface>(); + registry.addOpInterface(); } void runOnFunction() override { diff --git a/mlir/lib/Transforms/Bufferize.cpp b/mlir/lib/Transforms/Bufferize.cpp index 27d27c0199c7..097ac1c8881f 100644 --- a/mlir/lib/Transforms/Bufferize.cpp +++ b/mlir/lib/Transforms/Bufferize.cpp @@ -8,7 +8,7 @@ #include "mlir/Transforms/Bufferize.h" #include "PassDetail.h" -#include "mlir/Dialect/MemRef/IR/MemRef.h" +#include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/IR/Operation.h" #include "mlir/Transforms/Passes.h" @@ -22,7 +22,7 @@ static Value materializeTensorLoad(OpBuilder &builder, TensorType type, ValueRange inputs, Location loc) { assert(inputs.size() == 1); assert(inputs[0].getType().isa()); - return builder.create(loc, type, inputs[0]); + return builder.create(loc, type, inputs[0]); } /// Registers conversions into BufferizeTypeConverter @@ -43,22 +43,23 @@ BufferizeTypeConverter::BufferizeTypeConverter() { ValueRange inputs, Location loc) -> Value { assert(inputs.size() == 1); assert(inputs[0].getType().isa()); - return builder.create(loc, type, inputs[0]); + return builder.create(loc, type, inputs[0]); }); } void mlir::populateBufferizeMaterializationLegality(ConversionTarget &target) { - target.addLegalOp(); + target.addLegalOp(); } namespace { // In a finalizing bufferize conversion, we know that all tensors have been // converted to memrefs, thus, this op becomes an identity. -class BufferizeTensorLoadOp : public OpConversionPattern { +class BufferizeTensorLoadOp + : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult - matchAndRewrite(memref::TensorLoadOp op, OpAdaptor adaptor, + matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { rewriter.replaceOp(op, adaptor.memref()); return success(); @@ -69,11 +70,11 @@ public: namespace { // In a finalizing bufferize conversion, we know that all tensors have been // converted to memrefs, thus, this op becomes an identity. -class BufferizeCastOp : public OpConversionPattern { +class BufferizeCastOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult - matchAndRewrite(memref::BufferCastOp op, OpAdaptor adaptor, + matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { rewriter.replaceOp(op, adaptor.tensor()); return success(); diff --git a/mlir/lib/Transforms/CMakeLists.txt b/mlir/lib/Transforms/CMakeLists.txt index b75b2a45ea31..d6149e47007c 100644 --- a/mlir/lib/Transforms/CMakeLists.txt +++ b/mlir/lib/Transforms/CMakeLists.txt @@ -32,7 +32,7 @@ add_mlir_library(MLIRTransforms LINK_LIBS PUBLIC MLIRAffine MLIRAnalysis - MLIRAllocationOpInterface + MLIRBufferization MLIRCopyOpInterface MLIRLoopLikeInterface MLIRMemRef diff --git a/mlir/test/Dialect/Arithmetic/bufferize.mlir b/mlir/test/Dialect/Arithmetic/bufferize.mlir index 0658ba4183a3..6038b3e47699 100644 --- a/mlir/test/Dialect/Arithmetic/bufferize.mlir +++ b/mlir/test/Dialect/Arithmetic/bufferize.mlir @@ -7,8 +7,8 @@ func @index_cast(%tensor: tensor, %scalar: i32) -> (tensor, index) { %index_scalar = arith.index_cast %scalar : i32 to index return %index_tensor, %index_scalar : tensor, index } -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref // CHECK-NEXT: %[[INDEX_MEMREF:.*]] = arith.index_cast %[[MEMREF]] // CHECK-SAME: memref to memref -// CHECK-NEXT: %[[INDEX_TENSOR:.*]] = memref.tensor_load %[[INDEX_MEMREF]] +// CHECK-NEXT: %[[INDEX_TENSOR:.*]] = bufferization.to_tensor %[[INDEX_MEMREF]] // CHECK: return %[[INDEX_TENSOR]] diff --git a/mlir/test/Dialect/Bufferization/canonicalize.mlir b/mlir/test/Dialect/Bufferization/canonicalize.mlir new file mode 100644 index 000000000000..7a4468ea767c --- /dev/null +++ b/mlir/test/Dialect/Bufferization/canonicalize.mlir @@ -0,0 +1,245 @@ +// RUN: mlir-opt %s -canonicalize --split-input-file \ +// RUN: -allow-unregistered-dialect |\ +// RUN: FileCheck %s + +// Basic folding of to_tensor(to_memref(t)) -> t +// CHECK-LABEL: func @tensor_load_of_buffer_cast( +func @tensor_load_of_buffer_cast(%arg0: tensor) -> tensor { + %0 = bufferization.to_memref %arg0 : memref + %1 = bufferization.to_tensor %0 : memref + return %1 : tensor +} +// CHECK-SAME: %[[TENSOR:.*]]: tensor) -> tensor { +// CHECK: return %[[TENSOR]] + +// ----- + +// Basic folding of to_memref(to_tensor(m)) -> m +// CHECK-LABEL: func @buffer_cast_of_tensor_load( +func @buffer_cast_of_tensor_load(%arg0: memref) -> memref { + %0 = bufferization.to_tensor %arg0 : memref + %1 = bufferization.to_memref %0 : memref + return %1 : memref +} +// CHECK-SAME: %[[MEMREF:.*]]: memref) -> memref { +// CHECK: return %[[MEMREF]] + +// ----- + +// If the memrefs are not the same type, don't fold them. +// If the memrefs are not cast-compatible (e.g. different address space), don't +// canonicalize them either. +// CHECK-LABEL: func @no_fold_buffer_cast_of_tensor_load( +// CHECK-SAME: %[[MEMREF_ADDRSPACE2:.*]]: memref) +// CHECK-SAME: -> memref { +// CHECK: %[[TENSOR:.*]] = bufferization.to_tensor +// CHECK-SAME: %[[MEMREF_ADDRSPACE2]] : memref +// CHECK: %[[MEMREF_ADDRSPACE7:.*]] = bufferization.to_memref +// CHECK-SAME: %[[TENSOR]] : memref +// CHECK: return %[[MEMREF_ADDRSPACE7]] +func @no_fold_buffer_cast_of_tensor_load(%arg0: memref) + -> memref { + %0 = bufferization.to_tensor %arg0 : memref + %1 = bufferization.to_memref %0 : memref + return %1 : memref +} + +// ----- + +// CHECK-DAG: #[[$OFF_3:[a-z0-9]+]] = affine_map<(d0) -> (d0 + 3)> +// CHECK-DAG: #[[$OFF_UNK:[a-z0-9]+]] = affine_map<(d0)[s0] -> (d0 + s0)> + +// If the memrefs are definitely cast-compatible, canonicalize to +// cast. +// CHECK-LABEL: func @canonicalize_buffer_cast_of_tensor_load( +// CHECK-SAME: %[[M:.*]]: memref) +// CHECK-SAME: -> memref { +// CHECK-NOT: bufferization.to_tensor +// CHECK-NOT: bufferization.to_memref +// CHECK: %[[R:.*]] = memref.cast %[[M]] +// CHECK-SAME: memref to memref +// CHECK: return %[[R]] +func @canonicalize_buffer_cast_of_tensor_load( + %arg0: memref) + -> memref +{ + %0 = bufferization.to_tensor %arg0 : memref + %1 = bufferization.to_memref %0 : memref + return %1 : memref +} + +// ----- + +// CHECK-DAG: #[[$OFF_UNK:[a-z0-9]+]] = affine_map<(d0)[s0] -> (d0 + s0)> +// CHECK-DAG: #[[$OFF_3:[a-z0-9]+]] = affine_map<(d0) -> (d0 + 3)> + +// If the memrefs are potentially cast-compatible, canonicalize to +// copy. +// CHECK-LABEL: func @canonicalize_buffer_cast_of_tensor_load_to_copy( +func @canonicalize_buffer_cast_of_tensor_load_to_copy( + %arg0: memref) + -> memref { + %0 = bufferization.to_tensor %arg0 : memref + %1 = bufferization.to_memref %0 : memref + return %1 : memref +} +// CHECK-SAME: %[[M:.*]]: memref) +// CHECK-SAME: -> memref { +// CHECK-NOT: bufferization.to_tensor +// CHECK-NOT: bufferization.to_memref +// CHECK: %[[C0:.*]] = arith.constant 0 : index +// CHECK: %[[DIM:.*]] = memref.dim %[[M]], %[[C0]] : memref +// CHECK: %[[ALLOC:.*]] = memref.alloc(%[[DIM]]) : memref +// CHECK: memref.copy %[[M]], %[[ALLOC]] +// CHECK-SAME: memref to memref +// CHECK: return %[[ALLOC]] + +// ----- + + +// Basic folding of tensor.dim(to_tensor(m)) -> memref.dim(m). +// CHECK-LABEL: func @dim_of_tensor_load( +// CHECK-SAME: %[[MEMREF:[0-9a-z]*]]: memref +// CHECK: %[[C0:.*]] = arith.constant 0 +// CHECK: %[[D:.*]] = memref.dim %[[MEMREF]], %[[C0]] +// CHECK: return %[[D]] : index +func @dim_of_tensor_load(%arg0: memref) -> index { + %c0 = arith.constant 0 : index + %0 = bufferization.to_tensor %arg0 : memref + %1 = tensor.dim %0, %c0 : tensor + return %1 : index +} + +// ----- + +// CHECK-LABEL: @clone_before_dealloc +func @clone_before_dealloc(%arg0: memref) -> memref { + %0 = bufferization.clone %arg0 : memref to memref + memref.dealloc %arg0 : memref + return %0 : memref +} +// CHECK-SAME: %[[ARG:.*]]: memref +// CHECK-NEXT: return %[[ARG]] + +// ----- + +// CHECK-LABEL: @clone_before_dealloc +func @clone_before_dealloc(%arg0: memref) -> memref { + %0 = bufferization.clone %arg0 : memref to memref + "use"(%0) : (memref) -> () + memref.dealloc %0 : memref + return %arg0 : memref +} +// CHECK-SAME: %[[ARG:.*]]: memref +// CHECK-NEXT: "use"(%arg0) +// CHECK-NEXT: return %[[ARG]] + +// ----- + +// CHECK-LABEL: @clone_after_cast +func @clone_after_cast(%arg0: memref) -> memref<32xf32> { + %0 = memref.cast %arg0 : memref to memref<32xf32> + %1 = bufferization.clone %0 : memref<32xf32> to memref<32xf32> + return %1 : memref<32xf32> +} +// CHECK-SAME: %[[ARG:.*]]: memref +// CHECK-NEXT: bufferization.clone %[[ARG]] : memref to memref<32xf32> +// CHECK-NOT: memref.cast + +// ----- + +// CHECK-LABEL: @clone_and_cast +func @clone_and_cast(%arg0: memref) -> memref<32xf32> { + %0 = bufferization.clone %arg0 : memref to memref<32xf32> + memref.dealloc %arg0 : memref + return %0 : memref<32xf32> +} +// CHECK-SAME: %[[ARG:.*]]: memref +// CHECK-NEXT: %[[RES:.*]] = memref.cast %[[ARG]] +// CHECK-SAME: memref to memref<32xf32> +// CHECK-NEXT: return %[[RES]] + +// ----- + +// CHECK-LABEL: @alias_is_freed +func @alias_is_freed(%arg0 : memref) { + %0 = memref.cast %arg0 : memref to memref<32xf32> + %1 = bufferization.clone %0 : memref<32xf32> to memref<32xf32> + memref.dealloc %arg0 : memref + "use"(%1) : (memref<32xf32>) -> () + memref.dealloc %1 : memref<32xf32> + return +} +// CHECK: bufferization.clone +// CHECK: memref.dealloc +// CHECK: memref.dealloc + +// ----- + +// Verify SimplifyClones skips clones with multiple deallocations. +// CHECK-LABEL: @clone_multiple_dealloc_of_source +func @clone_multiple_dealloc_of_source(%arg0: memref) -> memref { + %0 = bufferization.clone %arg0 : memref to memref + "if_else"() ({ + memref.dealloc %arg0 : memref + }, { + memref.dealloc %arg0 : memref + }) : () -> () + return %0 : memref +} +// CHECK-SAME: %[[ARG:.*]]: memref +// CHECK-NEXT: %[[RES:.*]] = bufferization.clone %[[ARG]] +// CHECK: memref.dealloc %[[ARG]] +// CHECK: memref.dealloc %[[ARG]] +// CHECK: return %[[RES]] + +// ----- + +// CHECK-LABEL: @clone_multiple_dealloc_of_clone +// CHECK-SAME: %[[ARG:.*]]: memref +func @clone_multiple_dealloc_of_clone(%arg0: memref) -> memref { + // CHECK-NEXT: %[[CLONE:.*]] = bufferization.clone %[[ARG]] + // CHECK: memref.dealloc %[[CLONE]] + // CHECK: memref.dealloc %[[CLONE]] + // CHECK: return %[[ARG]] + %0 = bufferization.clone %arg0 : memref to memref + "use"(%0) : (memref) -> () + "if_else"() ({ + memref.dealloc %0 : memref + }, { + memref.dealloc %0 : memref + }) : () -> () + return %arg0 : memref +} + +// ----- + + +// CHECK-LABEL: func @tensor_cast_to_memref +// CHECK-SAME: %[[ARG0:.+]]: tensor<4x6x16x32xi8> +func @tensor_cast_to_memref(%arg0 : tensor<4x6x16x32xi8>) -> + memref { + %0 = tensor.cast %arg0 : tensor<4x6x16x32xi8> to tensor + %1 = bufferization.to_memref %0 : memref + return %1 : memref +} +// CHECK: %[[M:.+]] = bufferization.to_memref %[[ARG0]] : memref<4x6x16x32xi8> +// CHECK: %[[M1:.+]] = memref.cast %[[M]] +// CHECK-SAME: memref<4x6x16x32xi8> to memref +// CHECK: return %[[M1]] : memref + +// ----- + +// Folding of memref.load(to_memref(%v, %idxs)) -> tensor.extract(%v, %idx) +// CHECK-LABEL: func @load_from_buffer_cast( +func @load_from_buffer_cast(%arg0: index, %arg1: index, + %arg2: tensor) -> f32 { + %0 = bufferization.to_memref %arg2 : memref + %1 = memref.load %0[%arg0, %arg1] : memref + return %1 : f32 +} +// CHECK-SAME: %[[IDX0:[0-9a-z]+]]: index, %[[IDX1:[0-9a-z]+]]: index +// CHECK-SAME: %[[TENSOR:[0-9a-z]+]]: tensor +// CHECK: %[[RES:.*]] = tensor.extract %[[TENSOR]][%[[IDX0]], %[[IDX1]]] +// CHECK-NOT: memref.load +// CHECK: return %[[RES]] : f32 diff --git a/mlir/test/Dialect/Bufferization/ops.mlir b/mlir/test/Dialect/Bufferization/ops.mlir new file mode 100644 index 000000000000..b70bce1b8b2d --- /dev/null +++ b/mlir/test/Dialect/Bufferization/ops.mlir @@ -0,0 +1,24 @@ +// RUN: mlir-opt %s | mlir-opt | FileCheck %s +// RUN: mlir-opt %s --mlir-print-op-generic | mlir-opt | FileCheck %s + +// CHECK-LABEL: func @test_clone +func @test_clone(%buf : memref<*xf32>) -> memref<*xf32> { + %clone = bufferization.clone %buf : memref<*xf32> to memref<*xf32> + return %clone : memref<*xf32> +} + +// CHECK-LABEL: test_to_memref +func @test_to_memref(%arg0: tensor, %arg1: tensor<*xi64>) + -> (memref (d0 + 7)>>, memref<*xi64, 1>) { + %0 = bufferization.to_memref %arg0 + : memref (d0 + 7)>> + %1 = bufferization.to_memref %arg1 + : memref<*xi64, 1> + return %0, %1 : memref (d0 + 7)>>, memref<*xi64, 1> +} + +// CHECK-LABEL: func @test_to_tensor +func @test_to_tensor(%buf : memref<2xf32>) -> tensor<2xf32> { + %tensor = bufferization.to_tensor %buf : memref<2xf32> + return %tensor : tensor<2xf32> +} diff --git a/mlir/test/Dialect/Linalg/bufferize.mlir b/mlir/test/Dialect/Linalg/bufferize.mlir index 9978eb510ff9..9775556af2f4 100644 --- a/mlir/test/Dialect/Linalg/bufferize.mlir +++ b/mlir/test/Dialect/Linalg/bufferize.mlir @@ -3,7 +3,8 @@ #map0 = affine_map<(d0) -> (d0)> // In-depth checking of a basic case, this is testing -// - memref.buffer_cast / memref.tensor_load materializations are properly inserted +// - bufferization.to_memref / bufferization.to_tensor materializations are +// properly inserted // - payload is correctly carried over // - affine maps are correctly carried over // Later tests will not check all these details. @@ -11,7 +12,7 @@ // CHECK: #map = affine_map<(d0) -> (d0)> // CHECK-LABEL: func @basic( // CHECK-SAME: %[[TENSOR:.*]]: tensor<4xf32>) -> tensor<4xf32> { -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref<4xf32> +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<4xf32> // CHECK: %[[RESULT_MEMREF:.*]] = memref.alloc() : memref<4xf32> // CHECK: linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} // CHECK-SAME: ins(%[[MEMREF]] : memref<4xf32>) @@ -20,7 +21,7 @@ // CHECK: %[[DIM1:.*]] = math.exp %[[RESULT1]] : f32 // CHECK: linalg.yield %[[DIM1]] : f32 // CHECK: } -// CHECK: %[[RESULT:.*]] = memref.tensor_load %[[RESULT_MEMREF]] : memref<4xf32> +// CHECK: %[[RESULT:.*]] = bufferization.to_tensor %[[RESULT_MEMREF]] : memref<4xf32> // CHECK: return %[[RESULT]] : tensor<4xf32> func @basic(%arg0: tensor<4xf32>) -> tensor<4xf32> { %0 = linalg.generic { @@ -45,7 +46,7 @@ func @basic(%arg0: tensor<4xf32>) -> tensor<4xf32> { // CHECK: #map = affine_map<(d0) -> (d0)> // CHECK-LABEL: func @init_tensor( // CHECK-SAME: %[[IN:.*]]: tensor, %[[SIZE:.*]]: index) -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[IN]] : memref +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[IN]] : memref // CHECK: %[[OUT_BUF:.*]] = memref.alloc(%[[SIZE]]) : memref // CHECK: linalg.generic // CHECK-SAME: ins(%[[MEMREF]] : memref) @@ -100,7 +101,7 @@ func @multiple_results(%arg0: tensor<4xf32>) -> (tensor<4xf32>, tensor<4xf32>) { // CHECK-SAME: %[[ARG:.*]]: tensor // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index -// CHECK: %[[MEMREF_ARG:.*]] = memref.buffer_cast %[[ARG]] : memref +// CHECK: %[[MEMREF_ARG:.*]] = bufferization.to_memref %[[ARG]] : memref // CHECK: %[[DIM0:.*]] = tensor.dim %[[ARG]], %[[C0]] : tensor // CHECK: %[[DIM1:.*]] = tensor.dim %[[ARG]], %[[C1]] : tensor // CHECK: %[[RESULT0:.*]] = memref.alloc(%[[DIM0]], %[[DIM1]]) : memref @@ -139,8 +140,8 @@ func @dynamic_results(%arg0: tensor) // CHECK-LABEL: func @generic_with_init_tensor( // CHECK-SAME: %[[ARG0_TENSOR:.*]]: tensor<2x3x4xvector<3x4xi4>>, // CHECK-SAME: %[[ARG1_TENSOR:.*]]: tensor<3x2xf32>) -> tensor<3x2xf32> { -// CHECK-DAG: %[[ARG0_MEMREF:.*]] = memref.buffer_cast %[[ARG0_TENSOR]] : memref<2x3x4xvector<3x4xi4>> -// CHECK-DAG: %[[ARG1_MEMREF:.*]] = memref.buffer_cast %[[ARG1_TENSOR]] : memref<3x2xf32> +// CHECK-DAG: %[[ARG0_MEMREF:.*]] = bufferization.to_memref %[[ARG0_TENSOR]] : memref<2x3x4xvector<3x4xi4>> +// CHECK-DAG: %[[ARG1_MEMREF:.*]] = bufferization.to_memref %[[ARG1_TENSOR]] : memref<3x2xf32> // CHECK: %[[INIT_BUFFER:.*]] = memref.alloc() : memref<3x2xf32> // CHECK: linalg.copy(%[[ARG1_MEMREF]], %[[INIT_BUFFER]]) : memref<3x2xf32>, memref<3x2xf32> // CHECK: linalg.generic @@ -169,7 +170,7 @@ func private @make_index() -> index // CHECK-LABEL: func @bufferize_slice( // CHECK-SAME: %[[T:[0-9a-z]*]]: tensor func @bufferize_slice(%t : tensor) -> (tensor<2x3xf32>, tensor<2x?xf32>) { - // CHECK: %[[M:.*]] = memref.buffer_cast %[[T]] : memref + // CHECK: %[[M:.*]] = bufferization.to_memref %[[T]] : memref // CHECK: %[[IDX:.*]] = call @make_index() : () -> index %i0 = call @make_index() : () -> index @@ -178,14 +179,14 @@ func @bufferize_slice(%t : tensor) -> (tensor<2x3xf32>, tensor<2x?xf32> // CHECK-NEXT: %[[SM0:.*]] = memref.subview %[[M]][0, 0] [2, 3] [1, 1] // CHECK-SAME: memref to memref<2x3xf32, #[[$MAP0]]> // CHECK-NEXT: linalg.copy(%[[SM0]], %[[A0]]) : memref<2x3xf32, #[[$MAP0]]>, memref<2x3xf32> - // CHECK-NEXT: %[[RT0:.*]] = memref.tensor_load %[[A0]] : memref<2x3xf32> + // CHECK-NEXT: %[[RT0:.*]] = bufferization.to_tensor %[[A0]] : memref<2x3xf32> %st0 = tensor.extract_slice %t[0, 0][2, 3][1, 1] : tensor to tensor<2x3xf32> // CHECK-NEXT: %[[A1:.*]] = memref.alloc(%[[IDX]]) : memref<2x?xf32> // CHECK-NEXT: %[[SM1:.*]] = memref.subview %[[M]][0, %[[IDX]]] [2, %[[IDX]]] [1, 2] // CHECK-SAME: memref to memref<2x?xf32, #[[$MAP1]]> // CHECK-NEXT: linalg.copy(%[[SM1]], %[[A1]]) : memref<2x?xf32, #[[$MAP1]]>, memref<2x?xf32> - // CHECK-NEXT: %[[RT1:.*]] = memref.tensor_load %[[A1]] : memref<2x?xf32> + // CHECK-NEXT: %[[RT1:.*]] = bufferization.to_tensor %[[A1]] : memref<2x?xf32> %st1 = tensor.extract_slice %t[0, %i0][2, %i0][1, 2] : tensor to tensor<2x?xf32> // CHECK-NEXT: return %[[RT0]], %[[RT1]] @@ -205,9 +206,9 @@ func private @make_index() -> index // CHECK-SAME: %[[ST1:[0-9a-z]*]]: tensor<2x?xf32> func @bufferize_insert_slice(%t : tensor, %st0 : tensor<2x3xf32>, %st1 : tensor<2x?xf32>) -> (tensor, tensor) { - // CHECK-DAG: %[[M:.*]] = memref.buffer_cast %[[T]] : memref - // CHECK-DAG: %[[SM0:.*]] = memref.buffer_cast %[[ST0]] : memref<2x3xf32> - // CHECK-DAG: %[[SM1:.*]] = memref.buffer_cast %[[ST1]] : memref<2x?xf32> + // CHECK-DAG: %[[M:.*]] = bufferization.to_memref %[[T]] : memref + // CHECK-DAG: %[[SM0:.*]] = bufferization.to_memref %[[ST0]] : memref<2x3xf32> + // CHECK-DAG: %[[SM1:.*]] = bufferization.to_memref %[[ST1]] : memref<2x?xf32> %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index @@ -224,7 +225,7 @@ func @bufferize_insert_slice(%t : tensor, %st0 : tensor<2x3xf32>, %st1 // CHECK-NEXT: %[[SUBVIEW0:.*]] = memref.subview %[[M_COPY0]][0, 0] [2, 3] [1, 1] // CHECK-SAME: memref to memref<2x3xf32, #[[$MAP0]]> // CHECK-NEXT: linalg.copy(%[[SM0]], %[[SUBVIEW0]]) : memref<2x3xf32>, memref<2x3xf32, #[[$MAP0]]> - // CHECK-NEXT: %[[RT0:.*]] = memref.tensor_load %[[M_COPY0]] : memref + // CHECK-NEXT: %[[RT0:.*]] = bufferization.to_tensor %[[M_COPY0]] : memref %t0 = tensor.insert_slice %st0 into %t[0, 0][2, 3][1, 1] : tensor<2x3xf32> into tensor // CHECK-NEXT: %[[M_COPY1:.*]] = memref.alloc(%[[DIM0]], %[[DIM1]]) : memref @@ -232,7 +233,7 @@ func @bufferize_insert_slice(%t : tensor, %st0 : tensor<2x3xf32>, %st1 // CHECK-NEXT: %[[SUBVIEW1:.*]] = memref.subview %[[M_COPY1]][0, %[[IDX]]] [2, %[[IDX]]] [1, 2] // CHECK-SAME: memref to memref<2x?xf32, #[[$MAP1]]> // CHECK-NEXT: linalg.copy(%[[SM1]], %[[SUBVIEW1]]) : memref<2x?xf32>, memref<2x?xf32, #[[$MAP1]]> - // CHECK-NEXT: %[[RT1:.*]] = memref.tensor_load %[[M_COPY1]] : memref + // CHECK-NEXT: %[[RT1:.*]] = bufferization.to_tensor %[[M_COPY1]] : memref %t1 = tensor.insert_slice %st1 into %t[0, %i0][2, %i0][1, 2] : tensor<2x?xf32> into tensor // CHECK: return %[[RT0]], %[[RT1]] @@ -245,9 +246,9 @@ func @bufferize_insert_slice(%t : tensor, %st0 : tensor<2x3xf32>, %st1 // CHECK-SAME: %[[IN:.*]]: tensor func @bufferize_fill(%arg0: tensor) -> tensor { %c0 = arith.constant 0.0 : f32 - // CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[IN]] : memref + // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[IN]] : memref // CHECK: linalg.fill(%cst, %[[MEMREF]]) : f32, memref - // CHECK: %[[TENSOR:.*]] = memref.tensor_load %[[MEMREF]] : memref + // CHECK: %[[TENSOR:.*]] = bufferization.to_tensor %[[MEMREF]] : memref // CHECK: return %[[TENSOR]] %0 = linalg.fill(%c0, %arg0) : f32, tensor -> tensor return %0 : tensor @@ -262,10 +263,10 @@ func @bufferize_tensor_collapse_shape(%arg0: tensor<4x5xf32>) -> tensor<20xf32> tensor<4x5xf32> into tensor<20xf32> return %out : tensor<20xf32> } -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[IN]] : memref<4x5xf32> +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[IN]] : memref<4x5xf32> // CHECK: %[[RESHAPE:.*]] = memref.collapse_shape %[[MEMREF]] {{\[}}[0, 1]] // CHECK-SAME: : memref<4x5xf32> into memref<20xf32> -// CHECK: %[[TENSOR:.*]] = memref.tensor_load %[[RESHAPE]] : memref<20xf32> +// CHECK: %[[TENSOR:.*]] = bufferization.to_tensor %[[RESHAPE]] : memref<20xf32> // CHECK: return %[[TENSOR]] // ----- @@ -287,7 +288,7 @@ func @pad_tensor_dynamic_shape(%arg0: tensor<4x?x2x?xf32>, %arg1: index) -> tens // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK: %[[IN_MEMREF:.*]] = memref.buffer_cast %[[IN]] : memref<4x?x2x?xf32> +// CHECK: %[[IN_MEMREF:.*]] = bufferization.to_memref %[[IN]] : memref<4x?x2x?xf32> // CHECK: %[[DIM1:.*]] = tensor.dim %[[IN]], %[[C1]] : tensor<4x?x2x?xf32> // CHECK: %[[OUT_DIM2:.*]] = arith.addi %[[OFFSET]], %[[C2]] : index // CHECK: %[[DIM3:.*]] = tensor.dim %[[IN]], %[[C3]] : tensor<4x?x2x?xf32> @@ -298,7 +299,7 @@ func @pad_tensor_dynamic_shape(%arg0: tensor<4x?x2x?xf32>, %arg1: index) -> tens // CHECK: linalg.copy(%[[FILLED]], %[[OUT]]) : memref<4x?x?x?xf32>, memref<4x?x?x?xf32> // CHECK: %[[INTERIOR:.*]] = memref.subview %[[OUT]][0, 0, %[[OFFSET]], 0] [4, %[[DIM1]], 2, %[[DIM3]]] [1, 1, 1, 1] : memref<4x?x?x?xf32> to memref<4x?x2x?xf32, #map> // CHECK: linalg.copy(%[[IN_MEMREF]], %[[INTERIOR]]) : memref<4x?x2x?xf32>, memref<4x?x2x?xf32, #map> -// CHECK: %[[OUT_TENSOR:.*]] = memref.tensor_load %[[OUT]] : memref<4x?x?x?xf32> +// CHECK: %[[OUT_TENSOR:.*]] = bufferization.to_tensor %[[OUT]] : memref<4x?x?x?xf32> // CHECK: return %[[OUT_TENSOR]] : tensor<4x?x?x?xf32> // CHECK: } @@ -328,6 +329,6 @@ func @bufferize_dot(%in: tensor<4xf32>, %out: tensor) -> tensor { return %dot : tensor // CHECK: linalg.dot ins(%{{.*}}, %{{.*}} : memref<4xf32>, memref<4xf32>) // CHECK-SAME: outs(%[[OUT:.*]] : memref) - // CHECK: %[[OUT_TENSOR:.*]] = memref.tensor_load %[[OUT]] : memref + // CHECK: %[[OUT_TENSOR:.*]] = bufferization.to_tensor %[[OUT]] : memref // CHECK: return %[[OUT_TENSOR]] } diff --git a/mlir/test/Dialect/Linalg/lower-pad-tensor.mlir b/mlir/test/Dialect/Linalg/lower-pad-tensor.mlir index ecf3d11f17e4..54bbfe28d065 100644 --- a/mlir/test/Dialect/Linalg/lower-pad-tensor.mlir +++ b/mlir/test/Dialect/Linalg/lower-pad-tensor.mlir @@ -5,12 +5,12 @@ // CHECK-LABEL: func @pad_tensor_with_memrefs func @pad_tensor_with_memrefs(%arg0: memref<1x28x28x1xf32>) -> memref<2x31x31x3xf32> { %cst = arith.constant 0.000000e+00 : f32 - %0 = memref.tensor_load %arg0 : memref<1x28x28x1xf32> + %0 = bufferization.to_tensor %arg0 : memref<1x28x28x1xf32> %1 = linalg.pad_tensor %0 low[1, 1, 1, 2] high[0, 2, 2, 0] { ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index): // no predecessors linalg.yield %cst : f32 } : tensor<1x28x28x1xf32> to tensor<2x31x31x3xf32> - %2 = memref.buffer_cast %1 : memref<2x31x31x3xf32> + %2 = bufferization.to_memref %1 : memref<2x31x31x3xf32> return %2 : memref<2x31x31x3xf32> } diff --git a/mlir/test/Dialect/MemRef/canonicalize.mlir b/mlir/test/Dialect/MemRef/canonicalize.mlir index b7569adfdc2e..71f4c3e53874 100644 --- a/mlir/test/Dialect/MemRef/canonicalize.mlir +++ b/mlir/test/Dialect/MemRef/canonicalize.mlir @@ -1,99 +1,5 @@ // RUN: mlir-opt %s -canonicalize --split-input-file -allow-unregistered-dialect | FileCheck %s -// Test case: Basic folding of memref.tensor_load(memref.buffer_cast(t)) -> t -// CHECK-LABEL: func @tensor_load_of_buffer_cast( -// CHECK-SAME: %[[TENSOR:.*]]: tensor) -> tensor { -// CHECK: return %[[TENSOR]] -func @tensor_load_of_buffer_cast(%arg0: tensor) -> tensor { - %0 = memref.buffer_cast %arg0 : memref - %1 = memref.tensor_load %0 : memref - return %1 : tensor -} - -// ----- - -// Test case: Basic folding of memref.buffer_cast(memref.tensor_load(m)) -> m -// CHECK-LABEL: func @buffer_cast_of_tensor_load( -// CHECK-SAME: %[[MEMREF:.*]]: memref) -> memref { -// CHECK: return %[[MEMREF]] -func @buffer_cast_of_tensor_load(%arg0: memref) -> memref { - %0 = memref.tensor_load %arg0 : memref - %1 = memref.buffer_cast %0 : memref - return %1 : memref -} - -// ----- - -// Test case: If the memrefs are not the same type, don't fold them. -// Test case: If the memrefs are not cast-compatible (e.g. different address space), -// don't canonicalize them either. -// CHECK-LABEL: func @no_fold_buffer_cast_of_tensor_load( -// CHECK-SAME: %[[MEMREF_ADDRSPACE2:.*]]: memref) -// CHECK-SAME: -> memref { -// CHECK: %[[TENSOR:.*]] = memref.tensor_load -// CHECK_SAME: %[[MEMREF_ADDRSPACE2]] : memref -// CHECK: %[[MEMREF_ADDRSPACE7:.*]] = memref.buffer_cast -// CHECK_SAME: %[[TENSOR]] : memref -// CHECK: return %[[MEMREF_ADDRSPACE7]] -func @no_fold_buffer_cast_of_tensor_load(%arg0: memref) -> memref { - %0 = memref.tensor_load %arg0 : memref - %1 = memref.buffer_cast %0 : memref - return %1 : memref -} - -// ----- - -// CHECK-DAG: #[[$OFF_3:[a-z0-9]+]] = affine_map<(d0) -> (d0 + 3)> -// CHECK-DAG: #[[$OFF_UNK:[a-z0-9]+]] = affine_map<(d0)[s0] -> (d0 + s0)> - -// Test case: If the memrefs are definitely cast-compatible, canonicalize to -// cast. -// CHECK-LABEL: func @canonicalize_buffer_cast_of_tensor_load( -// CHECK-SAME: %[[M:.*]]: memref) -// CHECK-SAME: -> memref { -// CHECK-NOT: memref.tensor_load -// CHECK-NOT: memref.buffer_cast -// CHECK: %[[R:.*]] = memref.cast %[[M]] -// CHECK-SAME: memref to memref -// CHECK: return %[[R]] -func @canonicalize_buffer_cast_of_tensor_load( - %arg0: memref) - -> memref -{ - %0 = memref.tensor_load %arg0 : memref - %1 = memref.buffer_cast %0 : memref - return %1 : memref -} - -// ----- - -// CHECK-DAG: #[[$OFF_UNK:[a-z0-9]+]] = affine_map<(d0)[s0] -> (d0 + s0)> -// CHECK-DAG: #[[$OFF_3:[a-z0-9]+]] = affine_map<(d0) -> (d0 + 3)> - -// Test case: If the memrefs are potentially cast-compatible, canonicalize to -// copy. -// CHECK-LABEL: func @canonicalize_buffer_cast_of_tensor_load_to_copy( -// CHECK-SAME: %[[M:.*]]: memref) -// CHECK-SAME: -> memref { -// CHECK-NOT: memref.tensor_load -// CHECK-NOT: memref.buffer_cast -// CHECK: %[[C0:.*]] = arith.constant 0 : index -// CHECK: %[[DIM:.*]] = memref.dim %[[M]], %[[C0]] : memref -// CHECK: %[[ALLOC:.*]] = memref.alloc(%[[DIM]]) : memref -// CHECK: memref.copy %[[M]], %[[ALLOC]] -// CHECK-SAME: memref to memref -// CHECK: return %[[ALLOC]] -func @canonicalize_buffer_cast_of_tensor_load_to_copy( - %arg0: memref) - -> memref -{ - %0 = memref.tensor_load %arg0 : memref - %1 = memref.buffer_cast %0 : memref - return %1 : memref -} - -// ----- - // CHECK-LABEL: func @subview_of_memcast // CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: memref<4x6x16x32xi8> // CHECK: %[[S:.+]] = memref.subview %arg0[0, 1, 0] [1, 1, 16] [1, 1, 1] : memref<4x6x16x32xi8> to memref<16x32xi8, #{{.*}}> @@ -216,107 +122,6 @@ func @multiple_reducing_dims_all_dynamic(%arg0 : memref to memref -// ----- - -// CHECK-LABEL: @clone_before_dealloc -// CHECK-SAME: %[[ARG:.*]]: memref -func @clone_before_dealloc(%arg0: memref) -> memref { - // CHECK-NEXT: return %[[ARG]] - %0 = memref.clone %arg0 : memref to memref - memref.dealloc %arg0 : memref - return %0 : memref -} - -// ----- - -// CHECK-LABEL: @clone_before_dealloc -// CHECK-SAME: %[[ARG:.*]]: memref -func @clone_before_dealloc(%arg0: memref) -> memref { - // CHECK-NEXT: "use"(%arg0) - // CHECK-NEXT: return %[[ARG]] - %0 = memref.clone %arg0 : memref to memref - "use"(%0) : (memref) -> () - memref.dealloc %0 : memref - return %arg0 : memref -} - -// ----- - -// CHECK-LABEL: @clone_after_cast -// CHECK-SAME: %[[ARG:.*]]: memref -func @clone_after_cast(%arg0: memref) -> memref<32xf32> { - // CHECK-NEXT: memref.clone %[[ARG]] : memref to memref<32xf32> - // CHECK-NOT: memref.cast - %0 = memref.cast %arg0 : memref to memref<32xf32> - %1 = memref.clone %0 : memref<32xf32> to memref<32xf32> - return %1 : memref<32xf32> -} - -// ----- - -// CHECK-LABEL: @clone_and_cast -// CHECK-SAME: %[[ARG:.*]]: memref -func @clone_and_cast(%arg0: memref) -> memref<32xf32> { - // CHECK-NEXT: %[[RES:.*]] = memref.cast %[[ARG]] : memref to memref<32xf32> - %0 = memref.clone %arg0 : memref to memref<32xf32> - // CHECK-NEXT: return %[[RES]] - memref.dealloc %arg0 : memref - return %0 : memref<32xf32> -} - -// ----- - -// CHECK-LABEL: @alias_is_freed -func @alias_is_freed(%arg0 : memref) { - // CHECK: memref.clone - // CHECK: memref.dealloc - // CHECK: memref.dealloc - %0 = memref.cast %arg0 : memref to memref<32xf32> - %1 = memref.clone %0 : memref<32xf32> to memref<32xf32> - memref.dealloc %arg0 : memref - "use"(%1) : (memref<32xf32>) -> () - memref.dealloc %1 : memref<32xf32> - return -} - -// ----- - -// Verify SimplifyClones skips clones with multiple deallocations. -// CHECK-LABEL: @clone_multiple_dealloc_of_source -// CHECK-SAME: %[[ARG:.*]]: memref -func @clone_multiple_dealloc_of_source(%arg0: memref) -> memref { - // CHECK-NEXT: %[[RES:.*]] = memref.clone %[[ARG]] - // CHECK: memref.dealloc %[[ARG]] - // CHECK: memref.dealloc %[[ARG]] - // CHECK: return %[[RES]] - %0 = memref.clone %arg0 : memref to memref - "if_else"() ({ - memref.dealloc %arg0 : memref - }, { - memref.dealloc %arg0 : memref - }) : () -> () - return %0 : memref -} - -// ----- - -// CHECK-LABEL: @clone_multiple_dealloc_of_clone -// CHECK-SAME: %[[ARG:.*]]: memref -func @clone_multiple_dealloc_of_clone(%arg0: memref) -> memref { - // CHECK-NEXT: %[[CLONE:.*]] = memref.clone %[[ARG]] - // CHECK: memref.dealloc %[[CLONE]] - // CHECK: memref.dealloc %[[CLONE]] - // CHECK: return %[[ARG]] - %0 = memref.clone %arg0 : memref to memref - "use"(%0) : (memref) -> () - "if_else"() ({ - memref.dealloc %0 : memref - }, { - memref.dealloc %0 : memref - }) : () -> () - return %arg0 : memref -} - // ----- // CHECK-LABEL: func @dim_of_sized_view @@ -343,38 +148,6 @@ func @no_fold_of_store(%arg : memref<32xi8>, %holder: memref>) { // ----- -// Test case: Folding of memref.load(memref.buffer_cast(%v, %idxs)) -// -> tensor.extract(%v, %idx) -// CHECK-LABEL: func @load_from_buffer_cast( -// CHECK-SAME: %[[IDX0:[0-9a-z]+]]: index, %[[IDX1:[0-9a-z]+]]: index -// CHECK-SAME: %[[TENSOR:[0-9a-z]+]]: tensor -// CHECK: %[[RES:.*]] = tensor.extract %[[TENSOR]][%[[IDX0]], %[[IDX1]]] -// CHECK-NOT: memref.load -// CHECK: return %[[RES]] : f32 -func @load_from_buffer_cast(%arg0: index, %arg1: index, %arg2: tensor) -> f32 { - %0 = memref.buffer_cast %arg2 : memref - %1 = memref.load %0[%arg0, %arg1] : memref - return %1 : f32 -} - -// ----- - - -// Test case: Basic folding of tensor.dim(memref.tensor_load(m)) -> memref.dim(m). -// CHECK-LABEL: func @dim_of_tensor_load( -// CHECK-SAME: %[[MEMREF:[0-9a-z]*]]: memref -// CHECK: %[[C0:.*]] = arith.constant 0 -// CHECK: %[[D:.*]] = memref.dim %[[MEMREF]], %[[C0]] -// CHECK: return %[[D]] : index -func @dim_of_tensor_load(%arg0: memref) -> index { - %c0 = arith.constant 0 : index - %0 = memref.tensor_load %arg0 : memref - %1 = tensor.dim %0, %c0 : tensor - return %1 : index -} - -// ----- - // Test case: Folding of memref.dim(memref.alloca(%size), %idx) -> %size // CHECK-LABEL: func @dim_of_alloca( // CHECK-SAME: %[[SIZE:[0-9a-z]+]]: index @@ -445,20 +218,6 @@ func @dim_of_memref_reshape_i32(%arg0: memref<*xf32>, %arg1: memref) // ----- -// CHECK-LABEL: func @tensor_cast_to_memref -// CHECK-SAME: %[[ARG0:.+]]: tensor<4x6x16x32xi8> -// CHECK: %[[M:.+]] = memref.buffer_cast %[[ARG0]] : memref<4x6x16x32xi8> -// CHECK: %[[M1:.+]] = memref.cast %[[M]] : memref<4x6x16x32xi8> to memref -// CHECK: return %[[M1]] : memref -func @tensor_cast_to_memref(%arg0 : tensor<4x6x16x32xi8>) -> - memref { - %0 = tensor.cast %arg0 : tensor<4x6x16x32xi8> to tensor - %1 = memref.buffer_cast %0 : memref - return %1 : memref -} - -// ----- - // CHECK-LABEL: func @alloc_const_fold func @alloc_const_fold() -> memref { // CHECK-NEXT: %0 = memref.alloc() : memref<4xf32> diff --git a/mlir/test/Dialect/MemRef/ops.mlir b/mlir/test/Dialect/MemRef/ops.mlir index 19a30f074dee..9a5f3fee74ae 100644 --- a/mlir/test/Dialect/MemRef/ops.mlir +++ b/mlir/test/Dialect/MemRef/ops.mlir @@ -6,13 +6,6 @@ // CHECK-DAG: #[[$strided2DOFF0:.*]] = affine_map<(d0, d1)[s0] -> (d0 * s0 + d1)> // CHECK-DAG: #[[$strided3DOFF0:.*]] = affine_map<(d0, d1, d2)[s0, s1] -> (d0 * s0 + d1 * s1 + d2)> -// CHECK-LABEL: test_buffer_cast -func @test_buffer_cast(%arg0: tensor, %arg1: tensor<*xi64>) -> (memref (d0 + 7)>>, memref<*xi64, 1>) { - %0 = memref.buffer_cast %arg0 : memref (d0 + 7)>> - %1 = memref.buffer_cast %arg1 : memref<*xi64, 1> - return %0, %1 : memref (d0 + 7)>>, memref<*xi64, 1> -} - // CHECK-LABEL: func @memref_reinterpret_cast func @memref_reinterpret_cast(%in: memref) -> memref<10x?xf32, offset: ?, strides: [?, 1]> { @@ -62,15 +55,6 @@ func @write_global_memref() { // CHECK-LABEL: func @read_global_memref func @read_global_memref() { %0 = memref.get_global @memref0 : memref<2xf32> - %1 = memref.tensor_load %0 : memref<2xf32> - return -} - -// CHECK-LABEL: func @memref_clone -func @memref_clone() { - %0 = memref.alloc() : memref<2xf32> - %1 = memref.cast %0 : memref<2xf32> to memref<*xf32> - %2 = memref.clone %1 : memref<*xf32> to memref<*xf32> return } diff --git a/mlir/test/Dialect/SCF/bufferize.mlir b/mlir/test/Dialect/SCF/bufferize.mlir index 38b823433454..05dc51802602 100644 --- a/mlir/test/Dialect/SCF/bufferize.mlir +++ b/mlir/test/Dialect/SCF/bufferize.mlir @@ -4,14 +4,14 @@ // CHECK-SAME: %[[PRED:.*]]: i1, // CHECK-SAME: %[[TRUE_TENSOR:.*]]: tensor, // CHECK-SAME: %[[FALSE_TENSOR:.*]]: tensor) -> tensor { -// CHECK: %[[TRUE_MEMREF:.*]] = memref.buffer_cast %[[TRUE_TENSOR]] : memref -// CHECK: %[[FALSE_MEMREF:.*]] = memref.buffer_cast %[[FALSE_TENSOR]] : memref +// CHECK: %[[TRUE_MEMREF:.*]] = bufferization.to_memref %[[TRUE_TENSOR]] : memref +// CHECK: %[[FALSE_MEMREF:.*]] = bufferization.to_memref %[[FALSE_TENSOR]] : memref // CHECK: %[[RESULT_MEMREF:.*]] = scf.if %[[PRED]] -> (memref) { // CHECK: scf.yield %[[TRUE_MEMREF]] : memref // CHECK: } else { // CHECK: scf.yield %[[FALSE_MEMREF]] : memref // CHECK: } -// CHECK: %[[RESULT_TENSOR:.*]] = memref.tensor_load %[[RESULT_MEMREF:.*]] : memref +// CHECK: %[[RESULT_TENSOR:.*]] = bufferization.to_tensor %[[RESULT_MEMREF:.*]] : memref // CHECK: return %[[RESULT_TENSOR]] : tensor // CHECK: } func @if(%pred: i1, %true_val: tensor, %false_val: tensor) -> tensor { @@ -27,11 +27,11 @@ func @if(%pred: i1, %true_val: tensor, %false_val: tensor) -> tens // CHECK-SAME: %[[TENSOR:.*]]: tensor, // CHECK-SAME: %[[LB:.*]]: index, %[[UB:.*]]: index, // CHECK-SAME: %[[STEP:.*]]: index) -> tensor { -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref // CHECK: %[[RESULT_MEMREF:.*]] = scf.for %[[VAL_6:.*]] = %[[LB]] to %[[UB]] step %[[STEP]] iter_args(%[[ITER:.*]] = %[[MEMREF]]) -> (memref) { // CHECK: scf.yield %[[ITER]] : memref // CHECK: } -// CHECK: %[[VAL_8:.*]] = memref.tensor_load %[[VAL_9:.*]] : memref +// CHECK: %[[VAL_8:.*]] = bufferization.to_tensor %[[VAL_9:.*]] : memref // CHECK: return %[[VAL_8]] : tensor // CHECK: } func @for(%arg0: tensor, %lb: index, %ub: index, %step: index) -> tensor { @@ -60,14 +60,14 @@ func @if_correct_recursive_legalization_behavior(%pred: i1, %tensor: tensor // CHECK-LABEL: func @for_correct_recursive_legalization_behavior( // CHECK-SAME: %[[TENSOR:.*]]: tensor, // CHECK-SAME: %[[INDEX:.*]]: index) -> tensor { -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref // CHECK: %[[RESULT:.*]] = scf.for %[[IV:.*]] = %[[INDEX]] to %[[INDEX]] step %[[INDEX]] iter_args(%[[MEMREF_ITER:.*]] = %[[MEMREF]]) -> (memref) { -// CHECK: %[[TENSOR_ITER:.*]] = memref.tensor_load %[[MEMREF_ITER]] : memref +// CHECK: %[[TENSOR_ITER:.*]] = bufferization.to_tensor %[[MEMREF_ITER]] : memref // CHECK: %[[TENSOR_MUNGED:.*]] = "test.munge_tensor"(%[[TENSOR_ITER]]) : (tensor) -> tensor -// CHECK: %[[MEMREF_MUNGED:.*]] = memref.buffer_cast %[[TENSOR_MUNGED]] : memref +// CHECK: %[[MEMREF_MUNGED:.*]] = bufferization.to_memref %[[TENSOR_MUNGED]] : memref // CHECK: scf.yield %[[MEMREF_MUNGED]] : memref // CHECK: } -// CHECK: %[[TENSOR:.*]] = memref.tensor_load %[[RESULT:.*]] : memref +// CHECK: %[[TENSOR:.*]] = bufferization.to_tensor %[[RESULT:.*]] : memref // CHECK: return %[[TENSOR]] : tensor // CHECK: } func @for_correct_recursive_legalization_behavior(%arg0: tensor, %index: index) -> tensor { @@ -80,12 +80,12 @@ func @for_correct_recursive_legalization_behavior(%arg0: tensor, %index: in // CHECK-LABEL: func @bufferize_while( // CHECK-SAME: %[[ARG0:.*]]: i64, %[[ARG1:.*]]: i64, %[[ARG2:.*]]: tensor -// CHECK: %[[M:.*]] = memref.buffer_cast %[[ARG2]] : memref +// CHECK: %[[M:.*]] = bufferization.to_memref %[[ARG2]] : memref // CHECK: %[[RES1:.*]]:3 = scf.while (%{{.*}} = %[[ARG0]], %{{.*}} = %[[M]]) : (i64, memref) -> (i64, i64, memref) // CHECK: scf.condition(%{{.*}}) %{{.*}}, %{{.*}}, %{{.*}} : i64, i64, memref // CHECK: ^bb0(%{{.*}}: i64, %{{.*}}: i64, %{{.*}}: memref): // CHECK: scf.yield %{{.*}}, %{{.*}} : i64, memref -// CHECK: %[[RES2:.*]] = memref.tensor_load %[[RES1]]#2 : memref +// CHECK: %[[RES2:.*]] = bufferization.to_tensor %[[RES1]]#2 : memref // CHECK: return %[[RES1]]#1, %[[RES2]] : i64, tensor func @bufferize_while(%arg0: i64, %arg1: i64, %arg2: tensor) -> (i64, tensor) { %c2_i64 = arith.constant 2 : i64 diff --git a/mlir/test/Dialect/SCF/canonicalize.mlir b/mlir/test/Dialect/SCF/canonicalize.mlir index 6f1815713819..5c396f2b2118 100644 --- a/mlir/test/Dialect/SCF/canonicalize.mlir +++ b/mlir/test/Dialect/SCF/canonicalize.mlir @@ -564,12 +564,12 @@ func @last_value(%t0: tensor<128x128xf32>, %t1: tensor<128x128xf32>, %lb : index, %ub : index, %step : index) -> (tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32>) { - // CHECK-NEXT: %[[M1:.*]] = memref.buffer_cast %[[T1]] : memref<128x128xf32> + // CHECK-NEXT: %[[M1:.*]] = bufferization.to_memref %[[T1]] : memref<128x128xf32> // CHECK-NEXT: %[[FOR_RES:.*]] = scf.for {{.*}} iter_args(%[[BBARG_T2:.*]] = %[[T2]]) -> (tensor<128x128xf32>) { %0:3 = scf.for %arg0 = %lb to %ub step %step iter_args(%arg1 = %t0, %arg2 = %t1, %arg3 = %t2) -> (tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32>) { - %m1 = memref.buffer_cast %arg2 : memref<128x128xf32> + %m1 = bufferization.to_memref %arg2 : memref<128x128xf32> // CHECK-NEXT: call @process(%[[M0]]) : (memref<128x128xf32>) -> () call @process(%m0) : (memref<128x128xf32>) -> () @@ -579,13 +579,13 @@ func @last_value(%t0: tensor<128x128xf32>, %t1: tensor<128x128xf32>, // This does not hoist (fails the bbArg has at most a single check). // CHECK-NEXT: %[[T:.*]] = call @process_tensor(%[[BBARG_T2]]) : (tensor<128x128xf32>) -> memref<128x128xf32> - // CHECK-NEXT: %[[YIELD_T:.*]] = memref.tensor_load %[[T:.*]] + // CHECK-NEXT: %[[YIELD_T:.*]] = bufferization.to_tensor %[[T:.*]] %m2 = call @process_tensor(%arg3): (tensor<128x128xf32>) -> memref<128x128xf32> - %3 = memref.tensor_load %m2 : memref<128x128xf32> + %3 = bufferization.to_tensor %m2 : memref<128x128xf32> // All this stuff goes away, incrementally - %1 = memref.tensor_load %m0 : memref<128x128xf32> - %2 = memref.tensor_load %m1 : memref<128x128xf32> + %1 = bufferization.to_tensor %m0 : memref<128x128xf32> + %2 = bufferization.to_tensor %m1 : memref<128x128xf32> // CHECK-NEXT: scf.yield %[[YIELD_T]] : tensor<128x128xf32> scf.yield %1, %2, %3 : tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32> @@ -593,8 +593,8 @@ func @last_value(%t0: tensor<128x128xf32>, %t1: tensor<128x128xf32>, // CHECK-NEXT: } } - // CHECK-NEXT: %[[R0:.*]] = memref.tensor_load %[[M0]] : memref<128x128xf32> - // CHECK-NEXT: %[[R1:.*]] = memref.tensor_load %[[M1]] : memref<128x128xf32> + // CHECK-NEXT: %[[R0:.*]] = bufferization.to_tensor %[[M0]] : memref<128x128xf32> + // CHECK-NEXT: %[[R1:.*]] = bufferization.to_tensor %[[M1]] : memref<128x128xf32> // CHECK-NEXT: return %[[R0]], %[[R1]], %[[FOR_RES]] : tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32> return %0#0, %0#1, %0#2 : tensor<128x128xf32>, tensor<128x128xf32>, tensor<128x128xf32> } diff --git a/mlir/test/Dialect/Shape/bufferize.mlir b/mlir/test/Dialect/Shape/bufferize.mlir index a912d5f5dc82..46546c478660 100644 --- a/mlir/test/Dialect/Shape/bufferize.mlir +++ b/mlir/test/Dialect/Shape/bufferize.mlir @@ -6,10 +6,10 @@ // CHECK: %[[WTRUE:.*]] = shape.const_witness true // CHECK: %[[MEMREF:.*]] = shape.assuming %[[WTRUE]] -> (memref<2xf16>) { // CHECK: %[[TENSOR_VAL:.*]] = "test.source"() : () -> tensor<2xf16> -// CHECK: %[[YIELDED_MEMREF:.*]] = memref.buffer_cast %[[TENSOR_VAL]] : memref<2xf16> +// CHECK: %[[YIELDED_MEMREF:.*]] = bufferization.to_memref %[[TENSOR_VAL]] : memref<2xf16> // CHECK: shape.assuming_yield %[[YIELDED_MEMREF]] : memref<2xf16> // CHECK: } -// CHECK: %[[TENSOR:.*]] = memref.tensor_load %[[MEMREF:.*]] : memref<2xf16> +// CHECK: %[[TENSOR:.*]] = bufferization.to_tensor %[[MEMREF:.*]] : memref<2xf16> // CHECK: "test.sink"(%[[TENSOR]]) : (tensor<2xf16>) -> () // CHECK: return // CHECK: } diff --git a/mlir/test/Dialect/SparseTensor/conversion_sparse2dense.mlir b/mlir/test/Dialect/SparseTensor/conversion_sparse2dense.mlir index 377e13794e5a..0b7c20392d34 100644 --- a/mlir/test/Dialect/SparseTensor/conversion_sparse2dense.mlir +++ b/mlir/test/Dialect/SparseTensor/conversion_sparse2dense.mlir @@ -46,7 +46,7 @@ // CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]]] : memref<13xi32> // CHECK: scf.yield // CHECK: } -// CHECK: %[[T:.*]] = memref.tensor_load %[[M]] : memref<13xi32> +// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<13xi32> // CHECK: return %[[T]] : tensor<13xi32> func @sparse_convert_1d(%arg0: tensor<13xi32, #SparseVector>) -> tensor<13xi32> { %0 = sparse_tensor.convert %arg0 : tensor<13xi32, #SparseVector> to tensor<13xi32> @@ -86,7 +86,7 @@ func @sparse_convert_1d(%arg0: tensor<13xi32, #SparseVector>) -> tensor<13xi32> // CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]]] : memref // CHECK: scf.yield // CHECK: } -// CHECK: %[[T:.*]] = memref.tensor_load %[[M]] : memref +// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref // CHECK: return %[[T]] : tensor func @sparse_convert_1d_dyn(%arg0: tensor) -> tensor { %0 = sparse_tensor.convert %arg0 : tensor to tensor @@ -130,7 +130,7 @@ func @sparse_convert_1d_dyn(%arg0: tensor) -> tensor // CHECK: scf.yield // CHECK: } -// CHECK: %[[T:.*]] = memref.tensor_load %[[M]] : memref<2x4xf64> +// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<2x4xf64> // CHECK: return %[[T]] : tensor<2x4xf64> func @sparse_convert_2d(%arg0: tensor<2x4xf64, #SparseMatrix>) -> tensor<2x4xf64> { %0 = sparse_tensor.convert %arg0 : tensor<2x4xf64, #SparseMatrix> to tensor<2x4xf64> @@ -174,7 +174,7 @@ func @sparse_convert_2d(%arg0: tensor<2x4xf64, #SparseMatrix>) -> tensor<2x4xf64 // CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]], %[[Iv1]]] : memref // CHECK: scf.yield // CHECK: } -// CHECK: %[[T:.*]] = memref.tensor_load %[[M]] : memref +// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref // CHECK: return %[[T]] : tensor func @sparse_convert_2d_dyn0(%arg0: tensor) -> tensor { %0 = sparse_tensor.convert %arg0 : tensor to tensor @@ -218,7 +218,7 @@ func @sparse_convert_2d_dyn0(%arg0: tensor) -> tensor // CHECK: scf.yield // CHECK: } -// CHECK: %[[T:.*]] = memref.tensor_load %[[M]] : memref<2x?xf64> +// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<2x?xf64> // CHECK: return %[[T]] : tensor<2x?xf64> func @sparse_convert_2d_dyn1(%arg0: tensor<2x?xf64, #SparseMatrix>) -> tensor<2x?xf64> { %0 = sparse_tensor.convert %arg0 : tensor<2x?xf64, #SparseMatrix> to tensor<2x?xf64> @@ -262,7 +262,7 @@ func @sparse_convert_2d_dyn1(%arg0: tensor<2x?xf64, #SparseMatrix>) -> tensor<2x // CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]], %[[Iv1]]] : memref // CHECK: scf.yield // CHECK: } -// CHECK: %[[T:.*]] = memref.tensor_load %[[M]] : memref +// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref // CHECK: return %[[T]] : tensor func @sparse_convert_2d_dyn2(%arg0: tensor) -> tensor { %0 = sparse_tensor.convert %arg0 : tensor to tensor @@ -311,7 +311,7 @@ func @sparse_convert_2d_dyn2(%arg0: tensor) -> tensor // CHECK: scf.yield // CHECK: } -// CHECK: %[[T:.*]] = memref.tensor_load %[[M]] : memref<2x3x4xf64> +// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<2x3x4xf64> // CHECK: return %[[T]] : tensor<2x3x4xf64> func @sparse_convert_3d(%arg0: tensor<2x3x4xf64, #SparseTensor>) -> tensor<2x3x4xf64> { %0 = sparse_tensor.convert %arg0 : tensor<2x3x4xf64, #SparseTensor> to tensor<2x3x4xf64> diff --git a/mlir/test/Dialect/SparseTensor/dense.mlir b/mlir/test/Dialect/SparseTensor/dense.mlir index f4aa51e592cc..012f968f2cb7 100644 --- a/mlir/test/Dialect/SparseTensor/dense.mlir +++ b/mlir/test/Dialect/SparseTensor/dense.mlir @@ -41,7 +41,7 @@ // CHECK: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> // CHECK: %[[VAL_9:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_8]], %[[VAL_9]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { @@ -53,7 +53,7 @@ // CHECK: memref.store %[[VAL_15]], %[[VAL_9]]{{\[}}%[[VAL_10]], %[[VAL_11]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_16:.*]] = memref.tensor_load %[[VAL_9]] : memref<32x16xf32> +// CHECK: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32x16xf32> // CHECK: return %[[VAL_16]] : tensor<32x16xf32> // CHECK: } func @dense1(%arga: tensor<32x16xf32, #DenseMatrix>, @@ -84,7 +84,7 @@ func @dense1(%arga: tensor<32x16xf32, #DenseMatrix>, // CHECK: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> // CHECK: scf.for %[[VAL_9:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] { // CHECK: %[[VAL_11:.*]] = arith.muli %[[VAL_9]], %[[VAL_4]] : index @@ -94,7 +94,7 @@ func @dense1(%arga: tensor<32x16xf32, #DenseMatrix>, // CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_9]], %[[VAL_10]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_15:.*]] = memref.tensor_load %[[VAL_8]] : memref<32x16xf32> +// CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32x16xf32> // CHECK: return %[[VAL_15]] : tensor<32x16xf32> // CHECK: } func @dense2(%arga: tensor<32x16xf32, #DenseMatrix>, @@ -124,7 +124,7 @@ func @dense2(%arga: tensor<32x16xf32, #DenseMatrix>, // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_0]] : memref<32x16xf32> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32x16xf32> // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: scf.for %[[VAL_9:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] { @@ -168,7 +168,7 @@ func @dense3(%arga: tensor<32x16xf32>, // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_0]] : memref<32x16x8xf32> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32x16x8xf32> // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}}>> to memref // CHECK: scf.for %[[VAL_9:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] { diff --git a/mlir/test/Dialect/SparseTensor/sparse_1d.mlir b/mlir/test/Dialect/SparseTensor/sparse_1d.mlir index 7c5fc72c6328..1990803634f5 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_1d.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_1d.mlir @@ -21,7 +21,7 @@ // CHECK: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_8:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_7]], %[[VAL_8]] : memref<32xf32> to memref<32xf32> // CHECK: scf.for %[[VAL_9:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -29,7 +29,7 @@ // CHECK: %[[VAL_11:.*]] = arith.addf %[[VAL_10]], %[[VAL_1]] : f32 // CHECK: memref.store %[[VAL_11]], %[[VAL_8]]{{\[}}%[[VAL_9]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_12:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32> // CHECK: return %[[VAL_12]] : tensor<32xf32> // CHECK: } func @add_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -58,7 +58,7 @@ func @add_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> te // CHECK: %[[VAL_10:.*]] = arith.addf %[[VAL_9]], %[[VAL_1]] : f32 // CHECK: memref.store %[[VAL_10]], %[[VAL_7]]{{\[}}%[[VAL_8]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_11:.*]] = memref.tensor_load %[[VAL_7]] : memref<32xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf32> // CHECK: return %[[VAL_11]] : tensor<32xf32> // CHECK: } func @add_d_init(%arga: tensor<32xf32, #DV>, %argb: f32) -> tensor<32xf32> { @@ -81,7 +81,7 @@ func @add_d_init(%arga: tensor<32xf32, #DV>, %argb: f32) -> tensor<32xf32> { // CHECK: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_8:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_7]], %[[VAL_8]] : memref<32xf32> to memref<32xf32> // CHECK: scf.for %[[VAL_9:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -89,7 +89,7 @@ func @add_d_init(%arga: tensor<32xf32, #DV>, %argb: f32) -> tensor<32xf32> { // CHECK: %[[VAL_11:.*]] = arith.mulf %[[VAL_10]], %[[VAL_1]] : f32 // CHECK: memref.store %[[VAL_11]], %[[VAL_8]]{{\[}}%[[VAL_9]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_12:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32> // CHECK: return %[[VAL_12]] : tensor<32xf32> // CHECK: } func @mul_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -114,7 +114,7 @@ func @mul_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> te // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_11:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref @@ -145,7 +145,7 @@ func @mul_d(%arga: tensor<32xf32, #DV>, %argb: f32, %argx: tensor<32xf32>) -> te // CHECK: scf.for %[[VAL_28:.*]] = %[[VAL_29:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] { // CHECK: memref.store %[[VAL_1]], %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_30:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xf32> +// CHECK: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf32> // CHECK: return %[[VAL_30]] : tensor<32xf32> // CHECK: } func @add_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -167,7 +167,7 @@ func @add_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> te // CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf32> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> // CHECK: %[[VAL_8:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_7]], %[[VAL_8]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref @@ -183,7 +183,7 @@ func @add_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> te // CHECK: %[[VAL_19:.*]] = arith.addf %[[VAL_15]], %[[VAL_18]] : f32 // CHECK: memref.store %[[VAL_19]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_20:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xf32> +// CHECK: %[[VAL_20:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf32> // CHECK: return %[[VAL_20]] : tensor<32xf32> // CHECK: } func @repeated_add_s(%arga: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -208,7 +208,7 @@ func @repeated_add_s(%arga: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tenso // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_9:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_8]], %[[VAL_9]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -219,7 +219,7 @@ func @repeated_add_s(%arga: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tenso // CHECK: %[[VAL_15:.*]] = arith.mulf %[[VAL_14]], %[[VAL_1]] : f32 // CHECK: memref.store %[[VAL_15]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_16:.*]] = memref.tensor_load %[[VAL_9]] : memref<32xf32> +// CHECK: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32> // CHECK: return %[[VAL_16]] : tensor<32xf32> // CHECK: } func @mul_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -251,8 +251,8 @@ func @mul_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> te // CHECK: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf32> -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_9:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_8]], %[[VAL_9]] : memref<32xf32> to memref<32xf32> // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -261,7 +261,7 @@ func @mul_s(%arga: tensor<32xf32, #SV>, %argb: f32, %argx: tensor<32xf32>) -> te // CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_11]], %[[VAL_12]] : f32 // CHECK: memref.store %[[VAL_13]], %[[VAL_9]]{{\[}}%[[VAL_10]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_14:.*]] = memref.tensor_load %[[VAL_9]] : memref<32xf32> +// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32> // CHECK: return %[[VAL_14]] : tensor<32xf32> // CHECK: } func @add_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -283,8 +283,8 @@ func @add_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32 // CHECK: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf32> -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_9:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_8]], %[[VAL_9]] : memref<32xf32> to memref<32xf32> // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -293,7 +293,7 @@ func @add_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32 // CHECK: %[[VAL_13:.*]] = arith.mulf %[[VAL_11]], %[[VAL_12]] : f32 // CHECK: memref.store %[[VAL_13]], %[[VAL_9]]{{\[}}%[[VAL_10]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_14:.*]] = memref.tensor_load %[[VAL_9]] : memref<32xf32> +// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf32> // CHECK: return %[[VAL_14]] : tensor<32xf32> // CHECK: } func @mul_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -315,11 +315,11 @@ func @mul_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32 // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_0]] : memref<32xf32> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32xf32> // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref @@ -353,7 +353,7 @@ func @mul_dd(%arga: tensor<32xf32, #DV>, %argb: tensor<32xf32>, %argx: tensor<32 // CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_31]]] : memref<32xf32> // CHECK: memref.store %[[VAL_33]], %[[VAL_12]]{{\[}}%[[VAL_31]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_34:.*]] = memref.tensor_load %[[VAL_12]] : memref<32xf32> +// CHECK: %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32> // CHECK: return %[[VAL_34]] : tensor<32xf32> // CHECK: } func @add_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -373,11 +373,11 @@ func @add_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32 // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> { // CHECK: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = memref.buffer_cast %[[VAL_0]] : memref<32xf32> +// CHECK: %[[VAL_5:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32xf32> // CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_10:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_9]], %[[VAL_10]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref @@ -389,7 +389,7 @@ func @add_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32 // CHECK: %[[VAL_17:.*]] = arith.mulf %[[VAL_15]], %[[VAL_16]] : f32 // CHECK: memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_14]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_18:.*]] = memref.tensor_load %[[VAL_10]] : memref<32xf32> +// CHECK: %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32xf32> // CHECK: return %[[VAL_18]] : tensor<32xf32> // CHECK: } func @mul_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -414,8 +414,8 @@ func @mul_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32 // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf32> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref @@ -449,7 +449,7 @@ func @mul_ds(%arga: tensor<32xf32>, %argb: tensor<32xf32, #SV>, %argx: tensor<32 // CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_31]]] : memref<32xf32> // CHECK: memref.store %[[VAL_33]], %[[VAL_12]]{{\[}}%[[VAL_31]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_34:.*]] = memref.tensor_load %[[VAL_12]] : memref<32xf32> +// CHECK: %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32> // CHECK: return %[[VAL_34]] : tensor<32xf32> // CHECK: } func @add_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -472,8 +472,8 @@ func @add_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32 // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf32> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_10:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_9]], %[[VAL_10]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -485,7 +485,7 @@ func @add_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32 // CHECK: %[[VAL_17:.*]] = arith.mulf %[[VAL_15]], %[[VAL_16]] : f32 // CHECK: memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_14]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_18:.*]] = memref.tensor_load %[[VAL_10]] : memref<32xf32> +// CHECK: %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32xf32> // CHECK: return %[[VAL_18]] : tensor<32xf32> // CHECK: } func @mul_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -511,7 +511,7 @@ func @mul_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32 // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -569,7 +569,7 @@ func @mul_sd(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32>, %argx: tensor<32 // CHECK: %[[VAL_52:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_49]]] : memref // CHECK: memref.store %[[VAL_52]], %[[VAL_12]]{{\[}}%[[VAL_51]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_53:.*]] = memref.tensor_load %[[VAL_12]] : memref<32xf32> +// CHECK: %[[VAL_53:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32> // CHECK: return %[[VAL_53]] : tensor<32xf32> // CHECK: } func @add_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -595,7 +595,7 @@ func @add_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tens // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -631,7 +631,7 @@ func @add_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tens // CHECK: %[[VAL_40:.*]] = select %[[VAL_38]], %[[VAL_39]], %[[VAL_24]] : index // CHECK: scf.yield %[[VAL_37]], %[[VAL_40]] : index, index // CHECK: } -// CHECK: %[[VAL_41:.*]] = memref.tensor_load %[[VAL_12]] : memref<32xf32> +// CHECK: %[[VAL_41:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf32> // CHECK: return %[[VAL_41]] : tensor<32xf32> // CHECK: } func @mul_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tensor<32xf32>) -> tensor<32xf32> { @@ -658,7 +658,7 @@ func @mul_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tens // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_3]] : memref<16xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_3]] : memref<16xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<16xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<16xf32> to memref<16xf32> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref @@ -722,7 +722,7 @@ func @mul_ss(%arga: tensor<32xf32, #SV>, %argb: tensor<32xf32, #SV>, %argx: tens // CHECK: %[[VAL_59:.*]] = arith.mulf %[[VAL_58]], %[[VAL_2]] : f32 // CHECK: memref.store %[[VAL_59]], %[[VAL_13]]{{\[}}%[[VAL_57]]] : memref<16xf32> // CHECK: } -// CHECK: %[[VAL_60:.*]] = memref.tensor_load %[[VAL_13]] : memref<16xf32> +// CHECK: %[[VAL_60:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<16xf32> // CHECK: return %[[VAL_60]] : tensor<16xf32> // CHECK: } func @two_way_inv(%arga: tensor<16xf32, #SV>, %argb: tensor<16xf32, #SV>, %argc: f32, %argx: tensor<16xf32>) -> tensor<16xf32> { @@ -752,7 +752,7 @@ func @two_way_inv(%arga: tensor<16xf32, #SV>, %argb: tensor<16xf32, #SV>, %argc: // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_3]] : memref<16xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_3]] : memref<16xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<16xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<16xf32> to memref<16xf32> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref @@ -815,7 +815,7 @@ func @two_way_inv(%arga: tensor<16xf32, #SV>, %argb: tensor<16xf32, #SV>, %argc: // CHECK: %[[VAL_58:.*]] = arith.mulf %[[VAL_57]], %[[VAL_2]] : f32 // CHECK: memref.store %[[VAL_58]], %[[VAL_13]]{{\[}}%[[VAL_56]]] : memref<16xf32> // CHECK: } -// CHECK: %[[VAL_59:.*]] = memref.tensor_load %[[VAL_13]] : memref<16xf32> +// CHECK: %[[VAL_59:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<16xf32> // CHECK: return %[[VAL_59]] : tensor<16xf32> // CHECK: } func @two_way_inv_alt(%arga: tensor<16xf32, #SV>, @@ -848,7 +848,7 @@ func @two_way_inv_alt(%arga: tensor<16xf32, #SV>, // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor> to memref // CHECK: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref -// CHECK: %[[VAL_6:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_7:.*]] = memref.alloc() : memref // CHECK: memref.copy %[[VAL_6]], %[[VAL_7]] : memref to memref // CHECK-DAG: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref @@ -860,7 +860,7 @@ func @two_way_inv_alt(%arga: tensor<16xf32, #SV>, // CHECK: scf.yield %[[VAL_15]] : f32 // CHECK: } // CHECK: memref.store %[[VAL_11]], %[[VAL_7]][] : memref -// CHECK: %[[VAL_17:.*]] = memref.tensor_load %[[VAL_7]] : memref +// CHECK: %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_7]] : memref // CHECK: return %[[VAL_17]] : tensor // CHECK: } func @sum_reduction(%arga: tensor, %argx: tensor) -> tensor { @@ -896,7 +896,7 @@ func @sum_reduction(%arga: tensor, %argx: tensor) -> tensor> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref to memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_12]][] : memref @@ -962,7 +962,7 @@ func @sum_reduction(%arga: tensor, %argx: tensor) -> tensor -// CHECK: %[[VAL_71:.*]] = memref.tensor_load %[[VAL_12]] : memref +// CHECK: %[[VAL_71:.*]] = bufferization.to_tensor %[[VAL_12]] : memref // CHECK: return %[[VAL_71]] : tensor // CHECK: } func @sum_reduction_ss(%arga: tensor<16xf32, #SV>, @@ -1002,11 +1002,11 @@ func @sum_reduction_ss(%arga: tensor<16xf32, #SV>, // CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_3]] : memref +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]] : memref // CHECK: %[[VAL_14:.*]] = memref.alloc() : memref // CHECK: memref.copy %[[VAL_13]], %[[VAL_14]] : memref to memref // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_14]][] : memref @@ -1076,7 +1076,7 @@ func @sum_reduction_ss(%arga: tensor<16xf32, #SV>, // CHECK: scf.yield %[[VAL_75]] : f32 // CHECK: } // CHECK: memref.store %[[VAL_76:.*]], %[[VAL_14]][] : memref -// CHECK: %[[VAL_77:.*]] = memref.tensor_load %[[VAL_14]] : memref +// CHECK: %[[VAL_77:.*]] = bufferization.to_tensor %[[VAL_14]] : memref // CHECK: return %[[VAL_77]] : tensor // CHECK: } func @sum_reduction_inv(%arga: tensor<16xf32, #SV>, @@ -1118,16 +1118,16 @@ func @sum_reduction_inv(%arga: tensor<16xf32, #SV>, // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant true // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_0]] : memref +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> to memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_3]], %[[VAL_5]] : tensor> to memref // CHECK: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_3]], %[[VAL_5]] : tensor> to memref // CHECK: %[[VAL_15:.*]] = sparse_tensor.values %[[VAL_3]] : tensor> to memref // CHECK: %[[VAL_16:.*]] = tensor.dim %[[VAL_4]], %[[VAL_5]] : tensor -// CHECK: %[[VAL_17:.*]] = memref.buffer_cast %[[VAL_4]] : memref +// CHECK: %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_4]] : memref // CHECK: %[[VAL_18:.*]] = memref.alloc(%[[VAL_16]]) : memref // CHECK: memref.copy %[[VAL_17]], %[[VAL_18]] : memref to memref // CHECK: %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_5]]] : memref @@ -1257,7 +1257,7 @@ func @sum_reduction_inv(%arga: tensor<16xf32, #SV>, // CHECK: %[[VAL_114:.*]] = arith.addf %[[VAL_112]], %[[VAL_113]] : f64 // CHECK: memref.store %[[VAL_114]], %[[VAL_18]]{{\[}}%[[VAL_110]]] : memref // CHECK: } -// CHECK: %[[VAL_115:.*]] = memref.tensor_load %[[VAL_18]] : memref +// CHECK: %[[VAL_115:.*]] = bufferization.to_tensor %[[VAL_18]] : memref // CHECK: return %[[VAL_115]] : tensor // CHECK: } func @four_tensors_op(%arga: tensor, @@ -1304,7 +1304,7 @@ func @four_tensors_op(%arga: tensor, // CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_4]] : tensor> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_4]] : tensor> to memref // CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_3]] : memref +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_3]] : memref // CHECK: %[[VAL_16:.*]] = memref.alloc() : memref // CHECK: memref.copy %[[VAL_15]], %[[VAL_16]] : memref to memref // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_16]][] : memref @@ -1574,7 +1574,7 @@ func @four_tensors_op(%arga: tensor, // CHECK: scf.yield %[[VAL_250]] : f64 // CHECK: } // CHECK: memref.store %[[VAL_251:.*]], %[[VAL_16]][] : memref -// CHECK: %[[VAL_252:.*]] = memref.tensor_load %[[VAL_16]] : memref +// CHECK: %[[VAL_252:.*]] = bufferization.to_tensor %[[VAL_16]] : memref // CHECK: return %[[VAL_252]] : tensor // CHECK: } func @red3s(%arga: tensor, diff --git a/mlir/test/Dialect/SparseTensor/sparse_2d.mlir b/mlir/test/Dialect/SparseTensor/sparse_2d.mlir index 954ad0622663..1a0db13928e9 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_2d.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_2d.mlir @@ -25,8 +25,8 @@ // CHECK: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_10:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_9]], %[[VAL_10]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { @@ -39,7 +39,7 @@ // CHECK: memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_18:.*]] = memref.tensor_load %[[VAL_10]] : memref<32x16xf32> +// CHECK: %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32x16xf32> // CHECK: return %[[VAL_18]] : tensor<32x16xf32> // CHECK: } func @add_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -62,8 +62,8 @@ func @add_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: te // CHECK: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_10:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_9]], %[[VAL_10]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { @@ -76,7 +76,7 @@ func @add_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: te // CHECK: memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_18:.*]] = memref.tensor_load %[[VAL_10]] : memref<32x16xf32> +// CHECK: %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32x16xf32> // CHECK: return %[[VAL_18]] : tensor<32x16xf32> // CHECK: } func @mul_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -102,8 +102,8 @@ func @mul_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: te // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_7]] { @@ -140,7 +140,7 @@ func @mul_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: te // CHECK: memref.store %[[VAL_36]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_34]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_37:.*]] = memref.tensor_load %[[VAL_13]] : memref<32x16xf32> +// CHECK: %[[VAL_37:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32> // CHECK: return %[[VAL_37]] : tensor<32x16xf32> // CHECK: } func @add_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -164,8 +164,8 @@ func @add_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: te // CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_11:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -180,7 +180,7 @@ func @add_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: te // CHECK: memref.store %[[VAL_20]], %[[VAL_11]]{{\[}}%[[VAL_12]], %[[VAL_17]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_21:.*]] = memref.tensor_load %[[VAL_11]] : memref<32x16xf32> +// CHECK: %[[VAL_21:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16xf32> // CHECK: return %[[VAL_21]] : tensor<32x16xf32> // CHECK: } func @mul_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -206,8 +206,8 @@ func @mul_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: te // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref @@ -249,7 +249,7 @@ func @mul_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: te // CHECK: memref.store %[[VAL_39]], %[[VAL_13]]{{\[}}%[[VAL_36]], %[[VAL_38]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_40:.*]] = memref.tensor_load %[[VAL_13]] : memref<32x16xf32> +// CHECK: %[[VAL_40:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32> // CHECK: return %[[VAL_40]] : tensor<32x16xf32> // CHECK: } func @add_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -273,8 +273,8 @@ func @add_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: te // CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_11:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref @@ -290,7 +290,7 @@ func @add_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: te // CHECK: memref.store %[[VAL_21]], %[[VAL_11]]{{\[}}%[[VAL_15]], %[[VAL_16]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_22:.*]] = memref.tensor_load %[[VAL_11]] : memref<32x16xf32> +// CHECK: %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16xf32> // CHECK: return %[[VAL_22]] : tensor<32x16xf32> // CHECK: } func @mul_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -318,8 +318,8 @@ func @mul_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: te // CHECK: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> -// CHECK: %[[VAL_14:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_15:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_14]], %[[VAL_15]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref @@ -385,7 +385,7 @@ func @mul_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: te // CHECK: memref.store %[[VAL_57]], %[[VAL_15]]{{\[}}%[[VAL_54]], %[[VAL_56]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_58:.*]] = memref.tensor_load %[[VAL_15]] : memref<32x16xf32> +// CHECK: %[[VAL_58:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16xf32> // CHECK: return %[[VAL_58]] : tensor<32x16xf32> // CHECK: } func @add_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -410,8 +410,8 @@ func @add_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: te // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16xf32> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -429,7 +429,7 @@ func @add_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: te // CHECK: memref.store %[[VAL_24]], %[[VAL_12]]{{\[}}%[[VAL_16]], %[[VAL_21]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_25:.*]] = memref.tensor_load %[[VAL_12]] : memref<32x16xf32> +// CHECK: %[[VAL_25:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32x16xf32> // CHECK: return %[[VAL_25]] : tensor<32x16xf32> // CHECK: } func @mul_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -459,7 +459,7 @@ func @mul_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: te // CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_16:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_15]], %[[VAL_16]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -594,7 +594,7 @@ func @mul_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: te // CHECK: memref.store %[[VAL_115]], %[[VAL_16]]{{\[}}%[[VAL_109]], %[[VAL_114]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_116:.*]] = memref.tensor_load %[[VAL_16]] : memref<32x16xf32> +// CHECK: %[[VAL_116:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<32x16xf32> // CHECK: return %[[VAL_116]] : tensor<32x16xf32> // CHECK: } func @add_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -624,7 +624,7 @@ func @add_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, // CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_16:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_15]], %[[VAL_16]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -691,7 +691,7 @@ func @add_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, // CHECK: %[[VAL_71:.*]] = select %[[VAL_69]], %[[VAL_70]], %[[VAL_28]] : index // CHECK: scf.yield %[[VAL_68]], %[[VAL_71]] : index, index // CHECK: } -// CHECK: %[[VAL_72:.*]] = memref.tensor_load %[[VAL_16]] : memref<32x16xf32> +// CHECK: %[[VAL_72:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<32x16xf32> // CHECK: return %[[VAL_72]] : tensor<32x16xf32> // CHECK: } func @mul_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -720,7 +720,7 @@ func @mul_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, // CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_14:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_15:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_14]], %[[VAL_15]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref @@ -798,7 +798,7 @@ func @mul_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, // CHECK: memref.store %[[VAL_69]], %[[VAL_15]]{{\[}}%[[VAL_62]], %[[VAL_68]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_70:.*]] = memref.tensor_load %[[VAL_15]] : memref<32x16xf32> +// CHECK: %[[VAL_70:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16xf32> // CHECK: return %[[VAL_70]] : tensor<32x16xf32> // CHECK: } func @add_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -825,7 +825,7 @@ func @add_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<32x16xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16xf32> to memref<32x16xf32> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref @@ -845,7 +845,7 @@ func @add_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, // CHECK: memref.store %[[VAL_27]], %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_22]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_28:.*]] = memref.tensor_load %[[VAL_13]] : memref<32x16xf32> +// CHECK: %[[VAL_28:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32> // CHECK: return %[[VAL_28]] : tensor<32x16xf32> // CHECK: } func @mul_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> { @@ -879,8 +879,8 @@ func @mul_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, // CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf32> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<16xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<16xf32> // CHECK: %[[VAL_11:.*]] = memref.alloc() : memref<16xf32> // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<16xf32> to memref<16xf32> // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -898,7 +898,7 @@ func @mul_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, // CHECK: } // CHECK: memref.store %[[VAL_17]], %[[VAL_11]]{{\[}}%[[VAL_12]]] : memref<16xf32> // CHECK: } -// CHECK: %[[VAL_26:.*]] = memref.tensor_load %[[VAL_11]] : memref<16xf32> +// CHECK: %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<16xf32> // CHECK: return %[[VAL_26]] : tensor<16xf32> // CHECK: } func @matvec(%argA: tensor<16x32xf32, #Tds>, %argb: tensor<32xf32>, %argx: tensor<16xf32>) -> tensor<16xf32> { @@ -930,7 +930,7 @@ func @matvec(%argA: tensor<16x32xf32, #Tds>, %argb: tensor<32xf32>, %argx: tenso // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_8:.*]] = memref.alloc() : memref // CHECK: memref.copy %[[VAL_7]], %[[VAL_8]] : memref to memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref @@ -946,7 +946,7 @@ func @matvec(%argA: tensor<16x32xf32, #Tds>, %argb: tensor<32xf32>, %argx: tenso // CHECK: scf.yield %[[VAL_16]] : f32 // CHECK: } // CHECK: memref.store %[[VAL_10]], %[[VAL_8]][] : memref -// CHECK: %[[VAL_23:.*]] = memref.tensor_load %[[VAL_8]] : memref +// CHECK: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref // CHECK: return %[[VAL_23]] : tensor // CHECK: } func @sum_reduction(%arga: tensor<10x20xf32, #Tds>, %argx: tensor) -> tensor { @@ -980,7 +980,7 @@ func @sum_reduction(%arga: tensor<10x20xf32, #Tds>, %argx: tensor) -> tenso // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref // CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor // CHECK: %[[VAL_9:.*]] = tensor.dim %[[VAL_1]], %[[VAL_4]] : tensor -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_11:.*]] = memref.alloc(%[[VAL_8]], %[[VAL_9]]) : memref // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref to memref // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_3]] to %[[VAL_8]] step %[[VAL_4]] { @@ -994,7 +994,7 @@ func @sum_reduction(%arga: tensor<10x20xf32, #Tds>, %argx: tensor) -> tenso // CHECK: memref.store %[[VAL_19]], %[[VAL_11]]{{\[}}%[[VAL_12]], %[[VAL_17]]] : memref // CHECK: } // CHECK: } -// CHECK: %[[VAL_20:.*]] = memref.tensor_load %[[VAL_11]] : memref +// CHECK: %[[VAL_20:.*]] = bufferization.to_tensor %[[VAL_11]] : memref // CHECK: return %[[VAL_20]] : tensor // CHECK: } func @scale(%arga: tensor, %argx: tensor) -> tensor { @@ -1032,12 +1032,12 @@ func @scale(%arga: tensor, %argx: tensor) -> tensor> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_12:.*]] = tensor.dim %[[VAL_2]], %[[VAL_4]] : tensor -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_2]] : memref +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref // CHECK: %[[VAL_14:.*]] = tensor.dim %[[VAL_3]], %[[VAL_4]] : tensor // CHECK: %[[VAL_15:.*]] = tensor.dim %[[VAL_3]], %[[VAL_5]] : tensor -// CHECK: %[[VAL_16:.*]] = memref.buffer_cast %[[VAL_3]] : memref +// CHECK: %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_3]] : memref // CHECK: %[[VAL_17:.*]] = memref.alloc(%[[VAL_14]], %[[VAL_15]]) : memref // CHECK: memref.copy %[[VAL_16]], %[[VAL_17]] : memref to memref // CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref @@ -1062,7 +1062,7 @@ func @scale(%arga: tensor, %argx: tensor) -> tensor // CHECK: } // CHECK: } -// CHECK: %[[VAL_38:.*]] = memref.tensor_load %[[VAL_17]] : memref +// CHECK: %[[VAL_38:.*]] = bufferization.to_tensor %[[VAL_17]] : memref // CHECK: return %[[VAL_38]] : tensor // CHECK: } func @sampled_dense_dense(%args: tensor, @@ -1115,10 +1115,10 @@ func @sampled_dense_dense(%args: tensor, // CHECK: %[[VAL_17:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_7]] : tensor> to memref // CHECK: %[[VAL_18:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_7]] : tensor> to memref // CHECK: %[[VAL_19:.*]] = sparse_tensor.values %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_20:.*]] = memref.buffer_cast %[[VAL_3]] : memref -// CHECK: %[[VAL_21:.*]] = memref.buffer_cast %[[VAL_4]] : memref +// CHECK: %[[VAL_20:.*]] = bufferization.to_memref %[[VAL_3]] : memref +// CHECK: %[[VAL_21:.*]] = bufferization.to_memref %[[VAL_4]] : memref // CHECK: %[[VAL_22:.*]] = tensor.dim %[[VAL_5]], %[[VAL_6]] : tensor -// CHECK: %[[VAL_23:.*]] = memref.buffer_cast %[[VAL_5]] : memref +// CHECK: %[[VAL_23:.*]] = bufferization.to_memref %[[VAL_5]] : memref // CHECK: %[[VAL_24:.*]] = memref.alloc(%[[VAL_22]]) : memref // CHECK: memref.copy %[[VAL_23]], %[[VAL_24]] : memref to memref // CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_21]][] : memref @@ -1282,7 +1282,7 @@ func @sampled_dense_dense(%args: tensor, // CHECK: } // CHECK: memref.store %[[VAL_173:.*]], %[[VAL_24]]{{\[}}%[[VAL_162]]] : memref // CHECK: } -// CHECK: %[[VAL_174:.*]] = memref.tensor_load %[[VAL_24]] : memref +// CHECK: %[[VAL_174:.*]] = bufferization.to_tensor %[[VAL_24]] : memref // CHECK: return %[[VAL_174]] : tensor // CHECK: } func @sum_kernel_with_inv(%arga: tensor, diff --git a/mlir/test/Dialect/SparseTensor/sparse_3d.mlir b/mlir/test/Dialect/SparseTensor/sparse_3d.mlir index 9070ac36d3b1..d1acf1f00c91 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_3d.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_3d.mlir @@ -32,8 +32,8 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_11:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_6]] to %[[VAL_3]] step %[[VAL_7]] { @@ -50,7 +50,7 @@ // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_22:.*]] = memref.tensor_load %[[VAL_11]] : memref<32x16x8xf32> +// CHECK: %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16x8xf32> // CHECK: return %[[VAL_22]] : tensor<32x16x8xf32> // CHECK: } func @add_ddd(%arga: tensor<32x16x8xf32, #Tddd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -74,8 +74,8 @@ func @add_ddd(%arga: tensor<32x16x8xf32, #Tddd>, %argb: tensor<32x16x8xf32>, %ar // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_11:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_6]] to %[[VAL_3]] step %[[VAL_7]] { @@ -92,7 +92,7 @@ func @add_ddd(%arga: tensor<32x16x8xf32, #Tddd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_22:.*]] = memref.tensor_load %[[VAL_11]] : memref<32x16x8xf32> +// CHECK: %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16x8xf32> // CHECK: return %[[VAL_22]] : tensor<32x16x8xf32> // CHECK: } func @mul_ddd(%arga: tensor<32x16x8xf32, #Tddd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -120,8 +120,8 @@ func @mul_ddd(%arga: tensor<32x16x8xf32, #Tddd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_14:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_15:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_14]], %[[VAL_15]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: scf.for %[[VAL_16:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_9]] { @@ -162,7 +162,7 @@ func @mul_ddd(%arga: tensor<32x16x8xf32, #Tddd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_42:.*]] = memref.tensor_load %[[VAL_15]] : memref<32x16x8xf32> +// CHECK: %[[VAL_42:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16x8xf32> // CHECK: return %[[VAL_42]] : tensor<32x16x8xf32> // CHECK: } func @add_dds(%arga: tensor<32x16x8xf32, #Tdds>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -188,8 +188,8 @@ func @add_dds(%arga: tensor<32x16x8xf32, #Tdds>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] { @@ -208,7 +208,7 @@ func @add_dds(%arga: tensor<32x16x8xf32, #Tdds>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_26:.*]] = memref.tensor_load %[[VAL_13]] : memref<32x16x8xf32> +// CHECK: %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16x8xf32> // CHECK: return %[[VAL_26]] : tensor<32x16x8xf32> // CHECK: } func @mul_dds(%arga: tensor<32x16x8xf32, #Tdds>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -235,8 +235,8 @@ func @mul_dds(%arga: tensor<32x16x8xf32, #Tdds>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_14:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_13]], %[[VAL_14]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: scf.for %[[VAL_15:.*]] = %[[VAL_7]] to %[[VAL_3]] step %[[VAL_8]] { @@ -281,7 +281,7 @@ func @mul_dds(%arga: tensor<32x16x8xf32, #Tdds>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_43:.*]] = memref.tensor_load %[[VAL_14]] : memref<32x16x8xf32> +// CHECK: %[[VAL_43:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16x8xf32> // CHECK: return %[[VAL_43]] : tensor<32x16x8xf32> // CHECK: } func @add_dsd(%arga: tensor<32x16x8xf32, #Tdsd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -306,8 +306,8 @@ func @add_dsd(%arga: tensor<32x16x8xf32, #Tdsd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: scf.for %[[VAL_13:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { @@ -326,7 +326,7 @@ func @add_dsd(%arga: tensor<32x16x8xf32, #Tdsd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_25:.*]] = memref.tensor_load %[[VAL_12]] : memref<32x16x8xf32> +// CHECK: %[[VAL_25:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32x16x8xf32> // CHECK: return %[[VAL_25]] : tensor<32x16x8xf32> // CHECK: } func @mul_dsd(%arga: tensor<32x16x8xf32, #Tdsd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -356,8 +356,8 @@ func @mul_dsd(%arga: tensor<32x16x8xf32, #Tdsd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_16:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_17:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_16]], %[[VAL_17]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: scf.for %[[VAL_18:.*]] = %[[VAL_8]] to %[[VAL_4]] step %[[VAL_9]] { @@ -426,7 +426,7 @@ func @mul_dsd(%arga: tensor<32x16x8xf32, #Tdsd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_62:.*]] = memref.tensor_load %[[VAL_17]] : memref<32x16x8xf32> +// CHECK: %[[VAL_62:.*]] = bufferization.to_tensor %[[VAL_17]] : memref<32x16x8xf32> // CHECK: return %[[VAL_62]] : tensor<32x16x8xf32> // CHECK: } func @add_dss(%arga: tensor<32x16x8xf32, #Tdss>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -453,8 +453,8 @@ func @add_dss(%arga: tensor<32x16x8xf32, #Tdss>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_14:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_13]], %[[VAL_14]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: scf.for %[[VAL_15:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] { @@ -475,7 +475,7 @@ func @add_dss(%arga: tensor<32x16x8xf32, #Tdss>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_29:.*]] = memref.tensor_load %[[VAL_14]] : memref<32x16x8xf32> +// CHECK: %[[VAL_29:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16x8xf32> // CHECK: return %[[VAL_29]] : tensor<32x16x8xf32> // CHECK: } func @mul_dss(%arga: tensor<32x16x8xf32, #Tdss>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -502,8 +502,8 @@ func @mul_dss(%arga: tensor<32x16x8xf32, #Tdss>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_14:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_13]], %[[VAL_14]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref @@ -553,7 +553,7 @@ func @mul_dss(%arga: tensor<32x16x8xf32, #Tdss>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_46:.*]] = memref.tensor_load %[[VAL_14]] : memref<32x16x8xf32> +// CHECK: %[[VAL_46:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16x8xf32> // CHECK: return %[[VAL_46]] : tensor<32x16x8xf32> // CHECK: } func @add_sdd(%arga: tensor<32x16x8xf32, #Tsdd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -578,8 +578,8 @@ func @add_sdd(%arga: tensor<32x16x8xf32, #Tsdd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_5]]] : memref @@ -599,7 +599,7 @@ func @add_sdd(%arga: tensor<32x16x8xf32, #Tsdd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_26:.*]] = memref.tensor_load %[[VAL_12]] : memref<32x16x8xf32> +// CHECK: %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32x16x8xf32> // CHECK: return %[[VAL_26]] : tensor<32x16x8xf32> // CHECK: } func @mul_sdd(%arga: tensor<32x16x8xf32, #Tsdd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -629,8 +629,8 @@ func @mul_sdd(%arga: tensor<32x16x8xf32, #Tsdd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_16:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_17:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_16]], %[[VAL_17]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_8]]] : memref @@ -704,7 +704,7 @@ func @mul_sdd(%arga: tensor<32x16x8xf32, #Tsdd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_65:.*]] = memref.tensor_load %[[VAL_17]] : memref<32x16x8xf32> +// CHECK: %[[VAL_65:.*]] = bufferization.to_tensor %[[VAL_17]] : memref<32x16x8xf32> // CHECK: return %[[VAL_65]] : tensor<32x16x8xf32> // CHECK: } func @add_sds(%arga: tensor<32x16x8xf32, #Tsds>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -731,8 +731,8 @@ func @add_sds(%arga: tensor<32x16x8xf32, #Tsds>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_14:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_13]], %[[VAL_14]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_5]]] : memref @@ -754,7 +754,7 @@ func @add_sds(%arga: tensor<32x16x8xf32, #Tsds>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_30:.*]] = memref.tensor_load %[[VAL_14]] : memref<32x16x8xf32> +// CHECK: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16x8xf32> // CHECK: return %[[VAL_30]] : tensor<32x16x8xf32> // CHECK: } func @mul_sds(%arga: tensor<32x16x8xf32, #Tsds>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -783,8 +783,8 @@ func @mul_sds(%arga: tensor<32x16x8xf32, #Tsds>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_14:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_16:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_15]], %[[VAL_16]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref @@ -862,7 +862,7 @@ func @mul_sds(%arga: tensor<32x16x8xf32, #Tsds>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_66:.*]] = memref.tensor_load %[[VAL_16]] : memref<32x16x8xf32> +// CHECK: %[[VAL_66:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<32x16x8xf32> // CHECK: return %[[VAL_66]] : tensor<32x16x8xf32> // CHECK: } func @add_ssd(%arga: tensor<32x16x8xf32, #Tssd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -888,8 +888,8 @@ func @add_ssd(%arga: tensor<32x16x8xf32, #Tssd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref @@ -911,7 +911,7 @@ func @add_ssd(%arga: tensor<32x16x8xf32, #Tssd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_29:.*]] = memref.tensor_load %[[VAL_13]] : memref<32x16x8xf32> +// CHECK: %[[VAL_29:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16x8xf32> // CHECK: return %[[VAL_29]] : tensor<32x16x8xf32> // CHECK: } func @mul_ssd(%arga: tensor<32x16x8xf32, #Tssd>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -943,8 +943,8 @@ func @mul_ssd(%arga: tensor<32x16x8xf32, #Tssd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_16:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_17:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_18:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_18:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_19:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_18]], %[[VAL_19]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_8]]] : memref @@ -1046,7 +1046,7 @@ func @mul_ssd(%arga: tensor<32x16x8xf32, #Tssd>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_85:.*]] = memref.tensor_load %[[VAL_19]] : memref<32x16x8xf32> +// CHECK: %[[VAL_85:.*]] = bufferization.to_tensor %[[VAL_19]] : memref<32x16x8xf32> // CHECK: return %[[VAL_85]] : tensor<32x16x8xf32> // CHECK: } func @add_sss(%arga: tensor<32x16x8xf32, #Tsss>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -1074,8 +1074,8 @@ func @add_sss(%arga: tensor<32x16x8xf32, #Tsss>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32x16x8xf32> -// CHECK: %[[VAL_14:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16x8xf32> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> +// CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> // CHECK: %[[VAL_15:.*]] = memref.alloc() : memref<32x16x8xf32> // CHECK: memref.copy %[[VAL_14]], %[[VAL_15]] : memref<32x16x8xf32> to memref<32x16x8xf32> // CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref @@ -1099,7 +1099,7 @@ func @add_sss(%arga: tensor<32x16x8xf32, #Tsss>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_33:.*]] = memref.tensor_load %[[VAL_15]] : memref<32x16x8xf32> +// CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16x8xf32> // CHECK: return %[[VAL_33]] : tensor<32x16x8xf32> // CHECK: } func @mul_sss(%arga: tensor<32x16x8xf32, #Tsss>, %argb: tensor<32x16x8xf32>, %argx: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { @@ -1136,11 +1136,11 @@ func @mul_sss(%arga: tensor<32x16x8xf32, #Tsss>, %argb: tensor<32x16x8xf32>, %ar // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> to memref // CHECK: %[[VAL_10:.*]] = tensor.dim %[[VAL_2]], %[[VAL_5]] : tensor -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_3]] : memref +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_3]] : memref // CHECK: %[[VAL_13:.*]] = tensor.dim %[[VAL_0]], %[[VAL_5]] : tensor // CHECK: %[[VAL_14:.*]] = tensor.dim %[[VAL_0]], %[[VAL_6]] : tensor -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_0]] : memref +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK: %[[VAL_16:.*]] = memref.alloc(%[[VAL_13]], %[[VAL_14]]) : memref // CHECK: memref.copy %[[VAL_15]], %[[VAL_16]] : memref to memref // CHECK: scf.for %[[VAL_17:.*]] = %[[VAL_5]] to %[[VAL_13]] step %[[VAL_6]] { @@ -1165,7 +1165,7 @@ func @mul_sss(%arga: tensor<32x16x8xf32, #Tsss>, %argb: tensor<32x16x8xf32>, %ar // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_34:.*]] = memref.tensor_load %[[VAL_16]] : memref +// CHECK: %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_16]] : memref // CHECK: return %[[VAL_34]] : tensor // CHECK: } func @kernel_3d(%arga: tensor, @@ -1203,7 +1203,7 @@ func @kernel_3d(%arga: tensor, // CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_10:.*]] = memref.alloc() : memref // CHECK: memref.copy %[[VAL_9]], %[[VAL_10]] : memref to memref // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_10]][] : memref @@ -1227,7 +1227,7 @@ func @kernel_3d(%arga: tensor, // CHECK: scf.yield %[[VAL_20]] : f32 // CHECK: } // CHECK: memref.store %[[VAL_14]], %[[VAL_10]][] : memref -// CHECK: %[[VAL_34:.*]] = memref.tensor_load %[[VAL_10]] : memref +// CHECK: %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_10]] : memref // CHECK: return %[[VAL_34]] : tensor // CHECK: } func @sum_reduction(%arga: tensor<10x20x30xf32, #Tsss>, %argx: tensor) -> tensor { @@ -1260,10 +1260,10 @@ func @sum_reduction(%arga: tensor<10x20x30xf32, #Tsss>, %argx: tensor) -> t // CHECK: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor // CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_0]] : memref +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK: %[[VAL_9:.*]] = tensor.dim %[[VAL_1]], %[[VAL_5]] : tensor> // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref // CHECK: %[[VAL_12:.*]] = memref.alloc() : memref // CHECK: memref.copy %[[VAL_11]], %[[VAL_12]] : memref to memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_12]][] : memref @@ -1281,7 +1281,7 @@ func @sum_reduction(%arga: tensor<10x20x30xf32, #Tsss>, %argx: tensor) -> t // CHECK: scf.yield %[[VAL_18]] : f32 // CHECK: } // CHECK: memref.store %[[VAL_14]], %[[VAL_12]][] : memref -// CHECK: %[[VAL_30:.*]] = memref.tensor_load %[[VAL_12]] : memref +// CHECK: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_12]] : memref // CHECK: return %[[VAL_30]] : tensor // CHECK: } func @sum_reduction_inv(%arga: tensor, @@ -1320,9 +1320,9 @@ func @sum_reduction_inv(%arga: tensor, // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_8:.*]] = arith.constant 1 : index // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<20xf32> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<30xf32> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_3]] : memref<10x20x30xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<20xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<30xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_3]] : memref<10x20x30xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<10x20x30xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<10x20x30xf32> to memref<10x20x30xf32> // CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_7]] to %[[VAL_4]] step %[[VAL_8]] { @@ -1337,7 +1337,7 @@ func @sum_reduction_inv(%arga: tensor, // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_22:.*]] = memref.tensor_load %[[VAL_13]] : memref<10x20x30xf32> +// CHECK: %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<10x20x30xf32> // CHECK: return %[[VAL_22]] : tensor<10x20x30xf32> // CHECK: } func @invariants(%arga: tensor<10xf32, #Td>, diff --git a/mlir/test/Dialect/SparseTensor/sparse_affine.mlir b/mlir/test/Dialect/SparseTensor/sparse_affine.mlir index 68c07f3cf647..551b2b6d04b5 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_affine.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_affine.mlir @@ -24,8 +24,8 @@ // CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<4xf32> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<4xf32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_11:.*]] = memref.alloc() : memref<32xf32> // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32xf32> to memref<32xf32> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<4xf32> @@ -39,7 +39,7 @@ // CHECK: %[[VAL_20:.*]] = arith.addf %[[VAL_17]], %[[VAL_19]] : f32 // CHECK: memref.store %[[VAL_20]], %[[VAL_11]]{{\[}}%[[VAL_16]]] : memref<32xf32> // CHECK: } -// CHECK: %[[VAL_21:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xf32> +// CHECK: %[[VAL_21:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf32> // CHECK: return %[[VAL_21]] : tensor<32xf32> // CHECK: } func @mul_inv_dense1d(%arga: tensor<32xf32, #SpVec>, @@ -76,8 +76,8 @@ func @mul_inv_dense1d(%arga: tensor<32xf32, #SpVec>, // CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<34xi32> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xi32> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<34xi32> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi32> // CHECK: %[[VAL_11:.*]] = memref.alloc() : memref<32xi32> // CHECK: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32xi32> to memref<32xi32> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref @@ -90,7 +90,7 @@ func @mul_inv_dense1d(%arga: tensor<32xf32, #SpVec>, // CHECK: %[[VAL_19:.*]] = arith.andi %[[VAL_16]], %[[VAL_18]] : i32 // CHECK: memref.store %[[VAL_19]], %[[VAL_11]]{{\[}}%[[VAL_15]]] : memref<32xi32> // CHECK: } -// CHECK: %[[VAL_20:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xi32> +// CHECK: %[[VAL_20:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xi32> // CHECK: return %[[VAL_20]] : tensor<32xi32> // CHECK: } func @and_affine_dense1d(%arga: tensor<32xi32, #SpVec>, @@ -128,8 +128,8 @@ func @and_affine_dense1d(%arga: tensor<32xi32, #SpVec>, // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref<34x19xf64> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32x16xf64> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<34x19xf64> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf64> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<32x16xf64> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16xf64> to memref<32x16xf64> // CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_3]] { @@ -148,7 +148,7 @@ func @and_affine_dense1d(%arga: tensor<32xi32, #SpVec>, // CHECK: memref.store %[[VAL_26]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_19]]] : memref<32x16xf64> // CHECK: } // CHECK: } -// CHECK: %[[VAL_27:.*]] = memref.tensor_load %[[VAL_13]] : memref<32x16xf64> +// CHECK: %[[VAL_27:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf64> // CHECK: return %[[VAL_27]] : tensor<32x16xf64> // CHECK: } func @mul_affine_dense2d(%arga: tensor<32x16xf64, #CSR>, diff --git a/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir b/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir index 6af4bacc7af4..cf81e45f2432 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir @@ -39,7 +39,7 @@ // CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf64> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] { @@ -48,7 +48,7 @@ // CHECK: %[[VAL_13:.*]] = math.abs %[[VAL_12]] : f64 // CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK: } -// CHECK: %[[VAL_14:.*]] = memref.tensor_load %[[VAL_7]] : memref<32xf64> +// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64> // CHECK: return %[[VAL_14]] : tensor<32xf64> func @abs(%arga: tensor<32xf64, #SV>, %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> { @@ -70,7 +70,7 @@ func @abs(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf64> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] { @@ -79,7 +79,7 @@ func @abs(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64 // CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK: } -// CHECK: %[[VAL_14:.*]] = memref.tensor_load %[[VAL_7]] : memref<32xf64> +// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64> // CHECK: return %[[VAL_14]] : tensor<32xf64> // CHECK: } func @ceil(%arga: tensor<32xf64, #SV>, @@ -102,7 +102,7 @@ func @ceil(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf64> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] { @@ -111,7 +111,7 @@ func @ceil(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_13:.*]] = math.floor %[[VAL_12]] : f64 // CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK: } -// CHECK: %[[VAL_14:.*]] = memref.tensor_load %[[VAL_7]] : memref<32xf64> +// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64> // CHECK: return %[[VAL_14]] : tensor<32xf64> // CHECK: } func @floor(%arga: tensor<32xf64, #SV>, @@ -134,7 +134,7 @@ func @floor(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf64> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] { @@ -143,7 +143,7 @@ func @floor(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_13:.*]] = arith.negf %[[VAL_12]] : f64 // CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK: } -// CHECK: %[[VAL_14:.*]] = memref.tensor_load %[[VAL_7]] : memref<32xf64> +// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64> // CHECK: return %[[VAL_14]] : tensor<32xf64> // CHECK: } func @neg(%arga: tensor<32xf64, #SV>, @@ -169,8 +169,8 @@ func @neg(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf64> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { @@ -202,7 +202,7 @@ func @neg(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xf64> // CHECK: memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xf64> // CHECK: } -// CHECK: %[[VAL_33:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xf64> +// CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64> // CHECK: return %[[VAL_33]] : tensor<32xf64> // CHECK: } func @add(%arga: tensor<32xf64, #SV>, @@ -229,8 +229,8 @@ func @add(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf64> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { @@ -264,7 +264,7 @@ func @add(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_34:.*]] = arith.negf %[[VAL_33]] : f64 // CHECK: memref.store %[[VAL_34]], %[[VAL_11]]{{\[}}%[[VAL_31]]] : memref<32xf64> // CHECK: } -// CHECK: %[[VAL_35:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xf64> +// CHECK: %[[VAL_35:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64> // CHECK: return %[[VAL_35]] : tensor<32xf64> // CHECK: } func @sub(%arga: tensor<32xf64, #SV>, @@ -289,8 +289,8 @@ func @sub(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf64> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] { @@ -300,7 +300,7 @@ func @sub(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_16:.*]] = arith.mulf %[[VAL_14]], %[[VAL_15]] : f64 // CHECK: memref.store %[[VAL_16]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf64> // CHECK: } -// CHECK: %[[VAL_17:.*]] = memref.tensor_load %[[VAL_9]] : memref<32xf64> +// CHECK: %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf64> // CHECK: return %[[VAL_17]] : tensor<32xf64> // CHECK: } func @mul(%arga: tensor<32xf64, #SV>, @@ -325,7 +325,7 @@ func @mul(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xf64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] { @@ -334,7 +334,7 @@ func @mul(%arga: tensor<32xf64, #SV>, // CHECK: %[[VAL_14:.*]] = arith.divf %[[VAL_13]], %[[VAL_2]] : f64 // CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf64> // CHECK: } -// CHECK: %[[VAL_15:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xf64> +// CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf64> // CHECK: return %[[VAL_15]] : tensor<32xf64> // CHECK: } func @divbyc(%arga: tensor<32xf64, #SV>, diff --git a/mlir/test/Dialect/SparseTensor/sparse_int_ops.mlir b/mlir/test/Dialect/SparseTensor/sparse_int_ops.mlir index 1c3893c7bc03..c60fcd0ca587 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_int_ops.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_int_ops.mlir @@ -33,8 +33,8 @@ // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xi64> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { @@ -66,7 +66,7 @@ // CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xi64> // CHECK: memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_33:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xi64> +// CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xi64> // CHECK: return %[[VAL_33]] : tensor<32xi64> // CHECK: } func @add(%arga: tensor<32xi64, #SV>, @@ -94,8 +94,8 @@ func @add(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xi64> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_15:.*]]:2 = scf.while (%[[VAL_16:.*]] = %[[VAL_13]], %[[VAL_17:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { @@ -129,7 +129,7 @@ func @add(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_35:.*]] = arith.subi %[[VAL_7]], %[[VAL_34]] : i64 // CHECK: memref.store %[[VAL_35]], %[[VAL_12]]{{\[}}%[[VAL_32]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_36:.*]] = memref.tensor_load %[[VAL_12]] : memref<32xi64> +// CHECK: %[[VAL_36:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xi64> // CHECK: return %[[VAL_36]] : tensor<32xi64> // CHECK: } func @sub(%arga: tensor<32xi64, #SV>, @@ -154,8 +154,8 @@ func @sub(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xi64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] { @@ -165,7 +165,7 @@ func @sub(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_16:.*]] = arith.muli %[[VAL_14]], %[[VAL_15]] : i64 // CHECK: memref.store %[[VAL_16]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_17:.*]] = memref.tensor_load %[[VAL_9]] : memref<32xi64> +// CHECK: %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xi64> // CHECK: return %[[VAL_17]] : tensor<32xi64> // CHECK: } func @mul(%arga: tensor<32xi64, #SV>, @@ -190,7 +190,7 @@ func @mul(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] { @@ -199,7 +199,7 @@ func @mul(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_14:.*]] = arith.divsi %[[VAL_13]], %[[VAL_2]] : i64 // CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_15:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xi64> +// CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xi64> // CHECK: return %[[VAL_15]] : tensor<32xi64> // CHECK: } func @divsbyc(%arga: tensor<32xi64, #SV>, @@ -224,7 +224,7 @@ func @divsbyc(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{.*}}}>> // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] { @@ -233,7 +233,7 @@ func @divsbyc(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_14:.*]] = arith.divui %[[VAL_13]], %[[VAL_2]] : i64 // CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_15:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xi64> +// CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xi64> // CHECK: return %[[VAL_15]] : tensor<32xi64> // CHECK: } func @divubyc(%arga: tensor<32xi64, #SV>, @@ -258,8 +258,8 @@ func @divubyc(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xi64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] { @@ -269,7 +269,7 @@ func @divubyc(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_16:.*]] = arith.andi %[[VAL_14]], %[[VAL_15]] : i64 // CHECK: memref.store %[[VAL_16]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_17:.*]] = memref.tensor_load %[[VAL_9]] : memref<32xi64> +// CHECK: %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xi64> // CHECK: return %[[VAL_17]] : tensor<32xi64> // CHECK: } func @and(%arga: tensor<32xi64, #SV>, @@ -296,8 +296,8 @@ func @and(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xi64> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { @@ -329,7 +329,7 @@ func @and(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xi64> // CHECK: memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_33:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xi64> +// CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xi64> // CHECK: return %[[VAL_33]] : tensor<32xi64> // CHECK: } func @or(%arga: tensor<32xi64, #SV>, @@ -356,8 +356,8 @@ func @or(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xi64> +// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { @@ -389,7 +389,7 @@ func @or(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xi64> // CHECK: memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_33:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xi64> +// CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xi64> // CHECK: return %[[VAL_33]] : tensor<32xi64> // CHECK: } func @xor(%arga: tensor<32xi64, #SV>, @@ -414,7 +414,7 @@ func @xor(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] { @@ -423,7 +423,7 @@ func @xor(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_14:.*]] = arith.shrsi %[[VAL_13]], %[[VAL_2]] : i64 // CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_15:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xi64> +// CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xi64> // CHECK: return %[[VAL_15]] : tensor<32xi64> // CHECK: } func @ashrbyc(%arga: tensor<32xi64, #SV>, @@ -448,7 +448,7 @@ func @ashrbyc(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] { @@ -457,7 +457,7 @@ func @ashrbyc(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_14:.*]] = arith.shrui %[[VAL_13]], %[[VAL_2]] : i64 // CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_15:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xi64> +// CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xi64> // CHECK: return %[[VAL_15]] : tensor<32xi64> // CHECK: } func @lsrbyc(%arga: tensor<32xi64, #SV>, @@ -482,7 +482,7 @@ func @lsrbyc(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<32xi64> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] { @@ -491,7 +491,7 @@ func @lsrbyc(%arga: tensor<32xi64, #SV>, // CHECK: %[[VAL_14:.*]] = arith.shli %[[VAL_13]], %[[VAL_2]] : i64 // CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xi64> // CHECK: } -// CHECK: %[[VAL_15:.*]] = memref.tensor_load %[[VAL_8]] : memref<32xi64> +// CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xi64> // CHECK: return %[[VAL_15]] : tensor<32xi64> // CHECK: } func @lslbyc(%arga: tensor<32xi64, #SV>, diff --git a/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir b/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir index 0d9be839813a..ff44db90d9d4 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir @@ -17,8 +17,8 @@ // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_1]] : memref<20x30xf32> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<10x30xf32> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<20x30xf32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<10x30xf32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<10x30xf32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<10x30xf32> to memref<10x30xf32> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref @@ -40,7 +40,7 @@ // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_29:.*]] = memref.tensor_load %[[VAL_13]] : memref<10x30xf32> +// CHECK: %[[VAL_29:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<10x30xf32> // CHECK: return %[[VAL_29]] : tensor<10x30xf32> // CHECK: } func @matmul(%a: tensor<10x20xf32, #DCSR>, @@ -59,13 +59,13 @@ func @matmul(%a: tensor<10x20xf32, #DCSR>, // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 6 : index -// CHECK: %[[VAL_6:.*]] = memref.buffer_cast %[[VAL_0]] : memref<8x8xi32> +// CHECK: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref<8x8xi32> // CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_12:.*]] = memref.buffer_cast %[[VAL_2]] : memref<6x6xi32> +// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<6x6xi32> // CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<6x6xi32> // CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<6x6xi32> to memref<6x6xi32> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_3]]] : memref @@ -91,7 +91,7 @@ func @matmul(%a: tensor<10x20xf32, #DCSR>, // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_32:.*]] = memref.tensor_load %[[VAL_13]] : memref<6x6xi32> +// CHECK: %[[VAL_32:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<6x6xi32> // CHECK: return %[[VAL_32]] : tensor<6x6xi32> // CHECK: } func @conv2d(%input: tensor<8x8xi32>, @@ -111,13 +111,13 @@ func @conv2d(%input: tensor<8x8xi32>, // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 5 : index -// CHECK: %[[VAL_7:.*]] = memref.buffer_cast %[[VAL_0]] : memref<5x3xi8> +// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<5x3xi8> // CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_2]] : memref<5x6xi64> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<5x6xi64> // CHECK: %[[VAL_14:.*]] = memref.alloc() : memref<5x6xi64> // CHECK: memref.copy %[[VAL_13]], %[[VAL_14]] : memref<5x6xi64> to memref<5x6xi64> // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref @@ -142,7 +142,7 @@ func @conv2d(%input: tensor<8x8xi32>, // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_33:.*]] = memref.tensor_load %[[VAL_14]] : memref<5x6xi64> +// CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<5x6xi64> // CHECK: return %[[VAL_33]] : tensor<5x6xi64> // CHECK: } func @quantized_matmul(%input1: tensor<5x3xi8>, diff --git a/mlir/test/Dialect/SparseTensor/sparse_lower.mlir b/mlir/test/Dialect/SparseTensor/sparse_lower.mlir index 363a0281af7b..45c8a36ef437 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_lower.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_lower.mlir @@ -30,8 +30,8 @@ // CHECK-HIR: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-HIR: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-HIR: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-HIR: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<64xf64> -// CHECK-HIR: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK-HIR: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> +// CHECK-HIR: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK-HIR: %[[VAL_11:.*]] = memref.alloc() : memref<32xf64> // CHECK-HIR: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32xf64> to memref<32xf64> // CHECK-HIR: scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -49,7 +49,7 @@ // CHECK-HIR: } // CHECK-HIR: memref.store %[[VAL_17]], %[[VAL_11]]{{\[}}%[[VAL_12]]] : memref<32xf64> // CHECK-HIR: } -// CHECK-HIR: %[[VAL_26:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xf64> +// CHECK-HIR: %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64> // CHECK-HIR: return %[[VAL_26]] : tensor<32xf64> // CHECK-HIR: } @@ -63,8 +63,8 @@ // CHECK-MIR: %[[VAL_6:.*]] = call @sparsePointers(%[[VAL_0]], %[[VAL_5]]) : (!llvm.ptr, index) -> memref // CHECK-MIR: %[[VAL_7:.*]] = call @sparseIndices(%[[VAL_0]], %[[VAL_5]]) : (!llvm.ptr, index) -> memref // CHECK-MIR: %[[VAL_8:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr) -> memref -// CHECK-MIR: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<64xf64> -// CHECK-MIR: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK-MIR: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> +// CHECK-MIR: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK-MIR: %[[VAL_11:.*]] = memref.alloc() : memref<32xf64> // CHECK-MIR: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32xf64> to memref<32xf64> // CHECK-MIR: scf.for %[[VAL_14:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -82,7 +82,7 @@ // CHECK-MIR: } // CHECK-MIR: memref.store %[[VAL_19]], %[[VAL_11]]{{\[}}%[[VAL_14]]] : memref<32xf64> // CHECK-MIR: } -// CHECK-MIR: %[[VAL_28:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xf64> +// CHECK-MIR: %[[VAL_28:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64> // CHECK-MIR: return %[[VAL_28]] : tensor<32xf64> // CHECK-MIR: } diff --git a/mlir/test/Dialect/SparseTensor/sparse_lower_col.mlir b/mlir/test/Dialect/SparseTensor/sparse_lower_col.mlir index fc56613b3acc..fc0051f6f77b 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_lower_col.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_lower_col.mlir @@ -33,8 +33,8 @@ // CHECK-HIR: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK-HIR: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK-HIR: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK-HIR: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<64xf64> -// CHECK-HIR: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK-HIR: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> +// CHECK-HIR: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK-HIR: %[[VAL_11:.*]] = memref.alloc() : memref<32xf64> // CHECK-HIR: memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32xf64> to memref<32xf64> // CHECK-HIR: scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { @@ -51,7 +51,7 @@ // CHECK-HIR: memref.store %[[VAL_22]], %[[VAL_11]]{{\[}}%[[VAL_18]]] : memref<32xf64> // CHECK-HIR: } // CHECK-HIR: } -// CHECK-HIR: %[[VAL_23:.*]] = memref.tensor_load %[[VAL_11]] : memref<32xf64> +// CHECK-HIR: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64> // CHECK-HIR: return %[[VAL_23]] : tensor<32xf64> // CHECK-HIR: } @@ -65,8 +65,8 @@ // CHECK-MIR: %[[VAL_7:.*]] = call @sparsePointers(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr, index) -> memref // CHECK-MIR: %[[VAL_8:.*]] = call @sparseIndices(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr, index) -> memref // CHECK-MIR: %[[VAL_9:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr) -> memref -// CHECK-MIR: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_1]] : memref<64xf64> -// CHECK-MIR: %[[VAL_11:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK-MIR: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> +// CHECK-MIR: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK-MIR: %[[VAL_12:.*]] = memref.alloc() : memref<32xf64> // CHECK-MIR: memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32xf64> to memref<32xf64> // CHECK-MIR: scf.for %[[VAL_15:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { @@ -83,7 +83,7 @@ // CHECK-MIR: memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_21]]] : memref<32xf64> // CHECK-MIR: } // CHECK-MIR: } -// CHECK-MIR: %[[VAL_26:.*]] = memref.tensor_load %[[VAL_12]] : memref<32xf64> +// CHECK-MIR: %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf64> // CHECK-MIR: return %[[VAL_26]] : tensor<32xf64> // CHECK-MIR: } diff --git a/mlir/test/Dialect/SparseTensor/sparse_lower_inplace.mlir b/mlir/test/Dialect/SparseTensor/sparse_lower_inplace.mlir index 728ef0d184fc..10f2083f0d39 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_lower_inplace.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_lower_inplace.mlir @@ -30,8 +30,8 @@ // CHECK-HIR: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-HIR: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-HIR: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-HIR: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<64xf64> -// CHECK-HIR: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK-HIR: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> +// CHECK-HIR: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK-HIR: scf.for %[[VAL_11:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { // CHECK-HIR-DAG: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref // CHECK-HIR-DAG: %[[VAL_13:.*]] = arith.addi %[[VAL_11]], %[[VAL_5]] : index @@ -47,7 +47,7 @@ // CHECK-HIR: } // CHECK-HIR: memref.store %[[VAL_16]], %[[VAL_10]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK-HIR: } -// CHECK-HIR: %[[VAL_25:.*]] = memref.tensor_load %[[VAL_10]] : memref<32xf64> +// CHECK-HIR: %[[VAL_25:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32xf64> // CHECK-HIR: return %[[VAL_25]] : tensor<32xf64> // CHECK-HIR: } @@ -61,8 +61,8 @@ // CHECK-MIR: %[[VAL_6:.*]] = call @sparsePointers(%[[VAL_0]], %[[VAL_5]]) : (!llvm.ptr, index) -> memref // CHECK-MIR: %[[VAL_7:.*]] = call @sparseIndices(%[[VAL_0]], %[[VAL_5]]) : (!llvm.ptr, index) -> memref // CHECK-MIR: %[[VAL_8:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr) -> memref -// CHECK-MIR: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref<64xf64> -// CHECK-MIR: %[[VAL_10:.*]] = memref.buffer_cast %[[VAL_2]] : memref<32xf64> +// CHECK-MIR: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> +// CHECK-MIR: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> // CHECK-MIR: scf.for %[[VAL_11:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { // CHECK-MIR-DAG: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref // CHECK-MIR-DAG: %[[VAL_13:.*]] = arith.addi %[[VAL_11]], %[[VAL_5]] : index @@ -78,7 +78,7 @@ // CHECK-MIR: } // CHECK-MIR: memref.store %[[VAL_16]], %[[VAL_10]]{{\[}}%[[VAL_11]]] : memref<32xf64> // CHECK-MIR: } -// CHECK-MIR: %[[VAL_25:.*]] = memref.tensor_load %[[VAL_10]] : memref<32xf64> +// CHECK-MIR: %[[VAL_25:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32xf64> // CHECK-MIR: return %[[VAL_25]] : tensor<32xf64> // CHECK-MIR: } diff --git a/mlir/test/Dialect/SparseTensor/sparse_nd.mlir b/mlir/test/Dialect/SparseTensor/sparse_nd.mlir index f82106962798..7c6e98fdd566 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_nd.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_nd.mlir @@ -34,13 +34,13 @@ // CHECK: %[[VAL_10:.*]] = arith.constant 80 : index // CHECK: %[[VAL_11:.*]] = arith.constant 0 : index // CHECK: %[[VAL_12:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_13:.*]] = memref.buffer_cast %[[VAL_0]] : memref<10x20x30x40x50x60x70x80xf32> +// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_0]] : memref<10x20x30x40x50x60x70x80xf32> // CHECK: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref // CHECK: %[[VAL_18:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref -// CHECK: %[[VAL_19:.*]] = memref.buffer_cast %[[VAL_2]] : memref<10x20x30x40x50x60x70x80xf32> +// CHECK: %[[VAL_19:.*]] = bufferization.to_memref %[[VAL_2]] : memref<10x20x30x40x50x60x70x80xf32> // CHECK: %[[VAL_20:.*]] = memref.alloc() : memref<10x20x30x40x50x60x70x80xf32> // CHECK: memref.copy %[[VAL_19]], %[[VAL_20]] : memref<10x20x30x40x50x60x70x80xf32> to memref<10x20x30x40x50x60x70x80xf32> // CHECK: scf.for %[[VAL_21:.*]] = %[[VAL_11]] to %[[VAL_10]] step %[[VAL_12]] { @@ -81,7 +81,7 @@ // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_50:.*]] = memref.tensor_load %[[VAL_20]] : memref<10x20x30x40x50x60x70x80xf32> +// CHECK: %[[VAL_50:.*]] = bufferization.to_tensor %[[VAL_20]] : memref<10x20x30x40x50x60x70x80xf32> // CHECK: return %[[VAL_50]] : tensor<10x20x30x40x50x60x70x80xf32> // CHECK: } func @mul(%arga: tensor<10x20x30x40x50x60x70x80xf32>, diff --git a/mlir/test/Dialect/SparseTensor/sparse_perm.mlir b/mlir/test/Dialect/SparseTensor/sparse_perm.mlir index 0df0c46abf0f..463db3c47d35 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_perm.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_perm.mlir @@ -23,7 +23,7 @@ // CHECK: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<20x30x10xf32> +// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<20x30x10xf32> // CHECK: %[[VAL_9:.*]] = memref.alloc() : memref<20x30x10xf32> // CHECK: memref.copy %[[VAL_8]], %[[VAL_9]] : memref<20x30x10xf32> to memref<20x30x10xf32> // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { @@ -38,7 +38,7 @@ // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_18:.*]] = memref.tensor_load %[[VAL_9]] : memref<20x30x10xf32> +// CHECK: %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<20x30x10xf32> // CHECK: return %[[VAL_18]] : tensor<20x30x10xf32> // CHECK: } func @sparse_static_dims(%arga: tensor<10x20x30xf32, #X>, @@ -62,7 +62,7 @@ func @sparse_static_dims(%arga: tensor<10x20x30xf32, #X>, // CHECK: %[[VAL_6:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor // CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_1]], %[[VAL_4]] : tensor // CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_2]] : tensor -// CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_10:.*]] = memref.alloc(%[[VAL_6]], %[[VAL_7]], %[[VAL_8]]) : memref // CHECK: memref.copy %[[VAL_9]], %[[VAL_10]] : memref to memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_3]] to %[[VAL_7]] step %[[VAL_4]] { @@ -77,7 +77,7 @@ func @sparse_static_dims(%arga: tensor<10x20x30xf32, #X>, // CHECK: } // CHECK: } // CHECK: } -// CHECK: %[[VAL_19:.*]] = memref.tensor_load %[[VAL_10]] : memref +// CHECK: %[[VAL_19:.*]] = bufferization.to_tensor %[[VAL_10]] : memref // CHECK: return %[[VAL_19]] : tensor // CHECK: } func @sparse_dynamic_dims(%arga: tensor, diff --git a/mlir/test/Dialect/SparseTensor/sparse_perm_lower.mlir b/mlir/test/Dialect/SparseTensor/sparse_perm_lower.mlir index 43135912e41c..a01e38c0efb6 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_perm_lower.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_perm_lower.mlir @@ -26,7 +26,7 @@ // CHECK-HIR: %[[VAL_6:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor> // CHECK-HIR: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor> // CHECK-HIR: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> -// CHECK-HIR: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK-HIR: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK-HIR: %[[VAL_10:.*]] = memref.alloc() : memref // CHECK-HIR: memref.copy %[[VAL_9]], %[[VAL_10]] : memref to memref // CHECK-HIR: %[[VAL_11:.*]] = memref.load %[[VAL_10]][] : memref @@ -46,7 +46,7 @@ // CHECK-HIR: scf.yield %[[VAL_15]] : f32 // CHECK-HIR: } // CHECK-HIR: memref.store %[[VAL_12]], %[[VAL_10]][] : memref -// CHECK-HIR: %[[VAL_30:.*]] = memref.tensor_load %[[VAL_10]] : memref +// CHECK-HIR: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_10]] : memref // CHECK-HIR: return %[[VAL_30]] : tensor // CHECK-HIR: } // @@ -60,7 +60,7 @@ // CHECK-MIR: %[[VAL_6:.*]] = call @sparseDimSize(%[[VAL_0]], %[[VAL_3]]) : (!llvm.ptr, index) -> index // CHECK-MIR: %[[VAL_7:.*]] = call @sparseDimSize(%[[VAL_0]], %[[VAL_2]]) : (!llvm.ptr, index) -> index // CHECK-MIR: %[[VAL_8:.*]] = call @sparseValuesF32(%[[VAL_0]]) : (!llvm.ptr) -> memref -// CHECK-MIR: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref +// CHECK-MIR: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK-MIR: %[[VAL_10:.*]] = memref.alloc() : memref // CHECK-MIR: memref.copy %[[VAL_9]], %[[VAL_10]] : memref to memref // CHECK-MIR: %[[VAL_11:.*]] = memref.load %[[VAL_10]][] : memref @@ -80,7 +80,7 @@ // CHECK-MIR: scf.yield %[[VAL_15]] : f32 // CHECK-MIR: } // CHECK-MIR: memref.store %[[VAL_12]], %[[VAL_10]][] : memref -// CHECK-MIR: %[[VAL_30:.*]] = memref.tensor_load %[[VAL_10]] : memref +// CHECK-MIR: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_10]] : memref // CHECK-MIR: return %[[VAL_30]] : tensor // CHECK-MIR: } func @sparse_dynamic_dims(%arga: tensor, diff --git a/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir b/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir index 544ab6ccc1ad..9bbc16a1c0e1 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir @@ -33,8 +33,8 @@ // CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_14:.*]] = memref.buffer_cast %[[VAL_1]] : memref -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_4]] : memref<32x16xf32> +// CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_1]] : memref +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_4]] : memref<32x16xf32> // CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_14]][] : memref // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_6]]] : memref // CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref @@ -56,7 +56,7 @@ // CHECK: memref.store %[[VAL_33]], %[[VAL_15]]{{\[}}%[[VAL_20]], %[[VAL_25]]] : memref<32x16xf32> // CHECK: } // CHECK: } -// CHECK: %[[VAL_34:.*]] = memref.tensor_load %[[VAL_15]] : memref<32x16xf32> +// CHECK: %[[VAL_34:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16xf32> // CHECK: return %[[VAL_34]] : tensor<32x16xf32> // CHECK: } func @mul(%arga: tensor<32x16xf32, #SparseMatrix>, diff --git a/mlir/test/Dialect/SparseTensor/sparse_vector_chain.mlir b/mlir/test/Dialect/SparseTensor/sparse_vector_chain.mlir index 030eff2bf9d2..4480e6b0e0f6 100644 --- a/mlir/test/Dialect/SparseTensor/sparse_vector_chain.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_vector_chain.mlir @@ -32,7 +32,7 @@ // CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_8]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_8]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_15:.*]] = memref.buffer_cast %[[VAL_0]] : memref +// CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK: %[[VAL_16:.*]] = tensor.extract %[[VAL_0]][] : tensor // CHECK: %[[VAL_17:.*]] = scf.for %[[VAL_18:.*]] = %[[VAL_6]] to %[[VAL_7]] step %[[VAL_8]] iter_args(%[[VAL_19:.*]] = %[[VAL_16]]) -> (f64) { // CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref @@ -109,7 +109,7 @@ // CHECK: scf.yield %[[VAL_84]] : f64 // CHECK: } // CHECK: memref.store %[[VAL_86:.*]], %[[VAL_15]][] : memref -// CHECK: %[[VAL_87:.*]] = memref.tensor_load %[[VAL_15]] : memref +// CHECK: %[[VAL_87:.*]] = bufferization.to_tensor %[[VAL_15]] : memref // CHECK: return %[[VAL_87]] : tensor // CHECK: } func @sparse_matrix_sum(%argx: tensor {linalg.inplaceable = true}, diff --git a/mlir/test/Dialect/Standard/bufferize.mlir b/mlir/test/Dialect/Standard/bufferize.mlir index e709158bfc2e..c7d194b52cda 100644 --- a/mlir/test/Dialect/Standard/bufferize.mlir +++ b/mlir/test/Dialect/Standard/bufferize.mlir @@ -4,10 +4,10 @@ // CHECK-SAME: %[[PRED:.*]]: i1, // CHECK-SAME: %[[TRUE_VAL:.*]]: tensor, // CHECK-SAME: %[[FALSE_VAL:.*]]: tensor) -> tensor { -// CHECK-DAG: %[[TRUE_VAL_MEMREF:.*]] = memref.buffer_cast %[[TRUE_VAL]] : memref -// CHECK-DAG: %[[FALSE_VAL_MEMREF:.*]] = memref.buffer_cast %[[FALSE_VAL]] : memref +// CHECK-DAG: %[[TRUE_VAL_MEMREF:.*]] = bufferization.to_memref %[[TRUE_VAL]] : memref +// CHECK-DAG: %[[FALSE_VAL_MEMREF:.*]] = bufferization.to_memref %[[FALSE_VAL]] : memref // CHECK: %[[RET_MEMREF:.*]] = select %[[PRED]], %[[TRUE_VAL_MEMREF]], %[[FALSE_VAL_MEMREF]] : memref -// CHECK: %[[RET:.*]] = memref.tensor_load %[[RET_MEMREF]] : memref +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[RET_MEMREF]] : memref // CHECK: return %[[RET]] : tensor func @select(%arg0: i1, %arg1: tensor, %arg2: tensor) -> tensor { %0 = select %arg0, %arg1, %arg2 : tensor diff --git a/mlir/test/Dialect/Standard/func-bufferize.mlir b/mlir/test/Dialect/Standard/func-bufferize.mlir index 4a778cd8ce09..2e37d70730bf 100644 --- a/mlir/test/Dialect/Standard/func-bufferize.mlir +++ b/mlir/test/Dialect/Standard/func-bufferize.mlir @@ -39,7 +39,7 @@ func @call_sink(%arg0: tensor) { // CHECK-LABEL: func @unconverted_op_in_body() -> memref { // CHECK: %[[TENSOR:.*]] = "test.source"() : () -> tensor -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref // CHECK: return %[[MEMREF]] : memref func @unconverted_op_in_body() -> tensor { %0 = "test.source"() : () -> tensor diff --git a/mlir/test/Dialect/Standard/tensor-constant-bufferize.mlir b/mlir/test/Dialect/Standard/tensor-constant-bufferize.mlir index 6172705b957f..d4a0c3fe3961 100644 --- a/mlir/test/Dialect/Standard/tensor-constant-bufferize.mlir +++ b/mlir/test/Dialect/Standard/tensor-constant-bufferize.mlir @@ -15,7 +15,7 @@ // CHECK: @basic func @basic() -> tensor<3x4xf32> { // CHECK: %[[MEMREF:.*]] = memref.get_global @__constant_3x4xf32 : memref<3x4xf32> - // CHECK: %[[TENSOR:.*]] = memref.tensor_load %[[MEMREF]] + // CHECK: %[[TENSOR:.*]] = bufferization.to_tensor %[[MEMREF]] %0 = arith.constant dense<7.0> : tensor<3x4xf32> // CHECK: return %[[TENSOR]] return %0 : tensor<3x4xf32> diff --git a/mlir/test/Dialect/Tensor/bufferize.mlir b/mlir/test/Dialect/Tensor/bufferize.mlir index f85c07cbbc3a..91642f06d0f2 100644 --- a/mlir/test/Dialect/Tensor/bufferize.mlir +++ b/mlir/test/Dialect/Tensor/bufferize.mlir @@ -3,7 +3,7 @@ // CHECK-LABEL: func @dim( // CHECK-SAME: %[[TENSOR:.*]]: tensor, // CHECK-SAME: %[[INDEX:.*]]: index) -> index { -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref // CHECK: %[[EXTENT:.*]] = memref.dim %[[MEMREF]], %[[INDEX]] : memref // CHECK: return %[[EXTENT]] : index func @dim(%arg0: tensor, %arg1: index) -> index { @@ -13,9 +13,9 @@ func @dim(%arg0: tensor, %arg1: index) -> index { // CHECK-LABEL: func @tensor.cast( // CHECK-SAME: %[[TENSOR:.*]]: tensor) -> tensor<2xindex> { -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] // CHECK: %[[CASTED:.*]] = memref.cast %[[MEMREF]] : memref to memref<2xindex> -// CHECK: %[[RET:.*]] = memref.tensor_load %[[CASTED]] +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED]] // CHECK: return %[[RET]] : tensor<2xindex> func @tensor.cast(%arg0: tensor) -> tensor<2xindex> { %0 = tensor.cast %arg0 : tensor to tensor<2xindex> @@ -24,9 +24,9 @@ func @tensor.cast(%arg0: tensor) -> tensor<2xindex> { // CHECK-LABEL: func @tensor.cast_from_unranked( // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xf32>) -> tensor<2xf32> { -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref<*xf32> +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<*xf32> // CHECK: %[[CASTED_MEMREF:.*]] = memref.cast %[[MEMREF]] : memref<*xf32> to memref<2xf32> -// CHECK: %[[RET:.*]] = memref.tensor_load %[[CASTED_MEMREF]] : memref<2xf32> +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED_MEMREF]] : memref<2xf32> // CHECK: return %[[RET]] : tensor<2xf32> func @tensor.cast_from_unranked(%arg0: tensor<*xf32>) -> tensor<2xf32> { %0 = tensor.cast %arg0 : tensor<*xf32> to tensor<2xf32> @@ -35,9 +35,9 @@ func @tensor.cast_from_unranked(%arg0: tensor<*xf32>) -> tensor<2xf32> { // CHECK-LABEL: func @tensor.cast_to_unranked( // CHECK-SAME: %[[TENSOR:.*]]: tensor<2xf32>) -> tensor<*xf32> { -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref<2xf32> +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<2xf32> // CHECK: %[[CASTED_MEMREF:.*]] = memref.cast %[[MEMREF]] : memref<2xf32> to memref<*xf32> -// CHECK: %[[RET:.*]] = memref.tensor_load %[[CASTED_MEMREF]] : memref<*xf32> +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED_MEMREF]] : memref<*xf32> // CHECK: return %[[RET]] : tensor<*xf32> func @tensor.cast_to_unranked(%arg0: tensor<2xf32>) -> tensor<*xf32> { %0 = tensor.cast %arg0 : tensor<2xf32> to tensor<*xf32> @@ -47,7 +47,7 @@ func @tensor.cast_to_unranked(%arg0: tensor<2xf32>) -> tensor<*xf32> { // CHECK-LABEL: func @tensor.extract( // CHECK-SAME: %[[TENSOR:.*]]: tensor, // CHECK-SAME: %[[IDX:.*]]: index) -> f32 { -// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref +// CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref // CHECK: %[[RET:.*]] = memref.load %[[MEMREF]][%[[IDX]]] : memref // CHECK: return %[[RET]] : f32 // CHECK: } @@ -64,7 +64,7 @@ func @tensor.extract(%arg0: tensor, %arg1: index) -> f32 { // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C0]]] // CHECK: %[[C1:.*]] = arith.constant 1 : index // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C1]]] -// CHECK: %[[RET:.*]] = memref.tensor_load %[[MEMREF]] +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]] // CHECK: return %[[RET]] : tensor<2xindex> func @tensor.from_elements(%arg0: index, %arg1: index) -> tensor<2xindex> { %0 = tensor.from_elements %arg0, %arg1 : tensor<2xindex> @@ -74,7 +74,7 @@ func @tensor.from_elements(%arg0: index, %arg1: index) -> tensor<2xindex> { // CHECK-LABEL: func @tensor.generate( // CHECK-SAME: %[[ARG:.*]]: tensor<*xf32>, // CHECK-SAME: %[[DYNAMIC_EXTENT:.*]]: index) -> tensor { -// CHECK: %[[CASTED:.*]] = memref.buffer_cast %[[ARG]] : memref<*xf32> +// CHECK: %[[CASTED:.*]] = bufferization.to_memref %[[ARG]] : memref<*xf32> // CHECK: %[[MEMREF:.*]] = memref.alloc(%[[DYNAMIC_EXTENT]]) : memref // CHECK: %[[C0:.*]] = arith.constant 0 : index // CHECK: %[[C1:.*]] = arith.constant 1 : index @@ -83,7 +83,7 @@ func @tensor.from_elements(%arg0: index, %arg1: index) -> tensor<2xindex> { // CHECK: store %[[ELEM]], %[[MEMREF]][%[[I]]] : memref // CHECK: scf.yield // CHECK: } -// CHECK: %[[RET:.*]] = memref.tensor_load %[[MEMREF]] : memref +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]] : memref // CHECK: return %[[RET]] : tensor // CHECK: } func @tensor.generate(%arg: tensor<*xf32>, %dynamic_extent: index) -> tensor { @@ -109,7 +109,7 @@ func @tensor.generate(%arg: tensor<*xf32>, %dynamic_extent: index) -> tensor // CHECK: scf.yield // CHECK: } -// CHECK: %[[RET:.*]] = memref.tensor_load %[[MEMREF]] : memref<16x?xindex> +// CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]] : memref<16x?xindex> // CHECK: return %[[RET]] : tensor<16x?xindex> // CHECK: } func @tensor.generate_static_and_dynamic(%arg0: index) -> tensor<16x?xindex> { diff --git a/mlir/test/IR/core-ops.mlir b/mlir/test/IR/core-ops.mlir index a612d167e018..029d26c0c71e 100644 --- a/mlir/test/IR/core-ops.mlir +++ b/mlir/test/IR/core-ops.mlir @@ -440,18 +440,18 @@ func @test_splat_op(%s : f32) { } // CHECK-LABEL: func @tensor_load_store -func @tensor_load_store(%0 : memref<4x4xi32>) { - // CHECK: %[[TENSOR:.*]] = memref.tensor_load %[[MEMREF:.*]] : memref<4x4xi32> - %1 = memref.tensor_load %0 : memref<4x4xi32> +func @tensor_load_store(%0 : memref<4x4xi32>, %1 : tensor<4x4xi32>) { + // CHECK-SAME: (%[[MEMREF:.*]]: memref<4x4xi32>, + // CHECK-SAME: %[[TENSOR:.*]]: tensor<4x4xi32>) // CHECK: memref.tensor_store %[[TENSOR]], %[[MEMREF]] : memref<4x4xi32> memref.tensor_store %1, %0 : memref<4x4xi32> return } // CHECK-LABEL: func @unranked_tensor_load_store -func @unranked_tensor_load_store(%0 : memref<*xi32>) { - // CHECK: %[[TENSOR:.*]] = memref.tensor_load %[[MEMREF:.*]] : memref<*xi32> - %1 = memref.tensor_load %0 : memref<*xi32> +func @unranked_tensor_load_store(%0 : memref<*xi32>, %1 : tensor<*xi32>) { + // CHECK-SAME: (%[[MEMREF:.*]]: memref<*xi32>, + // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xi32>) // CHECK: memref.tensor_store %[[TENSOR]], %[[MEMREF]] : memref<*xi32> memref.tensor_store %1, %0 : memref<*xi32> return diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_cast.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_cast.mlir index 30f1a14219b3..ac0a8b36c390 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_cast.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_cast.mlir @@ -195,7 +195,7 @@ module { // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 ) // %c0 = call @sparse_cast_s32_to_f32(%1) : (tensor<10xi32, #SV>) -> tensor<10xf32> - %m0 = memref.buffer_cast %c0 : memref<10xf32> + %m0 = bufferization.to_memref %c0 : memref<10xf32> %v0 = vector.transfer_read %m0[%z], %f: memref<10xf32>, vector<10xf32> vector.print %v0 : vector<10xf32> @@ -203,7 +203,7 @@ module { // CHECK: ( 4.29497e+09, 4.29497e+09, 4.29497e+09, 4.29497e+09, 0, 1, 2, 3, 4, 305 ) // %c1 = call @sparse_cast_u32_to_f32(%1) : (tensor<10xi32, #SV>) -> tensor<10xf32> - %m1 = memref.buffer_cast %c1 : memref<10xf32> + %m1 = bufferization.to_memref %c1 : memref<10xf32> %v1 = vector.transfer_read %m1[%z], %f: memref<10xf32>, vector<10xf32> vector.print %v1 : vector<10xf32> @@ -211,7 +211,7 @@ module { // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 ) // %c2 = call @sparse_cast_f32_to_s32(%3) : (tensor<10xf32, #SV>) -> tensor<10xi32> - %m2 = memref.buffer_cast %c2 : memref<10xi32> + %m2 = bufferization.to_memref %c2 : memref<10xi32> %v2 = vector.transfer_read %m2[%z], %i: memref<10xi32>, vector<10xi32> vector.print %v2 : vector<10xi32> @@ -219,7 +219,7 @@ module { // CHECK: ( 4294967295, 4294967294, 4294967293, 4294967292, 0, 1, 2, 3, 4, 305 ) // %c3 = call @sparse_cast_f64_to_u32(%7) : (tensor<10xf64, #SV>) -> tensor<10xi32> - %m3 = memref.buffer_cast %c3 : memref<10xi32> + %m3 = bufferization.to_memref %c3 : memref<10xi32> %v3 = vector.transfer_read %m3[%z], %i: memref<10xi32>, vector<10xi32> %vu = vector.bitcast %v3 : vector<10xi32> to vector<10xui32> vector.print %vu : vector<10xui32> @@ -228,7 +228,7 @@ module { // CHECK: ( -4.4, -3.3, -2.2, -1.1, 0, 1.1, 2.2, 3.3, 4.4, 305.5 ) // %c4 = call @sparse_cast_f32_to_f64(%3) : (tensor<10xf32, #SV>) -> tensor<10xf64> - %m4 = memref.buffer_cast %c4 : memref<10xf64> + %m4 = bufferization.to_memref %c4 : memref<10xf64> %v4 = vector.transfer_read %m4[%z], %d: memref<10xf64>, vector<10xf64> vector.print %v4 : vector<10xf64> @@ -236,7 +236,7 @@ module { // CHECK: ( -4.4, -3.3, -2.2, -1.1, 0, 1.1, 2.2, 3.3, 4.4, 305.5 ) // %c5 = call @sparse_cast_f64_to_f32(%5) : (tensor<10xf64, #SV>) -> tensor<10xf32> - %m5 = memref.buffer_cast %c5 : memref<10xf32> + %m5 = bufferization.to_memref %c5 : memref<10xf32> %v5 = vector.transfer_read %m5[%z], %f: memref<10xf32>, vector<10xf32> vector.print %v5 : vector<10xf32> @@ -244,7 +244,7 @@ module { // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 ) // %c6 = call @sparse_cast_s32_to_u64(%1) : (tensor<10xi32, #SV>) -> tensor<10xi64> - %m6 = memref.buffer_cast %c6 : memref<10xi64> + %m6 = bufferization.to_memref %c6 : memref<10xi64> %v6 = vector.transfer_read %m6[%z], %l: memref<10xi64>, vector<10xi64> vector.print %v6 : vector<10xi64> @@ -252,7 +252,7 @@ module { // CHECK: ( 4294967292, 4294967293, 4294967294, 4294967295, 0, 1, 2, 3, 4, 305 ) // %c7 = call @sparse_cast_u32_to_s64(%1) : (tensor<10xi32, #SV>) -> tensor<10xi64> - %m7 = memref.buffer_cast %c7 : memref<10xi64> + %m7 = bufferization.to_memref %c7 : memref<10xi64> %v7 = vector.transfer_read %m7[%z], %l: memref<10xi64>, vector<10xi64> vector.print %v7 : vector<10xi64> @@ -260,7 +260,7 @@ module { // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 49 ) // %c8 = call @sparse_cast_i32_to_i8(%1) : (tensor<10xi32, #SV>) -> tensor<10xi8> - %m8 = memref.buffer_cast %c8 : memref<10xi8> + %m8 = bufferization.to_memref %c8 : memref<10xi8> %v8 = vector.transfer_read %m8[%z], %b: memref<10xi8>, vector<10xi8> vector.print %v8 : vector<10xi8> @@ -268,7 +268,7 @@ module { // CHECK: ( -1064514355, -1068289229, -1072902963, -1081291571, 0, 1066192077, 1074580685, 1079194419, 1082969293, 1134084096 ) // %c9 = call @sparse_cast_f32_as_s32(%3) : (tensor<10xf32, #SV>) -> tensor<10xi32> - %m9 = memref.buffer_cast %c9 : memref<10xi32> + %m9 = bufferization.to_memref %c9 : memref<10xi32> %v9 = vector.transfer_read %m9[%z], %i: memref<10xi32>, vector<10xi32> vector.print %v9 : vector<10xi32> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_sparse2dense.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_sparse2dense.mlir index 7dd5d42dcf0b..ef0f0fb48fa1 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_sparse2dense.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_sparse2dense.mlir @@ -59,56 +59,56 @@ module { } func @dumpAndRelease_234(%arg0: tensor<2x3x4xf64>) { call @dump(%arg0) : (tensor<2x3x4xf64>) -> () - %1 = memref.buffer_cast %arg0 : memref<2x3x4xf64> + %1 = bufferization.to_memref %arg0 : memref<2x3x4xf64> memref.dealloc %1 : memref<2x3x4xf64> return } func @dumpAndRelease_p34(%arg0: tensor) { %0 = tensor.cast %arg0 : tensor to tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () - %1 = memref.buffer_cast %arg0 : memref + %1 = bufferization.to_memref %arg0 : memref memref.dealloc %1 : memref return } func @dumpAndRelease_2p4(%arg0: tensor<2x?x4xf64>) { %0 = tensor.cast %arg0 : tensor<2x?x4xf64> to tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () - %1 = memref.buffer_cast %arg0 : memref<2x?x4xf64> + %1 = bufferization.to_memref %arg0 : memref<2x?x4xf64> memref.dealloc %1 : memref<2x?x4xf64> return } func @dumpAndRelease_23p(%arg0: tensor<2x3x?xf64>) { %0 = tensor.cast %arg0 : tensor<2x3x?xf64> to tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () - %1 = memref.buffer_cast %arg0 : memref<2x3x?xf64> + %1 = bufferization.to_memref %arg0 : memref<2x3x?xf64> memref.dealloc %1 : memref<2x3x?xf64> return } func @dumpAndRelease_2pp(%arg0: tensor<2x?x?xf64>) { %0 = tensor.cast %arg0 : tensor<2x?x?xf64> to tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () - %1 = memref.buffer_cast %arg0 : memref<2x?x?xf64> + %1 = bufferization.to_memref %arg0 : memref<2x?x?xf64> memref.dealloc %1 : memref<2x?x?xf64> return } func @dumpAndRelease_p3p(%arg0: tensor) { %0 = tensor.cast %arg0 : tensor to tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () - %1 = memref.buffer_cast %arg0 : memref + %1 = bufferization.to_memref %arg0 : memref memref.dealloc %1 : memref return } func @dumpAndRelease_pp4(%arg0: tensor) { %0 = tensor.cast %arg0 : tensor to tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () - %1 = memref.buffer_cast %arg0 : memref + %1 = bufferization.to_memref %arg0 : memref memref.dealloc %1 : memref return } func @dumpAndRelease_ppp(%arg0: tensor) { %0 = tensor.cast %arg0 : tensor to tensor<2x3x4xf64> call @dump(%0) : (tensor<2x3x4xf64>) -> () - %1 = memref.buffer_cast %arg0 : memref + %1 = bufferization.to_memref %arg0 : memref memref.dealloc %1 : memref return } diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir index 8b4b6b85cd87..1773012f68dc 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_filter_conv2d.mlir @@ -79,7 +79,7 @@ module { // CHECK-SAME: ( 0, 0, 3, 6, -3, -6 ), // CHECK-SAME: ( 2, -1, 3, 0, -3, 0 ) ) // - %m = memref.buffer_cast %0 : memref<6x6xi32> + %m = bufferization.to_memref %0 : memref<6x6xi32> %v = vector.transfer_read %m[%c0, %c0], %i0 : memref<6x6xi32>, vector<6x6xi32> vector.print %v : vector<6x6xi32> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir index fb0fc2475d3a..1ea11b828cb8 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir @@ -86,7 +86,7 @@ module { memref.store %d0, %xdata[%i, %j] : memref<7x3xf64> } } - %x = memref.tensor_load %xdata : memref<7x3xf64> + %x = bufferization.to_tensor %xdata : memref<7x3xf64> // Read the sparse tensor from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) @@ -106,7 +106,7 @@ module { // CHECK: ( 0, 0, 0 ) // CHECK: ( 7, 0, 0 ) // - %r = memref.buffer_cast %0 : memref<7x3xf64> + %r = bufferization.to_memref %0 : memref<7x3xf64> scf.for %i = %c0 to %c7 step %c1 { %v = vector.transfer_read %r[%i, %c0], %d0: memref<7x3xf64>, vector<3xf64> vector.print %v : vector<3xf64> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir index 318f99aa20e5..b9f4208c2a2e 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir @@ -114,7 +114,7 @@ module { %d0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %dm = sparse_tensor.convert %arg0 : tensor to tensor - %0 = memref.buffer_cast %dm : memref + %0 = bufferization.to_memref %dm : memref %1 = vector.transfer_read %0[%c0, %c0], %d0: memref, vector<4x8xf64> vector.print %1 : vector<4x8xf64> memref.dealloc %0 : memref diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir index 144cf2c6100f..bfbc5e97e33d 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matvec.mlir @@ -94,8 +94,8 @@ module { scf.for %i = %c0 to %c4 step %c1 { memref.store %i0, %xdata[%i] : memref } - %b = memref.tensor_load %bdata : memref - %x = memref.tensor_load %xdata : memref + %b = bufferization.to_tensor %bdata : memref + %x = bufferization.to_tensor %xdata : memref // Call kernel. %0 = call @kernel_matvec(%a, %b, %x) @@ -105,7 +105,7 @@ module { // // CHECK: ( 889, 1514, -21, -3431 ) // - %m = memref.buffer_cast %0 : memref + %m = bufferization.to_memref %0 : memref %v = vector.transfer_read %m[%c0], %i0: memref, vector<4xi32> vector.print %v : vector<4xi32> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir index 7f63da3869fb..71ba247c5bc1 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir @@ -100,7 +100,7 @@ module { memref.store %k, %cdata[%i, %j] : memref } } - %c = memref.tensor_load %cdata : memref + %c = bufferization.to_tensor %cdata : memref %ddata = memref.alloc(%c4, %c5) : memref scf.for %i = %c0 to %c4 step %c1 { @@ -112,7 +112,7 @@ module { memref.store %k, %ddata[%i, %j] : memref } } - %d = memref.tensor_load %ddata : memref + %d = bufferization.to_tensor %ddata : memref %adata = memref.alloc(%c2, %c5) : memref scf.for %i = %c0 to %c2 step %c1 { @@ -120,7 +120,7 @@ module { memref.store %i0, %adata[%i, %j] : memref } } - %a = memref.tensor_load %adata : memref + %a = bufferization.to_tensor %adata : memref // Call kernel. %0 = call @kernel_mttkrp(%b, %c, %d, %a) @@ -132,7 +132,7 @@ module { // CHECK: ( ( 16075, 21930, 28505, 35800, 43815 ), // CHECK: ( 10000, 14225, 19180, 24865, 31280 ) ) // - %m = memref.buffer_cast %0 : memref + %m = bufferization.to_memref %0 : memref %v = vector.transfer_read %m[%c0, %c0], %i0 : memref, vector<2x5xf64> vector.print %v : vector<2x5xf64> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir index f441b87fd7c0..8a5d81682a9c 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_quantized_matmul.mlir @@ -81,7 +81,7 @@ module { // CHECK-SAME: ( -254, 0, 256, -300, -30, -6 ), // CHECK-SAME: ( 1397, 0, -1408, 100, 10, 33 ) ) // - %m = memref.buffer_cast %0 : memref<5x6xi32> + %m = bufferization.to_memref %0 : memref<5x6xi32> %v = vector.transfer_read %m[%c0, %c0], %i0 : memref<5x6xi32>, vector<5x6xi32> vector.print %v : vector<5x6xi32> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_reductions.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_reductions.mlir index 6098e44c2cfd..cf77b7e9dde2 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_reductions.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_reductions.mlir @@ -201,19 +201,19 @@ module { // CHECK: 15 // CHECK: 10 // - %m0 = memref.buffer_cast %0 : memref + %m0 = bufferization.to_memref %0 : memref call @dump_i32(%m0) : (memref) -> () - %m1 = memref.buffer_cast %1 : memref + %m1 = bufferization.to_memref %1 : memref call @dump_f32(%m1) : (memref) -> () - %m2 = memref.buffer_cast %2 : memref + %m2 = bufferization.to_memref %2 : memref call @dump_i32(%m2) : (memref) -> () - %m3 = memref.buffer_cast %3 : memref + %m3 = bufferization.to_memref %3 : memref call @dump_f32(%m3) : (memref) -> () - %m4 = memref.buffer_cast %4 : memref + %m4 = bufferization.to_memref %4 : memref call @dump_i32(%m4) : (memref) -> () - %m5 = memref.buffer_cast %5 : memref + %m5 = bufferization.to_memref %5 : memref call @dump_i32(%m5) : (memref) -> () - %m6 = memref.buffer_cast %6 : memref + %m6 = bufferization.to_memref %6 : memref call @dump_i32(%m6) : (memref) -> () // Release the resources. diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_matmul.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_matmul.mlir index 487da7694494..3664a29028ba 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_matmul.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_matmul.mlir @@ -97,9 +97,9 @@ module { memref.store %d, %bdata[%j, %i] : memref } } - %a = memref.tensor_load %adata : memref - %b = memref.tensor_load %bdata : memref - %x = memref.tensor_load %xdata : memref + %a = bufferization.to_tensor %adata : memref + %b = bufferization.to_tensor %bdata : memref + %x = bufferization.to_tensor %xdata : memref // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) @@ -118,7 +118,7 @@ module { // CHECK: ( 164, 0, 0, 640, 0 ) // CHECK: ( 0, 520, 0, 0, 1250 ) // - %r = memref.buffer_cast %0 : memref + %r = bufferization.to_memref %0 : memref scf.for %i = %c0 to %c5 step %c1 { %v = vector.transfer_read %r[%i, %c0], %d0: memref, vector<5xf32> vector.print %v : vector<5xf32> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_mm_fusion.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_mm_fusion.mlir index 7a102b5ad2bd..5480c264a6d4 100755 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_mm_fusion.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_mm_fusion.mlir @@ -156,8 +156,8 @@ module { // CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ), // CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 192 ) ) // - %m0 = memref.buffer_cast %0 : memref<8x8xf64> - %m1 = memref.buffer_cast %1 : memref<8x8xf64> + %m0 = bufferization.to_memref %0 : memref<8x8xf64> + %m1 = bufferization.to_memref %1 : memref<8x8xf64> %v0 = vector.transfer_read %m0[%c0, %c0], %d0 : memref<8x8xf64>, vector<8x8xf64> %v1 = vector.transfer_read %m1[%c0, %c0], %d0 diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_spmm.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_spmm.mlir index 22fb91149340..77ee92d80959 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_spmm.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_spmm.mlir @@ -97,8 +97,8 @@ module { memref.store %i0, %xdata[%i, %j] : memref } } - %b = memref.tensor_load %bdata : memref - %x = memref.tensor_load %xdata : memref + %b = bufferization.to_tensor %bdata : memref + %x = bufferization.to_tensor %xdata : memref // Call kernel. %0 = call @kernel_spmm(%a, %b, %x) @@ -108,7 +108,7 @@ module { // // CHECK: ( ( 3548, 3550, 3552, 3554 ), ( 6052, 6053, 6054, 6055 ), ( -56, -63, -70, -77 ), ( -13704, -13709, -13714, -13719 ) ) // - %m = memref.buffer_cast %0 : memref + %m = bufferization.to_memref %0 : memref %v = vector.transfer_read %m[%c0, %c0], %i0: memref, vector<4x4xf64> vector.print %v : vector<4x4xf64> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sum.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sum.mlir index 230b54567536..547d461aff24 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sum.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sum.mlir @@ -73,7 +73,7 @@ module { // initialized to zero. %xdata = memref.alloc() : memref memref.store %d0, %xdata[] : memref - %x = memref.tensor_load %xdata : memref + %x = bufferization.to_tensor %xdata : memref // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) @@ -87,7 +87,7 @@ module { // // CHECK: 30.2 // - %m = memref.buffer_cast %0 : memref + %m = bufferization.to_memref %0 : memref %v = memref.load %m[] : memref vector.print %v : f64 diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_vector_ops.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_vector_ops.mlir index c6b912b84f47..3d2da32ea51f 100644 --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_vector_ops.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_vector_ops.mlir @@ -154,7 +154,7 @@ module { vector.print %1 : vector<16xf64> // Dump the dense vector to verify structure is correct. %dv = sparse_tensor.convert %arg0 : tensor to tensor - %2 = memref.buffer_cast %dv : memref + %2 = bufferization.to_memref %dv : memref %3 = vector.transfer_read %2[%c0], %d0: memref, vector<32xf64> vector.print %3 : vector<32xf64> memref.dealloc %2 : memref @@ -181,7 +181,7 @@ module { // Setup memory for a single reduction scalar. %xdata = memref.alloc() : memref memref.store %d1, %xdata[] : memref - %x = memref.tensor_load %xdata : memref + %x = bufferization.to_tensor %xdata : memref // Call sparse vector kernels. %0 = call @vector_scale(%sv1) @@ -228,7 +228,7 @@ module { %m4 = sparse_tensor.values %4 : tensor to memref %v4 = vector.load %m4[%c0]: memref, vector<32xf64> vector.print %v4 : vector<32xf64> - %m5 = memref.buffer_cast %5 : memref + %m5 = bufferization.to_memref %5 : memref %v5 = memref.load %m5[] : memref vector.print %v5 : f64 diff --git a/mlir/test/Transforms/buffer-deallocation.mlir b/mlir/test/Transforms/buffer-deallocation.mlir index 21d7b9bf2970..e5bd237f3d0b 100644 --- a/mlir/test/Transforms/buffer-deallocation.mlir +++ b/mlir/test/Transforms/buffer-deallocation.mlir @@ -30,11 +30,11 @@ func @condBranch(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) { } // CHECK-NEXT: cond_br -// CHECK: %[[ALLOC0:.*]] = memref.clone +// CHECK: %[[ALLOC0:.*]] = bufferization.clone // CHECK-NEXT: br ^bb3(%[[ALLOC0]] // CHECK: %[[ALLOC1:.*]] = memref.alloc // CHECK-NEXT: test.buffer_based -// CHECK-NEXT: %[[ALLOC2:.*]] = memref.clone %[[ALLOC1]] +// CHECK-NEXT: %[[ALLOC2:.*]] = bufferization.clone %[[ALLOC1]] // CHECK-NEXT: memref.dealloc %[[ALLOC1]] // CHECK-NEXT: br ^bb3(%[[ALLOC2]] // CHECK: test.copy @@ -75,12 +75,12 @@ func @condBranchDynamicType( } // CHECK-NEXT: cond_br -// CHECK: %[[ALLOC0:.*]] = memref.clone +// CHECK: %[[ALLOC0:.*]] = bufferization.clone // CHECK-NEXT: br ^bb3(%[[ALLOC0]] // CHECK: ^bb2(%[[IDX:.*]]:{{.*}}) // CHECK-NEXT: %[[ALLOC1:.*]] = memref.alloc(%[[IDX]]) // CHECK-NEXT: test.buffer_based -// CHECK-NEXT: %[[ALLOC2:.*]] = memref.clone +// CHECK-NEXT: %[[ALLOC2:.*]] = bufferization.clone // CHECK-NEXT: memref.dealloc %[[ALLOC1]] // CHECK-NEXT: br ^bb3 // CHECK-NEXT: ^bb3(%[[ALLOC3:.*]]:{{.*}}) @@ -112,12 +112,12 @@ func @condBranchUnrankedType( } // CHECK-NEXT: cond_br -// CHECK: %[[ALLOC0:.*]] = memref.clone +// CHECK: %[[ALLOC0:.*]] = bufferization.clone // CHECK-NEXT: br ^bb3(%[[ALLOC0]] // CHECK: ^bb2(%[[IDX:.*]]:{{.*}}) // CHECK-NEXT: %[[ALLOC1:.*]] = memref.alloc(%[[IDX]]) // CHECK: test.buffer_based -// CHECK-NEXT: %[[ALLOC2:.*]] = memref.clone +// CHECK-NEXT: %[[ALLOC2:.*]] = bufferization.clone // CHECK-NEXT: memref.dealloc %[[ALLOC1]] // CHECK-NEXT: br ^bb3 // CHECK-NEXT: ^bb3(%[[ALLOC3:.*]]:{{.*}}) @@ -175,7 +175,7 @@ func @condBranchDynamicTypeNested( // CHECK-NEXT: cond_br{{.*}} // CHECK-NEXT: ^bb1 -// CHECK-NEXT: %[[ALLOC0:.*]] = memref.clone +// CHECK-NEXT: %[[ALLOC0:.*]] = bufferization.clone // CHECK-NEXT: br ^bb6(%[[ALLOC0]] // CHECK: ^bb2(%[[IDX:.*]]:{{.*}}) // CHECK-NEXT: %[[ALLOC1:.*]] = memref.alloc(%[[IDX]]) @@ -186,7 +186,7 @@ func @condBranchDynamicTypeNested( // CHECK: ^bb4: // CHECK-NEXT: br ^bb5(%[[ALLOC1]]{{.*}}) // CHECK-NEXT: ^bb5(%[[ALLOC2:.*]]:{{.*}}) -// CHECK-NEXT: %[[ALLOC3:.*]] = memref.clone %[[ALLOC2]] +// CHECK-NEXT: %[[ALLOC3:.*]] = bufferization.clone %[[ALLOC2]] // CHECK-NEXT: memref.dealloc %[[ALLOC1]] // CHECK-NEXT: br ^bb6(%[[ALLOC3]]{{.*}}) // CHECK-NEXT: ^bb6(%[[ALLOC4:.*]]:{{.*}}) @@ -235,11 +235,11 @@ func @criticalEdge(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) { return } -// CHECK-NEXT: %[[ALLOC0:.*]] = memref.clone +// CHECK-NEXT: %[[ALLOC0:.*]] = bufferization.clone // CHECK-NEXT: cond_br // CHECK: %[[ALLOC1:.*]] = memref.alloc() // CHECK-NEXT: test.buffer_based -// CHECK-NEXT: %[[ALLOC2:.*]] = memref.clone %[[ALLOC1]] +// CHECK-NEXT: %[[ALLOC2:.*]] = bufferization.clone %[[ALLOC1]] // CHECK-NEXT: memref.dealloc %[[ALLOC1]] // CHECK: test.copy // CHECK-NEXT: memref.dealloc @@ -448,13 +448,13 @@ func @moving_alloc_and_inserting_missing_dealloc( // CHECK-NEXT: ^bb1 // CHECK: %[[ALLOC0:.*]] = memref.alloc() // CHECK-NEXT: test.buffer_based -// CHECK-NEXT: %[[ALLOC1:.*]] = memref.clone %[[ALLOC0]] +// CHECK-NEXT: %[[ALLOC1:.*]] = bufferization.clone %[[ALLOC0]] // CHECK-NEXT: memref.dealloc %[[ALLOC0]] // CHECK-NEXT: br ^bb3(%[[ALLOC1]] // CHECK-NEXT: ^bb2 // CHECK-NEXT: %[[ALLOC2:.*]] = memref.alloc() // CHECK-NEXT: test.buffer_based -// CHECK-NEXT: %[[ALLOC3:.*]] = memref.clone %[[ALLOC2]] +// CHECK-NEXT: %[[ALLOC3:.*]] = bufferization.clone %[[ALLOC2]] // CHECK-NEXT: memref.dealloc %[[ALLOC2]] // CHECK-NEXT: br ^bb3(%[[ALLOC3]] // CHECK-NEXT: ^bb3(%[[ALLOC4:.*]]:{{.*}}) @@ -567,7 +567,7 @@ func @nested_regions_and_cond_branch( } // CHECK: (%[[cond:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %{{.*}}: {{.*}}) // CHECK-NEXT: cond_br %[[cond]], ^[[BB1:.*]], ^[[BB2:.*]] -// CHECK: %[[ALLOC0:.*]] = memref.clone %[[ARG1]] +// CHECK: %[[ALLOC0:.*]] = bufferization.clone %[[ARG1]] // CHECK: ^[[BB2]]: // CHECK: %[[ALLOC1:.*]] = memref.alloc() // CHECK-NEXT: test.region_buffer_based in(%[[ARG1]]{{.*}}out(%[[ALLOC1]] @@ -575,7 +575,7 @@ func @nested_regions_and_cond_branch( // CHECK-NEXT: test.buffer_based in(%[[ARG1]]{{.*}}out(%[[ALLOC2]] // CHECK: memref.dealloc %[[ALLOC2]] // CHECK-NEXT: %{{.*}} = math.exp -// CHECK: %[[ALLOC3:.*]] = memref.clone %[[ALLOC1]] +// CHECK: %[[ALLOC3:.*]] = bufferization.clone %[[ALLOC1]] // CHECK-NEXT: memref.dealloc %[[ALLOC1]] // CHECK: ^[[BB3:.*]]({{.*}}): // CHECK: test.copy @@ -661,10 +661,10 @@ func @nested_region_control_flow_div( // CHECK: %[[ALLOC0:.*]] = memref.alloc(%arg0, %arg0) // CHECK-NEXT: %[[ALLOC1:.*]] = scf.if -// CHECK-NEXT: %[[ALLOC2:.*]] = memref.clone %[[ALLOC0]] +// CHECK-NEXT: %[[ALLOC2:.*]] = bufferization.clone %[[ALLOC0]] // CHECK: scf.yield %[[ALLOC2]] // CHECK: %[[ALLOC3:.*]] = memref.alloc(%arg0, %arg1) -// CHECK-NEXT: %[[ALLOC4:.*]] = memref.clone %[[ALLOC3]] +// CHECK-NEXT: %[[ALLOC4:.*]] = bufferization.clone %[[ALLOC3]] // CHECK: memref.dealloc %[[ALLOC3]] // CHECK: scf.yield %[[ALLOC4]] // CHECK: memref.dealloc %[[ALLOC0]] @@ -841,14 +841,14 @@ func @nestedRegionsAndCondBranchAlloca( // CHECK: (%[[cond:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %{{.*}}: {{.*}}) // CHECK-NEXT: cond_br %[[cond]], ^[[BB1:.*]], ^[[BB2:.*]] // CHECK: ^[[BB1]]: -// CHECK: %[[ALLOC0:.*]] = memref.clone +// CHECK: %[[ALLOC0:.*]] = bufferization.clone // CHECK: ^[[BB2]]: // CHECK: %[[ALLOC1:.*]] = memref.alloc() // CHECK-NEXT: test.region_buffer_based in(%[[ARG1]]{{.*}}out(%[[ALLOC1]] // CHECK: %[[ALLOCA:.*]] = memref.alloca() // CHECK-NEXT: test.buffer_based in(%[[ARG1]]{{.*}}out(%[[ALLOCA]] // CHECK: %{{.*}} = math.exp -// CHECK: %[[ALLOC2:.*]] = memref.clone %[[ALLOC1]] +// CHECK: %[[ALLOC2:.*]] = bufferization.clone %[[ALLOC1]] // CHECK-NEXT: memref.dealloc %[[ALLOC1]] // CHECK: ^[[BB3:.*]]({{.*}}): // CHECK: test.copy @@ -904,13 +904,13 @@ func @loop_alloc( // CHECK: %[[ALLOC0:.*]] = memref.alloc() // CHECK-NEXT: memref.dealloc %[[ALLOC0]] -// CHECK-NEXT: %[[ALLOC1:.*]] = memref.clone %arg3 +// CHECK-NEXT: %[[ALLOC1:.*]] = bufferization.clone %arg3 // CHECK: %[[ALLOC2:.*]] = scf.for {{.*}} iter_args // CHECK-SAME: (%[[IALLOC:.*]] = %[[ALLOC1]] // CHECK: arith.cmpi // CHECK: memref.dealloc %[[IALLOC]] // CHECK: %[[ALLOC3:.*]] = memref.alloc() -// CHECK: %[[ALLOC4:.*]] = memref.clone %[[ALLOC3]] +// CHECK: %[[ALLOC4:.*]] = bufferization.clone %[[ALLOC3]] // CHECK: memref.dealloc %[[ALLOC3]] // CHECK: scf.yield %[[ALLOC4]] // CHECK: } @@ -988,21 +988,21 @@ func @loop_nested_if_alloc( } // CHECK: %[[ALLOC0:.*]] = memref.alloc() -// CHECK-NEXT: %[[ALLOC1:.*]] = memref.clone %arg3 +// CHECK-NEXT: %[[ALLOC1:.*]] = bufferization.clone %arg3 // CHECK-NEXT: %[[ALLOC2:.*]] = scf.for {{.*}} iter_args // CHECK-SAME: (%[[IALLOC:.*]] = %[[ALLOC1]] // CHECK: memref.dealloc %[[IALLOC]] // CHECK: %[[ALLOC3:.*]] = scf.if // CHECK: %[[ALLOC4:.*]] = memref.alloc() -// CHECK-NEXT: %[[ALLOC5:.*]] = memref.clone %[[ALLOC4]] +// CHECK-NEXT: %[[ALLOC5:.*]] = bufferization.clone %[[ALLOC4]] // CHECK-NEXT: memref.dealloc %[[ALLOC4]] // CHECK-NEXT: scf.yield %[[ALLOC5]] -// CHECK: %[[ALLOC6:.*]] = memref.clone %[[ALLOC0]] +// CHECK: %[[ALLOC6:.*]] = bufferization.clone %[[ALLOC0]] // CHECK-NEXT: scf.yield %[[ALLOC6]] -// CHECK: %[[ALLOC7:.*]] = memref.clone %[[ALLOC3]] +// CHECK: %[[ALLOC7:.*]] = bufferization.clone %[[ALLOC3]] // CHECK-NEXT: memref.dealloc %[[ALLOC3]] // CHECK-NEXT: scf.yield %[[ALLOC7]] @@ -1050,14 +1050,14 @@ func @loop_nested_alloc( // CHECK: %[[ALLOC0:.*]] = memref.alloc() // CHECK-NEXT: memref.dealloc %[[ALLOC0]] -// CHECK-NEXT: %[[ALLOC1:.*]] = memref.clone %arg3 +// CHECK-NEXT: %[[ALLOC1:.*]] = bufferization.clone %arg3 // CHECK-NEXT: %[[VAL_7:.*]] = scf.for {{.*}} iter_args // CHECK-SAME: (%[[IALLOC0:.*]] = %[[ALLOC1]]) -// CHECK-NEXT: %[[ALLOC2:.*]] = memref.clone %[[IALLOC0]] +// CHECK-NEXT: %[[ALLOC2:.*]] = bufferization.clone %[[IALLOC0]] // CHECK-NEXT: memref.dealloc %[[IALLOC0]] // CHECK-NEXT: %[[ALLOC3:.*]] = scf.for {{.*}} iter_args // CHECK-SAME: (%[[IALLOC1:.*]] = %[[ALLOC2]]) -// CHECK-NEXT: %[[ALLOC5:.*]] = memref.clone %[[IALLOC1]] +// CHECK-NEXT: %[[ALLOC5:.*]] = bufferization.clone %[[IALLOC1]] // CHECK-NEXT: memref.dealloc %[[IALLOC1]] // CHECK: %[[ALLOC6:.*]] = scf.for {{.*}} iter_args @@ -1067,23 +1067,23 @@ func @loop_nested_alloc( // CHECK: %[[ALLOC9:.*]] = scf.if // CHECK: %[[ALLOC11:.*]] = memref.alloc() -// CHECK-NEXT: %[[ALLOC12:.*]] = memref.clone %[[ALLOC11]] +// CHECK-NEXT: %[[ALLOC12:.*]] = bufferization.clone %[[ALLOC11]] // CHECK-NEXT: memref.dealloc %[[ALLOC11]] // CHECK-NEXT: scf.yield %[[ALLOC12]] -// CHECK: %[[ALLOC13:.*]] = memref.clone %[[IALLOC2]] +// CHECK: %[[ALLOC13:.*]] = bufferization.clone %[[IALLOC2]] // CHECK-NEXT: scf.yield %[[ALLOC13]] // CHECK: memref.dealloc %[[IALLOC2]] -// CHECK-NEXT: %[[ALLOC10:.*]] = memref.clone %[[ALLOC9]] +// CHECK-NEXT: %[[ALLOC10:.*]] = bufferization.clone %[[ALLOC9]] // CHECK-NEXT: memref.dealloc %[[ALLOC9]] // CHECK-NEXT: scf.yield %[[ALLOC10]] -// CHECK: %[[ALLOC7:.*]] = memref.clone %[[ALLOC6]] +// CHECK: %[[ALLOC7:.*]] = bufferization.clone %[[ALLOC6]] // CHECK-NEXT: memref.dealloc %[[ALLOC6]] // CHECK-NEXT: scf.yield %[[ALLOC7]] -// CHECK: %[[ALLOC4:.*]] = memref.clone %[[ALLOC3]] +// CHECK: %[[ALLOC4:.*]] = bufferization.clone %[[ALLOC3]] // CHECK-NEXT: memref.dealloc %[[ALLOC3]] // CHECK-NEXT: scf.yield %[[ALLOC4]] @@ -1185,7 +1185,7 @@ func @assumingOp( // CHECK-NEXT: shape.assuming_yield %[[ARG1]] // CHECK: %[[ASSUMING_RESULT:.*]] = shape.assuming %[[ARG0]] // CHECK-NEXT: %[[TMP_ALLOC:.*]] = memref.alloc() -// CHECK-NEXT: %[[RETURNING_ALLOC:.*]] = memref.clone %[[TMP_ALLOC]] +// CHECK-NEXT: %[[RETURNING_ALLOC:.*]] = bufferization.clone %[[TMP_ALLOC]] // CHECK-NEXT: memref.dealloc %[[TMP_ALLOC]] // CHECK-NEXT: shape.assuming_yield %[[RETURNING_ALLOC]] // CHECK: test.copy(%[[ASSUMING_RESULT:.*]], %[[ARG2]]) @@ -1212,13 +1212,13 @@ func @noRegionBranchOpInterface() { // CHECK-LABEL: func @dealloc_existing_clones // CHECK: (%[[ARG0:.*]]: memref, %[[ARG1:.*]]: memref) -// CHECK: %[[RES0:.*]] = memref.clone %[[ARG0]] -// CHECK: %[[RES1:.*]] = memref.clone %[[ARG1]] +// CHECK: %[[RES0:.*]] = bufferization.clone %[[ARG0]] +// CHECK: %[[RES1:.*]] = bufferization.clone %[[ARG1]] // CHECK-NOT: memref.dealloc %[[RES0]] // CHECK: memref.dealloc %[[RES1]] // CHECK: return %[[RES0]] func @dealloc_existing_clones(%arg0: memref, %arg1: memref) -> memref { - %0 = memref.clone %arg0 : memref to memref - %1 = memref.clone %arg1 : memref to memref + %0 = bufferization.clone %arg0 : memref to memref + %1 = bufferization.clone %arg1 : memref to memref return %0 : memref } diff --git a/mlir/test/Transforms/canonicalize.mlir b/mlir/test/Transforms/canonicalize.mlir index 2a0c7a34a5e0..bb75e5b6d389 100644 --- a/mlir/test/Transforms/canonicalize.mlir +++ b/mlir/test/Transforms/canonicalize.mlir @@ -1168,12 +1168,12 @@ func @fold_trunci_sexti(%arg0: i1) -> i1 attributes {} { // CHECK-LABEL: func @simple_clone_elimination func @simple_clone_elimination() -> memref<5xf32> { %ret = memref.alloc() : memref<5xf32> - %temp = memref.clone %ret : memref<5xf32> to memref<5xf32> + %temp = bufferization.clone %ret : memref<5xf32> to memref<5xf32> memref.dealloc %temp : memref<5xf32> return %ret : memref<5xf32> } // CHECK-NEXT: %[[ret:.*]] = memref.alloc() -// CHECK-NOT: %{{.*}} = memref.clone +// CHECK-NOT: %{{.*}} = bufferization.clone // CHECK-NOT: memref.dealloc %{{.*}} // CHECK: return %[[ret]] @@ -1183,14 +1183,14 @@ func @simple_clone_elimination() -> memref<5xf32> { func @clone_loop_alloc(%arg0: index, %arg1: index, %arg2: index, %arg3: memref<2xf32>, %arg4: memref<2xf32>) { %0 = memref.alloc() : memref<2xf32> memref.dealloc %0 : memref<2xf32> - %1 = memref.clone %arg3 : memref<2xf32> to memref<2xf32> + %1 = bufferization.clone %arg3 : memref<2xf32> to memref<2xf32> %2 = scf.for %arg5 = %arg0 to %arg1 step %arg2 iter_args(%arg6 = %1) -> (memref<2xf32>) { %3 = arith.cmpi eq, %arg5, %arg1 : index memref.dealloc %arg6 : memref<2xf32> %4 = memref.alloc() : memref<2xf32> - %5 = memref.clone %4 : memref<2xf32> to memref<2xf32> + %5 = bufferization.clone %4 : memref<2xf32> to memref<2xf32> memref.dealloc %4 : memref<2xf32> - %6 = memref.clone %5 : memref<2xf32> to memref<2xf32> + %6 = bufferization.clone %5 : memref<2xf32> to memref<2xf32> memref.dealloc %5 : memref<2xf32> scf.yield %6 : memref<2xf32> } @@ -1199,7 +1199,7 @@ func @clone_loop_alloc(%arg0: index, %arg1: index, %arg2: index, %arg3: memref<2 return } -// CHECK-NEXT: %[[ALLOC0:.*]] = memref.clone +// CHECK-NEXT: %[[ALLOC0:.*]] = bufferization.clone // CHECK-NEXT: %[[ALLOC1:.*]] = scf.for // CHECK-NEXT: memref.dealloc // CHECK-NEXT: %[[ALLOC2:.*]] = memref.alloc @@ -1216,20 +1216,20 @@ func @clone_nested_region(%arg0: index, %arg1: index, %arg2: index) -> memref %2 = scf.if %0 -> (memref) { %3 = scf.if %cmp -> (memref) { - %9 = memref.clone %1 : memref to memref + %9 = bufferization.clone %1 : memref to memref scf.yield %9 : memref } else { %7 = memref.alloc(%arg0, %arg1) : memref - %10 = memref.clone %7 : memref to memref + %10 = bufferization.clone %7 : memref to memref memref.dealloc %7 : memref scf.yield %10 : memref } - %6 = memref.clone %3 : memref to memref + %6 = bufferization.clone %3 : memref to memref memref.dealloc %3 : memref scf.yield %6 : memref } else { %3 = memref.alloc(%arg1, %arg1) : memref - %6 = memref.clone %3 : memref to memref + %6 = bufferization.clone %3 : memref to memref memref.dealloc %3 : memref scf.yield %6 : memref } @@ -1240,7 +1240,7 @@ func @clone_nested_region(%arg0: index, %arg1: index, %arg2: index) -> memref) -> memref { // CHECK: return %[[ARG]] : memref func @eliminate_materializations(%arg0: memref) -> memref { - %0 = memref.tensor_load %arg0 : memref - %1 = memref.buffer_cast %0 : memref + %0 = bufferization.to_tensor %arg0 : memref + %1 = bufferization.to_memref %0 : memref return %1 : memref } @@ -14,14 +14,14 @@ func @eliminate_materializations(%arg0: memref) -> memref { func @unable_to_convert_lone_buffer_cast() -> memref { // expected-error @+1 {{failed to legalize operation 'test.source'}} %0 = "test.source"() : () -> tensor - %1 = memref.buffer_cast %0 : memref + %1 = bufferization.to_memref %0 : memref return %1 : memref } // ----- func @unable_to_convert_lone_tensor_load(%arg0: memref) { - %0 = memref.tensor_load %arg0 : memref + %0 = bufferization.to_tensor %arg0 : memref // expected-error @+1 {{failed to legalize operation 'test.sink'}} "test.sink"(%0) : (tensor) -> () return diff --git a/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp b/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp index 0acab9c87a3f..4d67e07c12a9 100644 --- a/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp +++ b/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp @@ -493,7 +493,7 @@ struct TestVectorTransferOpt struct TestVectorTransferLoweringPatterns : public PassWrapper { void getDependentDialects(DialectRegistry ®istry) const override { - registry.insert(); + registry.insert(); } StringRef getArgument() const final { return "test-vector-transfer-lowering-patterns"; diff --git a/mlir/test/mlir-opt/commandline.mlir b/mlir/test/mlir-opt/commandline.mlir index 27016c59a329..4629240df3ef 100644 --- a/mlir/test/mlir-opt/commandline.mlir +++ b/mlir/test/mlir-opt/commandline.mlir @@ -7,6 +7,7 @@ // CHECK-NEXT: arm_neon // CHECK-NEXT: arm_sve // CHECK-NEXT: async +// CHECK-NEXT: bufferization // CHECK-NEXT: builtin // CHECK-NEXT: complex // CHECK-NEXT: dlti diff --git a/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel b/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel index f91bb5dc959e..99d8cf4a2eb2 100644 --- a/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel +++ b/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel @@ -1663,6 +1663,7 @@ cc_library( ":Affine", ":Analysis", ":ArithmeticDialect", + ":BufferizationDialect", ":DialectUtils", ":IR", ":MemRefDialect", @@ -1830,6 +1831,7 @@ cc_library( ":Affine", ":ArithmeticDialect", ":BufferizableOpInterface", + ":BufferizationDialect", ":IR", ":LLVMDialect", ":LinalgOps", @@ -1956,6 +1958,7 @@ cc_library( ":SideEffectInterfaces", ":StandardOps", ":Support", + ":TensorDialect", "//llvm:Support", ], ) @@ -2258,6 +2261,7 @@ cc_library( includes = ["include"], deps = [ ":ArithmeticDialect", + ":BufferizationDialect", ":ControlFlowInterfaces", ":IR", ":LoopLikeInterface", @@ -2286,6 +2290,7 @@ cc_library( ":LinalgInterfacesIncGen", ":LinalgStructuredOpsIncGen", ":MemRefDialect", + ":TensorDialect", ":ViewLikeInterface", "//llvm:Support", ], @@ -2493,6 +2498,7 @@ cc_library( includes = ["include"], deps = [ ":ArithmeticDialect", + ":BufferizationDialect", ":IR", ":MemRefDialect", ":Pass", @@ -2560,6 +2566,7 @@ cc_library( ":Affine", ":ArithmeticDialect", ":ArithmeticTransforms", + ":BufferizationDialect", ":IR", ":MemRefDialect", # TODO: Remove dependency on MemRef dialect ":Pass", @@ -4184,6 +4191,7 @@ cc_library( deps = [ ":ArithmeticDialect", ":Async", + ":BufferizationDialect", ":IR", ":MemRefDialect", ":ParallelLoopMapperAttrGen", @@ -4435,6 +4443,7 @@ cc_library( ":AllocationOpInterface", ":Analysis", ":ArithmeticDialect", + ":BufferizationDialect", ":ControlFlowInterfaces", ":CopyOpInterface", ":IR", @@ -4965,6 +4974,7 @@ cc_library( deps = [ ":Affine", ":ArithmeticDialect", + ":BufferizationDialect", ":CallOpInterfaces", ":ControlFlowInterfaces", ":DataLayoutInterfaces", @@ -5357,6 +5367,7 @@ cc_library( ":AsyncPassIncGen", ":AsyncToLLVM", ":AsyncTransforms", + ":BufferizationDialect", ":ComplexDialect", ":ComplexToLLVM", ":ConversionPasses", @@ -6299,6 +6310,7 @@ cc_library( includes = ["include"], deps = [ ":BufferizableOpInterfaceIncGen", + ":BufferizationDialect", ":IR", ":MemRefDialect", ":Support", @@ -6604,6 +6616,7 @@ cc_library( ":ArithBufferizableOpInterfaceImpl", ":ArithmeticDialect", ":BufferizableOpInterface", + ":BufferizationDialect", ":ComplexDialect", ":ComprehensiveBufferize", ":DialectUtils", @@ -6645,6 +6658,7 @@ cc_library( deps = [ ":Affine", ":BufferizableOpInterface", + ":BufferizationDialect", ":DialectUtils", ":IR", ":InferTypeOpInterface", @@ -7294,6 +7308,7 @@ cc_library( deps = [ ":ArithmeticDialect", ":ArithmeticPassIncGen", + ":BufferizationDialect", ":IR", ":MemRefDialect", ":Pass", @@ -7514,7 +7529,6 @@ cc_library( ":MemRefBaseIncGen", ":MemRefOpsIncGen", ":StandardOps", - ":TensorDialect", ":ViewLikeInterface", "//llvm:Support", ], @@ -7597,7 +7611,90 @@ cc_library( deps = [ ":AllocationOpInterfaceIncGen", ":IR", + ], +) + +td_library( + name = "BufferizationOpsTdFiles", + srcs = [ + "include/mlir/Dialect/Bufferization/IR/BufferizationBase.td", + "include/mlir/Dialect/Bufferization/IR/BufferizationOps.td", + ], + includes = ["include"], + deps = [ + ":AllocationOpInterfaceTdFiles", + ":CopyOpInterfaceTdFiles", + ":OpBaseTdFiles", + ":SideEffectInterfacesTdFiles", + ], +) + +gentbl_cc_library( + name = "BufferizationBaseIncGen", + strip_include_prefix = "include", + tbl_outs = [ + ( + [ + "-gen-dialect-decls", + "-dialect=bufferization", + ], + "include/mlir/Dialect/Bufferization/IR/BufferizationOpsDialect.h.inc", + ), + ( + [ + "-gen-dialect-defs", + "-dialect=bufferization", + ], + "include/mlir/Dialect/Bufferization/IR/BufferizationOpsDialect.cpp.inc", + ), + ], + tblgen = ":mlir-tblgen", + td_file = "include/mlir/Dialect/Bufferization/IR/BufferizationBase.td", + deps = [":BufferizationOpsTdFiles"], +) + +gentbl_cc_library( + name = "BufferizationOpsIncGen", + strip_include_prefix = "include", + tbl_outs = [ + ( + ["-gen-op-decls"], + "include/mlir/Dialect/Bufferization/IR/BufferizationOps.h.inc", + ), + ( + ["-gen-op-defs"], + "include/mlir/Dialect/Bufferization/IR/BufferizationOps.cpp.inc", + ), + ], + tblgen = ":mlir-tblgen", + td_file = "include/mlir/Dialect/Bufferization/IR/BufferizationOps.td", + deps = [":BufferizationOpsTdFiles"], +) + +cc_library( + name = "BufferizationDialect", + srcs = glob( + [ + "lib/Dialect/Bufferization/IR/Bufferization*.h", + "lib/Dialect/Bufferization/IR/Bufferization*.cpp", + ], + ), + hdrs = ["include/mlir/Dialect/Bufferization/IR/Bufferization.h"], + includes = ["include"], + deps = [ + ":BufferizationBaseIncGen", + ":BufferizationOpsIncGen", + ":ControlFlowInterfaces", + ":CopyOpInterface", + ":AllocationOpInterface", + #":DialectUtils", + ":IR", + ":InferTypeOpInterface", + ":StandardOps", + ":TensorDialect", ":MemRefDialect", + ":ViewLikeInterface", + "//llvm:Support", ], )