Don't treat readnone call in presplit coroutine as not access memory

To solve the readnone problems in coroutines. See
https://discourse.llvm.org/t/address-thread-identification-problems-with-coroutine/62015
for details.

According to the discussion, we decide to fix the problem by inserting
isPresplitCoroutine() checks in different passes instead of
wrapping/unwrapping readnone attributes in CoroEarly/CoroCleanup passes.
In this direction, we might not be able to cover every case at first.
Let's take a "find and fix" strategy.

Reviewed By: nikic, nhaehnle, jyknight

Differential Revision: https://reviews.llvm.org/D127383
This commit is contained in:
Chuanqi Xu 2022-07-20 10:37:23 +08:00
parent 87ce7b41d8
commit 57224ff4a6
8 changed files with 323 additions and 6 deletions

View File

@ -1751,4 +1751,8 @@ Areas Requiring Attention
#. Make required changes to make sure that coroutine optimizations work with
LTO.
#. A readnone/writeonly call may access memory in a presplit coroutine. Since
thread-id was assumed to be a constant in a function historically. But it is
not true for coroutines.
#. More tests, more tests, more tests

View File

@ -1712,11 +1712,17 @@ example:
the module. That is, a function can be both ``inaccessiblememonly`` and
have a ``noalias`` return which introduces a new, potentially initialized,
allocation.
Note that accessing the current thread's identity, e.g. getting the address
of a thread-local variable is not considered a memory read.
``inaccessiblemem_or_argmemonly``
This attribute indicates that the function may only access memory that is
either not accessible by the module being compiled, or is pointed to
by its pointer arguments. This is a weaker form of ``argmemonly``. If the
function reads or writes other memory, the behavior is undefined.
Note that accessing the current thread's identity, e.g. getting the address
of a thread-local variable is not considered a memory read.
``inlinehint``
This attribute indicates that the source code contained a hint that
inlining this function is desirable (such as the "inline" keyword in
@ -1943,6 +1949,9 @@ example:
or has other side-effects, the behavior is undefined. If a
function reads from or writes to a readnone pointer argument, the behavior
is undefined.
Note that accessing the current thread's identity, e.g. getting the address
of a thread-local variable is not considered a memory read.
``readonly``
On a function, this attribute indicates that the function does not write
through any pointer arguments (including ``byval`` arguments) or otherwise
@ -1990,6 +1999,9 @@ example:
If a writeonly function reads memory visible outside the function or has
other side-effects, the behavior is undefined. If a function reads
from a writeonly pointer argument, the behavior is undefined.
Note that accessing the current thread's identity, e.g. getting the address
of a thread-local variable is not considered a memory read.
``argmemonly``
This attribute indicates that the only memory accesses inside function are
loads and stores from objects pointed to by its pointer-typed arguments,

View File

@ -1848,7 +1848,14 @@ public:
bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
void setIsNoInline() { addFnAttr(Attribute::NoInline); }
/// Determine if the call does not access memory.
bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); }
bool doesNotAccessMemory() const {
return hasFnAttr(Attribute::ReadNone) &&
// If the call lives in presplit coroutine, we can't assume the
// call won't access memory even if it has readnone attribute.
// Since readnone could be used for thread identification and
// coroutines might resume in different threads.
(!getFunction() || !getFunction()->isPresplitCoroutine());
}
void setDoesNotAccessMemory() { addFnAttr(Attribute::ReadNone); }
/// Determine if the call does not access or only reads memory.
@ -1860,21 +1867,30 @@ public:
/// Determine if the call does not access or only writes memory.
bool onlyWritesMemory() const {
return hasImpliedFnAttr(Attribute::WriteOnly);
return hasImpliedFnAttr(Attribute::WriteOnly) &&
// See the comments in doesNotAccessMemory. Because readnone implies
// writeonly.
(!getFunction() || !getFunction()->isPresplitCoroutine());
}
void setOnlyWritesMemory() { addFnAttr(Attribute::WriteOnly); }
/// Determine if the call can access memmory only using pointers based
/// on its arguments.
bool onlyAccessesArgMemory() const {
return hasFnAttr(Attribute::ArgMemOnly);
return hasFnAttr(Attribute::ArgMemOnly) &&
// Thread ID don't count as inaccessible memory. And thread ID don't
// count as constant in presplit coroutine.
(!getFunction() || !getFunction()->isPresplitCoroutine());;
}
void setOnlyAccessesArgMemory() { addFnAttr(Attribute::ArgMemOnly); }
/// Determine if the function may only access memory that is
/// inaccessible from the IR.
bool onlyAccessesInaccessibleMemory() const {
return hasFnAttr(Attribute::InaccessibleMemOnly);
return hasFnAttr(Attribute::InaccessibleMemOnly) &&
// Thread ID don't count as inaccessible memory. And thread ID don't
// count as constant in presplit coroutine.
(!getFunction() || !getFunction()->isPresplitCoroutine());
}
void setOnlyAccessesInaccessibleMemory() {
addFnAttr(Attribute::InaccessibleMemOnly);
@ -1883,7 +1899,10 @@ public:
/// Determine if the function may only access memory that is
/// either inaccessible from the IR or pointed to by its arguments.
bool onlyAccessesInaccessibleMemOrArgMem() const {
return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly) &&
// Thread ID don't count as inaccessible memory. And thread ID don't
// count as constant in presplit coroutine.
(!getFunction() || !getFunction()->isPresplitCoroutine());
}
void setOnlyAccessesInaccessibleMemOrArgMem() {
addFnAttr(Attribute::InaccessibleMemOrArgMemOnly);

View File

@ -767,7 +767,11 @@ FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
// If the call has operand bundles then aliasing attributes from the function
// it calls do not directly apply to the call. This can be made more precise
// in the future.
if (!Call->hasOperandBundles())
//
// If the call lives in a presplit coroutine, the readnone, writeonly,
// inaccessiblememonly and inaccessiblemem_or_argmemonly attribute from the
// function might not directly apply to the call.
if (!Call->hasOperandBundles() && !Call->getFunction()->isPresplitCoroutine())
if (const Function *F = Call->getCalledFunction())
Min =
FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));

View File

@ -0,0 +1,89 @@
; Tests that the readnone function which cross suspend points wouldn't be misoptimized.
; RUN: opt < %s -S -passes='default<O3>' | FileCheck %s --check-prefixes=CHECK,CHECK_SPLITTED
; RUN: opt < %s -S -passes='early-cse' | FileCheck %s --check-prefixes=CHECK,CHECK_UNSPLITTED
; RUN: opt < %s -S -passes='gvn' | FileCheck %s --check-prefixes=CHECK,CHECK_UNSPLITTED
; RUN: opt < %s -S -passes='newgvn' | FileCheck %s --check-prefixes=CHECK,CHECK_UNSPLITTED
define ptr @f() presplitcoroutine {
entry:
%id = call token @llvm.coro.id(i32 0, ptr null, ptr null, ptr null)
%size = call i32 @llvm.coro.size.i32()
%alloc = call ptr @malloc(i32 %size)
%hdl = call ptr @llvm.coro.begin(token %id, ptr %alloc)
%j = call i32 @readnone_func() readnone
%sus_result = call i8 @llvm.coro.suspend(token none, i1 false)
switch i8 %sus_result, label %suspend [i8 0, label %resume
i8 1, label %cleanup]
resume:
%i = call i32 @readnone_func() readnone
%cmp = icmp eq i32 %i, %j
br i1 %cmp, label %same, label %diff
same:
call void @print_same()
br label %cleanup
diff:
call void @print_diff()
br label %cleanup
cleanup:
%mem = call ptr @llvm.coro.free(token %id, ptr %hdl)
call void @free(ptr %mem)
br label %suspend
suspend:
call i1 @llvm.coro.end(ptr %hdl, i1 0)
ret ptr %hdl
}
; Tests that normal functions wouldn't be affected.
define i1 @normal_function() {
entry:
%i = call i32 @readnone_func() readnone
%j = call i32 @readnone_func() readnone
%cmp = icmp eq i32 %i, %j
br i1 %cmp, label %same, label %diff
same:
call void @print_same()
ret i1 true
diff:
call void @print_diff()
ret i1 false
}
; CHECK_SPLITTED-LABEL: normal_function(
; CHECK_SPLITTED-NEXT: entry
; CHECK_SPLITTED-NEXT: call i32 @readnone_func()
; CHECK_SPLITTED-NEXT: call void @print_same()
; CHECK_SPLITTED-NEXT: ret i1 true
;
; CHECK_SPLITTED-LABEL: f.resume(
; CHECK_UNSPLITTED-LABEL: @f(
; CHECK: br i1 %cmp, label %same, label %diff
; CHECK-EMPTY:
; CHECK-NEXT: same:
; CHECK-NEXT: call void @print_same()
; CHECK-NEXT: br label
; CHECK-EMPTY:
; CHECK-NEXT: diff:
; CHECK-NEXT: call void @print_diff()
; CHECK-NEXT: br label
declare i32 @readnone_func() readnone
declare void @print_same()
declare void @print_diff()
declare ptr @llvm.coro.free(token, ptr)
declare i32 @llvm.coro.size.i32()
declare i8 @llvm.coro.suspend(token, i1)
declare token @llvm.coro.id(i32, ptr, ptr, ptr)
declare i1 @llvm.coro.alloc(token)
declare ptr @llvm.coro.begin(token, ptr)
declare i1 @llvm.coro.end(ptr, i1)
declare noalias ptr @malloc(i32)
declare void @free(ptr)

View File

@ -0,0 +1,81 @@
; Tests that the readnone function which don't cross suspend points could be optimized expectly after split.
;
; RUN: opt < %s -S -passes='default<O3>' | FileCheck %s --check-prefixes=CHECK_SPLITTED
; RUN: opt < %s -S -passes='coro-split,early-cse,simplifycfg' | FileCheck %s --check-prefixes=CHECK_SPLITTED
; RUN: opt < %s -S -passes='coro-split,gvn,simplifycfg' | FileCheck %s --check-prefixes=CHECK_SPLITTED
; RUN: opt < %s -S -passes='coro-split,newgvn,simplifycfg' | FileCheck %s --check-prefixes=CHECK_SPLITTED
; RUN: opt < %s -S -passes='early-cse' | FileCheck %s --check-prefixes=CHECK_UNSPLITTED
; RUN: opt < %s -S -passes='gvn' | FileCheck %s --check-prefixes=CHECK_UNSPLITTED
; RUN: opt < %s -S -passes='newgvn' | FileCheck %s --check-prefixes=CHECK_UNSPLITTED
define ptr @f() presplitcoroutine {
entry:
%id = call token @llvm.coro.id(i32 0, ptr null, ptr null, ptr null)
%size = call i32 @llvm.coro.size.i32()
%alloc = call ptr @malloc(i32 %size)
%hdl = call ptr @llvm.coro.begin(token %id, ptr %alloc)
%sus_result = call i8 @llvm.coro.suspend(token none, i1 false)
switch i8 %sus_result, label %suspend [i8 0, label %resume
i8 1, label %cleanup]
resume:
%i = call i32 @readnone_func() readnone
; noop call to break optimization to combine two consecutive readonly calls.
call void @nop()
%j = call i32 @readnone_func() readnone
%cmp = icmp eq i32 %i, %j
br i1 %cmp, label %same, label %diff
same:
call void @print_same()
br label %cleanup
diff:
call void @print_diff()
br label %cleanup
cleanup:
%mem = call ptr @llvm.coro.free(token %id, ptr %hdl)
call void @free(ptr %mem)
br label %suspend
suspend:
call i1 @llvm.coro.end(ptr %hdl, i1 0)
ret ptr %hdl
}
;
; CHECK_SPLITTED-LABEL: f.resume(
; CHECK_SPLITTED-NEXT: :
; CHECK_SPLITTED-NEXT: call i32 @readnone_func() #[[ATTR_NUM:[0-9]+]]
; CHECK_SPLITTED-NEXT: call void @nop()
; CHECK_SPLITTED-NEXT: call void @print_same()
;
; CHECK_SPLITTED: attributes #[[ATTR_NUM]] = { readnone }
;
; CHECK_UNSPLITTED-LABEL: @f(
; CHECK_UNSPLITTED: br i1 %cmp, label %same, label %diff
; CHECK_UNSPLITTED-EMPTY:
; CHECK_UNSPLITTED-NEXT: same:
; CHECK_UNSPLITTED-NEXT: call void @print_same()
; CHECK_UNSPLITTED-NEXT: br label
; CHECK_UNSPLITTED-EMPTY:
; CHECK_UNSPLITTED-NEXT: diff:
; CHECK_UNSPLITTED-NEXT: call void @print_diff()
; CHECK_UNSPLITTED-NEXT: br label
declare i32 @readnone_func() readnone
declare void @nop()
declare void @print_same()
declare void @print_diff()
declare ptr @llvm.coro.free(token, ptr)
declare i32 @llvm.coro.size.i32()
declare i8 @llvm.coro.suspend(token, i1)
declare token @llvm.coro.id(i32, ptr, ptr, ptr)
declare i1 @llvm.coro.alloc(token)
declare ptr @llvm.coro.begin(token, ptr)
declare i1 @llvm.coro.end(ptr, i1)
declare noalias ptr @malloc(i32)
declare void @free(ptr)

View File

@ -366,6 +366,60 @@ TEST_F(AliasAnalysisTest, PartialAliasOffsetSign) {
EXPECT_EQ(AR, AliasResult::PartialAlias);
EXPECT_EQ(-1, AR.getOffset());
}
TEST_F(AliasAnalysisTest, AAInCoroutines) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(R"(
define void @f() presplitcoroutine {
entry:
%ReadNoneCall = call i32 @readnone_func() readnone
%WriteOnlyCall = call i32 @writeonly_func() writeonly
%ArgMemOnlyCall = call i32 @argmemonly_func() argmemonly
%OnlyAccessesInaccessibleMemoryCall = call i32 @only_accesses_inaccessible_memory_call() inaccessiblememonly
%OnlyAccessesInaccessibleMemOrArgMemCall = call i32 @only_accesses_inaccessible_memory_or_argmemonly_call() inaccessiblemem_or_argmemonly
ret void
}
declare i32 @readnone_func() readnone
declare i32 @writeonly_func() writeonly
declare i32 @argmemonly_func() argmemonly
declare i32 @only_accesses_inaccessible_memory_call() inaccessiblememonly
declare i32 @only_accesses_inaccessible_memory_or_argmemonly_call() inaccessiblemem_or_argmemonly
)",
Err, C);
ASSERT_TRUE(M);
Function *F = M->getFunction("f");
CallInst *ReadNoneCall =
cast<CallInst>(getInstructionByName(*F, "ReadNoneCall"));
auto &AA = getAAResults(*F);
EXPECT_FALSE(AA.doesNotAccessMemory(ReadNoneCall));
EXPECT_TRUE(AA.onlyReadsMemory(ReadNoneCall));
EXPECT_EQ(FMRB_OnlyReadsMemory, AA.getModRefBehavior(ReadNoneCall));
CallInst *WriteOnlyCall =
cast<CallInst>(getInstructionByName(*F, "WriteOnlyCall"));
EXPECT_EQ(FMRB_UnknownModRefBehavior, AA.getModRefBehavior(WriteOnlyCall));
CallInst *ArgMemOnlyCall =
cast<CallInst>(getInstructionByName(*F, "ArgMemOnlyCall"));
EXPECT_EQ(FMRB_UnknownModRefBehavior,
AA.getModRefBehavior(ArgMemOnlyCall));
CallInst *OnlyAccessesInaccessibleMemoryCall =
cast<CallInst>(getInstructionByName(*F, "OnlyAccessesInaccessibleMemoryCall"));
EXPECT_EQ(FMRB_UnknownModRefBehavior,
AA.getModRefBehavior(OnlyAccessesInaccessibleMemoryCall));
CallInst *OnlyAccessesInaccessibleMemOrArgMemCall =
cast<CallInst>(getInstructionByName(*F, "OnlyAccessesInaccessibleMemOrArgMemCall"));
EXPECT_EQ(FMRB_UnknownModRefBehavior,
AA.getModRefBehavior(OnlyAccessesInaccessibleMemOrArgMemCall));
}
class AAPassInfraTest : public testing::Test {
protected:
LLVMContext C;

View File

@ -20,6 +20,7 @@
#include "llvm/IR/FPEnv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
@ -1681,5 +1682,58 @@ TEST(InstructionsTest, AllocaInst) {
EXPECT_EQ(H.getAllocationSizeInBits(DL), TypeSize::getFixed(160));
}
static Instruction *getInstructionByName(Function &F, StringRef Name) {
for (auto &I : instructions(F))
if (I.getName() == Name)
return &I;
llvm_unreachable("Expected to find instruction!");
}
TEST(InstructionsTest, CallInstInPresplitCoroutine) {
LLVMContext Ctx;
std::unique_ptr<Module> M = parseIR(Ctx, R"(
define void @f() presplitcoroutine {
entry:
%ReadNoneCall = call i32 @readnone_func() readnone
%WriteOnlyCall = call i32 @writeonly_func() writeonly
%ArgMemOnlyCall = call i32 @argmemonly_func() argmemonly
%OnlyAccessesInaccessibleMemoryCall = call i32 @only_accesses_inaccessible_memory_call() inaccessiblememonly
%OnlyAccessesInaccessibleMemOrArgMemCall = call i32 @only_accesses_inaccessible_memory_or_argmemonly_call() inaccessiblemem_or_argmemonly
ret void
}
declare i32 @readnone_func() readnone
declare i32 @writeonly_func() writeonly
declare i32 @argmemonly_func() argmemonly
declare i32 @only_accesses_inaccessible_memory_call() inaccessiblememonly
declare i32 @only_accesses_inaccessible_memory_or_argmemonly_call() inaccessiblemem_or_argmemonly
)");
ASSERT_TRUE(M);
Function *F = M->getFunction("f");
CallInst *ReadNoneCall =
cast<CallInst>(getInstructionByName(*F, "ReadNoneCall"));
CallInst *WriteOnlyCall =
cast<CallInst>(getInstructionByName(*F, "WriteOnlyCall"));
CallInst *OnlyAccessesInaccessibleMemoryCall =
cast<CallInst>(getInstructionByName(*F, "OnlyAccessesInaccessibleMemoryCall"));
CallInst *OnlyAccessesInaccessibleMemOrArgMemCall =
cast<CallInst>(getInstructionByName(*F, "OnlyAccessesInaccessibleMemOrArgMemCall"));
CallInst *ArgMemOnlyCall =
cast<CallInst>(getInstructionByName(*F, "ArgMemOnlyCall"));
EXPECT_FALSE(ReadNoneCall->doesNotAccessMemory());
EXPECT_FALSE(ReadNoneCall->onlyWritesMemory());
EXPECT_TRUE(ReadNoneCall->onlyReadsMemory());
EXPECT_FALSE(WriteOnlyCall->onlyWritesMemory());
EXPECT_FALSE(OnlyAccessesInaccessibleMemoryCall->onlyAccessesInaccessibleMemory());
EXPECT_FALSE(OnlyAccessesInaccessibleMemOrArgMemCall->onlyAccessesInaccessibleMemOrArgMem());
EXPECT_FALSE(ArgMemOnlyCall->onlyAccessesArgMemory());
}
} // end anonymous namespace
} // end namespace llvm