[mlir][sparse][python] add an "exhaustive" sparse test using python

Using the python API to easily set up sparse kernels, this test
exhaustively builds, compilers, and runs SpMM for all annotations
on a sparse tensor, making sure every version generates the correct
result. This test also illustrates using the python API to set up
a sparse kernel and sparse compilation.

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D107943
This commit is contained in:
Aart Bik 2021-08-11 18:23:10 -07:00
parent 50c7e299f1
commit 56d607006d
1 changed files with 164 additions and 0 deletions

View File

@ -0,0 +1,164 @@
# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
import os
import ctypes
import mlir.all_passes_registration
import numpy as np
from mlir.dialects import builtin
from mlir.dialects.linalg.opdsl.lang import *
from mlir.dialects.sparse_tensor import *
from mlir.execution_engine import *
from mlir.ir import *
from mlir.passmanager import *
from mlir.runtime import *
def run(f):
print('\nTEST:', f.__name__)
f()
return f
@linalg_structured_op
def matmul_dsl(
A=TensorDef(T, S.M, S.K),
B=TensorDef(T, S.K, S.N),
C=TensorDef(T, S.M, S.N, output=True)):
C[D.m, D.n] += A[D.m, D.k] * B[D.k, D.n]
def build_SpMM(attr: EncodingAttr):
"""Build SpMM kernel.
This method generates a linalg op with for matrix multiplication using
just the Python API. Effectively, a generic linalg op is constructed
that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
"""
module = Module.create()
f64 = ir.F64Type.get()
a = RankedTensorType.get([3, 4], f64, attr)
b = RankedTensorType.get([4, 2], f64)
c = RankedTensorType.get([3, 2], f64)
arguments = [a, b, c]
with InsertionPoint(module.body):
@builtin.FuncOp.from_py_func(*arguments)
def spMxM(*args):
return matmul_dsl(args[0], args[1], outs=[args[2]])
return module
def boilerplate(attr: EncodingAttr):
"""Returns boilerplate main method.
This method sets up a boilerplate main method that calls the generated
sparse kernel. For convenience, this part is purely done as string input.
"""
return f"""
func @main(%c: tensor<3x2xf64>) -> tensor<3x2xf64>
attributes {{ llvm.emit_c_interface }} {{
%0 = constant dense<[ [ 1.1, 0.0, 0.0, 1.4 ],
[ 0.0, 0.0, 0.0, 0.0 ],
[ 0.0, 0.0, 3.3, 0.0 ]]> : tensor<3x4xf64>
%a = sparse_tensor.convert %0 : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
%b = constant dense<[ [ 1.0, 2.0 ],
[ 4.0, 3.0 ],
[ 5.0, 6.0 ],
[ 8.0, 7.0 ]]> : tensor<4x2xf64>
%1 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
tensor<4x2xf64>,
tensor<3x2xf64>) -> tensor<3x2xf64>
return %1 : tensor<3x2xf64>
}}
"""
def build_compile_and_run_SpMM(attr: EncodingAttr, support_lib: str, compiler):
# Build.
module = build_SpMM(attr)
func = str(module.operation.regions[0].blocks[0].operations[0].operation)
module = Module.parse(func + boilerplate(attr))
# Compile.
compiler(module)
execution_engine = ExecutionEngine(
module, opt_level=0, shared_libs=[support_lib])
# Set up numpy input, invoke the kernel, and get numpy output.
# Built-in bufferization uses in-out buffers.
# TODO: replace with inplace comprehensive bufferization.
Cin = np.zeros((3, 2), np.double)
Cout = np.zeros((3, 2), np.double)
Cin_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(Cin)))
Cout_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(Cout)))
execution_engine.invoke('main', Cout_memref_ptr, Cin_memref_ptr)
Cresult = ranked_memref_to_numpy(Cout_memref_ptr[0])
# Sanity check on computed result.
expected = [[12.3, 12.0], [0.0, 0.0], [16.5, 19.8]]
if np.allclose(Cresult, expected):
pass
else:
quit(f'FAILURE')
class SparseCompiler:
"""Sparse compiler passes."""
def __init__(self, options: str):
pipeline = (
f'sparsification{{{options}}},'
f'sparse-tensor-conversion,'
f'builtin.func(convert-linalg-to-loops,convert-vector-to-scf),'
f'convert-scf-to-std,'
f'func-bufferize,'
f'tensor-constant-bufferize,'
f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),'
f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},'
f'convert-memref-to-llvm,'
f'convert-std-to-llvm')
self.pipeline = pipeline
def __call__(self, module: Module):
PassManager.parse(self.pipeline).run(module)
# CHECK-LABEL: TEST: testSpMM
# CHECK: Passed 72 tests
@run
def testSpMM():
support_lib = os.getenv('SUPPORT_LIB')
with Context() as ctx, Location.unknown():
count = 0
# Fixed compiler optimization strategy.
# TODO: explore state space here too
par = 0
vec = 0
vl = 1
e = False
opt = (f'parallelization-strategy={par} '
f'vectorization-strategy={vec} '
f'vl={vl} enable-simd-index32={e}')
# Exhaustive loop over various ways to annotate a kernel with
# a *single* sparse tensor. Even this subset already gives
# quite a large state space!
levels = [[DimLevelType.dense, DimLevelType.dense],
[DimLevelType.dense, DimLevelType.compressed],
[DimLevelType.compressed, DimLevelType.dense],
[DimLevelType.compressed, DimLevelType.compressed]]
orderings = [
AffineMap.get_permutation([0, 1]),
AffineMap.get_permutation([1, 0])
]
bitwidths = [0, 8, 32]
for levels in levels:
for ordering in orderings:
for pwidth in bitwidths:
for iwidth in bitwidths:
attr = EncodingAttr.get(levels, ordering, pwidth, iwidth)
compiler = SparseCompiler(options=opt)
build_compile_and_run_SpMM(attr, support_lib, compiler)
count = count + 1
print('Passed ', count, 'tests')