[LLDB] Add ptrace register access for AArch64 SVE registers

This patch adds NativeRegisterContext_arm64 ptrace routines to access
AArch64 SVE register set. This patch also adds a test-case to test
AArch64 SVE register access and dynamic size configuration capability.

Reviewed By: labath

Differential Revision: https://reviews.llvm.org/D79699
This commit is contained in:
Muhammad Omair Javaid 2020-08-19 12:38:30 +05:00
parent 46fc9a0dfc
commit 567ba6c468
8 changed files with 626 additions and 47 deletions

View File

@ -21,14 +21,17 @@
#include "Plugins/Process/Linux/NativeProcessLinux.h"
#include "Plugins/Process/Linux/Procfs.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h"
// System includes - They have to be included after framework includes because
// they define some macros which collide with variable names in other modules
#include <sys/socket.h>
// NT_PRSTATUS and NT_FPREGSET definition
#include <elf.h>
// user_hwdebug_state definition
#include <asm/ptrace.h>
#ifndef NT_ARM_SVE
#define NT_ARM_SVE 0x405 /* ARM Scalable Vector Extension */
#endif
#define REG_CONTEXT_SIZE (GetGPRSize() + GetFPRSize())
@ -59,14 +62,21 @@ NativeRegisterContextLinux_arm64::NativeRegisterContextLinux_arm64(
::memset(&m_gpr_arm64, 0, sizeof(m_gpr_arm64));
::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs));
::memset(&m_sve_header, 0, sizeof(m_sve_header));
// 16 is just a maximum value, query hardware for actual watchpoint count
m_max_hwp_supported = 16;
m_max_hbp_supported = 16;
m_refresh_hwdebug_info = true;
m_gpr_is_valid = false;
m_fpu_is_valid = false;
m_sve_buffer_is_valid = false;
m_sve_header_is_valid = false;
// SVE is not enabled until we query user_sve_header
m_sve_state = SVEState::Unknown;
}
RegisterInfoPOSIX_arm64 &
@ -109,28 +119,96 @@ NativeRegisterContextLinux_arm64::ReadRegister(const RegisterInfo *reg_info,
uint8_t *src;
uint32_t offset;
uint64_t sve_vg;
std::vector<uint8_t> sve_reg_non_live;
if (IsGPR(reg)) {
if (!m_gpr_is_valid) {
error = ReadGPR();
if (error.Fail())
return error;
}
error = ReadGPR();
if (error.Fail())
return error;
offset = reg_info->byte_offset;
assert(offset < GetGPRSize());
src = (uint8_t *)GetGPRBuffer() + offset;
} else if (IsFPR(reg)) {
if (!m_fpu_is_valid) {
if (m_sve_state == SVEState::Disabled) {
// SVE is disabled take legacy route for FPU register access
error = ReadFPR();
if (error.Fail())
return error;
offset = CalculateFprOffset(reg_info);
assert(offset < GetFPRSize());
src = (uint8_t *)GetFPRBuffer() + offset;
} else {
// SVE enabled, we will read and cache SVE ptrace data
error = ReadAllSVE();
if (error.Fail())
return error;
// FPSR and FPCR will be located right after Z registers in
// SVEState::FPSIMD while in SVEState::Full they will be located at the
// end of register data after an alignment correction based on currently
// selected vector length.
uint32_t sve_reg_num = LLDB_INVALID_REGNUM;
if (reg == GetRegisterInfo().GetRegNumFPSR()) {
sve_reg_num = reg;
if (m_sve_state == SVEState::Full)
offset = SVE_PT_SVE_FPSR_OFFSET(sve_vq_from_vl(m_sve_header.vl));
else if (m_sve_state == SVEState::FPSIMD)
offset = SVE_PT_FPSIMD_OFFSET + (32 * 16);
} else if (reg == GetRegisterInfo().GetRegNumFPCR()) {
sve_reg_num = reg;
if (m_sve_state == SVEState::Full)
offset = SVE_PT_SVE_FPCR_OFFSET(sve_vq_from_vl(m_sve_header.vl));
else if (m_sve_state == SVEState::FPSIMD)
offset = SVE_PT_FPSIMD_OFFSET + (32 * 16) + 4;
} else {
// Extract SVE Z register value register number for this reg_info
if (reg_info->value_regs &&
reg_info->value_regs[0] != LLDB_INVALID_REGNUM)
sve_reg_num = reg_info->value_regs[0];
offset = CalculateSVEOffset(GetRegisterInfoAtIndex(sve_reg_num));
}
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
src = (uint8_t *)GetSVEBuffer() + offset;
}
} else if (IsSVE(reg)) {
if (m_sve_state == SVEState::Disabled || m_sve_state == SVEState::Unknown)
return Status("SVE disabled or not supported");
if (GetRegisterInfo().IsSVERegVG(reg)) {
sve_vg = GetSVERegVG();
src = (uint8_t *)&sve_vg;
} else {
// SVE enabled, we will read and cache SVE ptrace data
error = ReadAllSVE();
if (error.Fail())
return error;
if (m_sve_state == SVEState::FPSIMD) {
// In FPSIMD state SVE payload mirrors legacy fpsimd struct and so
// just copy 16 bytes of v register to the start of z register. All
// other SVE register will be set to zero.
sve_reg_non_live.resize(reg_info->byte_size, 0);
src = sve_reg_non_live.data();
if (GetRegisterInfo().IsSVEZReg(reg)) {
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
::memcpy(sve_reg_non_live.data(), (uint8_t *)GetSVEBuffer() + offset,
16);
}
} else {
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
src = (uint8_t *)GetSVEBuffer() + offset;
}
}
offset = CalculateFprOffset(reg_info);
assert(offset < GetFPRSize());
src = (uint8_t *)GetFPRBuffer() + offset;
} else
return Status("failed - register wasn't recognized to be a GPR or an FPR, "
"write strategy unknown");
@ -157,37 +235,125 @@ Status NativeRegisterContextLinux_arm64::WriteRegister(
uint8_t *dst;
uint32_t offset;
std::vector<uint8_t> sve_reg_non_live;
if (IsGPR(reg)) {
if (!m_gpr_is_valid) {
error = ReadGPR();
if (error.Fail())
return error;
}
offset = reg_info->byte_offset;
assert(offset < GetGPRSize());
dst = (uint8_t *)GetGPRBuffer() + offset;
error = ReadGPR();
if (error.Fail())
return error;
assert(reg_info->byte_offset < GetGPRSize());
dst = (uint8_t *)GetGPRBuffer() + reg_info->byte_offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteGPR();
} else if (IsFPR(reg)) {
if (!m_fpu_is_valid) {
if (m_sve_state == SVEState::Disabled) {
// SVE is disabled take legacy route for FPU register access
error = ReadFPR();
if (error.Fail())
return error;
offset = CalculateFprOffset(reg_info);
assert(offset < GetFPRSize());
dst = (uint8_t *)GetFPRBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteFPR();
} else {
// SVE enabled, we will read and cache SVE ptrace data
error = ReadAllSVE();
if (error.Fail())
return error;
// FPSR and FPCR will be located right after Z registers in
// SVEState::FPSIMD while in SVEState::Full they will be located at the
// end of register data after an alignment correction based on currently
// selected vector length.
uint32_t sve_reg_num = LLDB_INVALID_REGNUM;
if (reg == GetRegisterInfo().GetRegNumFPSR()) {
sve_reg_num = reg;
if (m_sve_state == SVEState::Full)
offset = SVE_PT_SVE_FPSR_OFFSET(sve_vq_from_vl(m_sve_header.vl));
else if (m_sve_state == SVEState::FPSIMD)
offset = SVE_PT_FPSIMD_OFFSET + (32 * 16);
} else if (reg == GetRegisterInfo().GetRegNumFPCR()) {
sve_reg_num = reg;
if (m_sve_state == SVEState::Full)
offset = SVE_PT_SVE_FPCR_OFFSET(sve_vq_from_vl(m_sve_header.vl));
else if (m_sve_state == SVEState::FPSIMD)
offset = SVE_PT_FPSIMD_OFFSET + (32 * 16) + 4;
} else {
// Extract SVE Z register value register number for this reg_info
if (reg_info->value_regs &&
reg_info->value_regs[0] != LLDB_INVALID_REGNUM)
sve_reg_num = reg_info->value_regs[0];
offset = CalculateSVEOffset(GetRegisterInfoAtIndex(sve_reg_num));
}
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
dst = (uint8_t *)GetSVEBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteAllSVE();
}
offset = CalculateFprOffset(reg_info);
assert(offset < GetFPRSize());
dst = (uint8_t *)GetFPRBuffer() + offset;
} else if (IsSVE(reg)) {
if (m_sve_state == SVEState::Disabled || m_sve_state == SVEState::Unknown)
return Status("SVE disabled or not supported");
else {
if (GetRegisterInfo().IsSVERegVG(reg))
return Status("SVE state change operation not supported");
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
// Target has SVE enabled, we will read and cache SVE ptrace data
error = ReadAllSVE();
if (error.Fail())
return error;
return WriteFPR();
// If target supports SVE but currently in FPSIMD mode.
if (m_sve_state == SVEState::FPSIMD) {
// Here we will check if writing this SVE register enables
// SVEState::Full
bool set_sve_state_full = false;
const uint8_t *reg_bytes = (const uint8_t *)reg_value.GetBytes();
if (GetRegisterInfo().IsSVEZReg(reg)) {
for (uint32_t i = 16; i < reg_info->byte_size; i++) {
if (reg_bytes[i]) {
set_sve_state_full = true;
break;
}
}
} else if (GetRegisterInfo().IsSVEPReg(reg) ||
reg == GetRegisterInfo().GetRegNumSVEFFR()) {
for (uint32_t i = 0; i < reg_info->byte_size; i++) {
if (reg_bytes[i]) {
set_sve_state_full = true;
break;
}
}
}
if (!set_sve_state_full && GetRegisterInfo().IsSVEZReg(reg)) {
// We are writing a Z register which is zero beyond 16 bytes so copy
// first 16 bytes only as SVE payload mirrors legacy fpsimd structure
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
dst = (uint8_t *)GetSVEBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), 16);
return WriteAllSVE();
} else
return Status("SVE state change operation not supported");
} else {
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
dst = (uint8_t *)GetSVEBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteAllSVE();
}
}
}
return error;
return Status("Failed to write register value");
}
Status NativeRegisterContextLinux_arm64::ReadAllRegisterValues(
@ -195,17 +361,15 @@ Status NativeRegisterContextLinux_arm64::ReadAllRegisterValues(
Status error;
data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
if (!m_gpr_is_valid) {
error = ReadGPR();
if (error.Fail())
return error;
}
if (!m_fpu_is_valid) {
error = ReadFPR();
if (error.Fail())
return error;
}
error = ReadGPR();
if (error.Fail())
return error;
error = ReadFPR();
if (error.Fail())
return error;
uint8_t *dst = data_sp->GetBytes();
::memcpy(dst, GetGPRBuffer(), GetGPRSize());
dst += GetGPRSize();
@ -271,6 +435,13 @@ bool NativeRegisterContextLinux_arm64::IsFPR(unsigned reg) const {
return false;
}
bool NativeRegisterContextLinux_arm64::IsSVE(unsigned reg) const {
if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) ==
RegisterInfoPOSIX_arm64::SVERegSet)
return true;
return false;
}
uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareBreakpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
@ -762,8 +933,10 @@ Status NativeRegisterContextLinux_arm64::WriteHardwareDebugRegs(int hwbType) {
Status NativeRegisterContextLinux_arm64::ReadGPR() {
Status error;
struct iovec ioVec;
if (m_gpr_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetGPRBuffer();
ioVec.iov_len = GetGPRSize();
@ -776,21 +949,26 @@ Status NativeRegisterContextLinux_arm64::ReadGPR() {
}
Status NativeRegisterContextLinux_arm64::WriteGPR() {
Status error = ReadGPR();
if (error.Fail())
return error;
struct iovec ioVec;
m_gpr_is_valid = false;
ioVec.iov_base = GetGPRBuffer();
ioVec.iov_len = GetGPRSize();
m_gpr_is_valid = false;
return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS);
}
Status NativeRegisterContextLinux_arm64::ReadFPR() {
Status error;
struct iovec ioVec;
if (m_fpu_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetFPRBuffer();
ioVec.iov_len = GetFPRSize();
@ -803,19 +981,122 @@ Status NativeRegisterContextLinux_arm64::ReadFPR() {
}
Status NativeRegisterContextLinux_arm64::WriteFPR() {
Status error = ReadFPR();
if (error.Fail())
return error;
struct iovec ioVec;
m_fpu_is_valid = false;
ioVec.iov_base = GetFPRBuffer();
ioVec.iov_len = GetFPRSize();
m_fpu_is_valid = false;
return WriteRegisterSet(&ioVec, GetFPRSize(), NT_FPREGSET);
}
void NativeRegisterContextLinux_arm64::InvalidateAllRegisters() {
m_gpr_is_valid = false;
m_fpu_is_valid = false;
m_sve_buffer_is_valid = false;
m_sve_header_is_valid = false;
// Update SVE registers in case there is change in configuration.
ConfigureRegisterContext();
}
Status NativeRegisterContextLinux_arm64::ReadSVEHeader() {
Status error;
if (m_sve_header_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetSVEHeader();
ioVec.iov_len = GetSVEHeaderSize();
error = ReadRegisterSet(&ioVec, GetSVEHeaderSize(), NT_ARM_SVE);
m_sve_header_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteSVEHeader() {
Status error;
error = ReadSVEHeader();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetSVEHeader();
ioVec.iov_len = GetSVEHeaderSize();
m_sve_buffer_is_valid = false;
m_sve_header_is_valid = false;
m_fpu_is_valid = false;
return WriteRegisterSet(&ioVec, GetSVEHeaderSize(), NT_ARM_SVE);
}
Status NativeRegisterContextLinux_arm64::ReadAllSVE() {
Status error;
if (m_sve_buffer_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetSVEBuffer();
ioVec.iov_len = GetSVEBufferSize();
error = ReadRegisterSet(&ioVec, GetSVEBufferSize(), NT_ARM_SVE);
if (error.Success())
m_sve_buffer_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteAllSVE() {
Status error;
error = ReadAllSVE();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetSVEBuffer();
ioVec.iov_len = GetSVEBufferSize();
m_sve_buffer_is_valid = false;
m_sve_header_is_valid = false;
m_fpu_is_valid = false;
return WriteRegisterSet(&ioVec, GetSVEBufferSize(), NT_ARM_SVE);
}
void NativeRegisterContextLinux_arm64::ConfigureRegisterContext() {
// Read SVE configuration data and configure register infos.
if (!m_sve_header_is_valid && m_sve_state != SVEState::Disabled) {
Status error = ReadSVEHeader();
if (!error.Success() && m_sve_state == SVEState::Unknown) {
m_sve_state = SVEState::Disabled;
GetRegisterInfo().ConfigureVectorRegisterInfos(
RegisterInfoPOSIX_arm64::eVectorQuadwordAArch64);
} else {
if ((m_sve_header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
m_sve_state = SVEState::FPSIMD;
else if ((m_sve_header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_SVE)
m_sve_state = SVEState::Full;
uint32_t vq = RegisterInfoPOSIX_arm64::eVectorQuadwordAArch64SVE;
if (sve_vl_valid(m_sve_header.vl))
vq = sve_vq_from_vl(m_sve_header.vl);
GetRegisterInfo().ConfigureVectorRegisterInfos(vq);
m_sve_ptrace_payload.resize(SVE_PT_SIZE(vq, SVE_PT_REGS_SVE));
}
}
}
uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset(
@ -823,4 +1104,27 @@ uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset(
return reg_info->byte_offset - GetGPRSize();
}
uint32_t NativeRegisterContextLinux_arm64::CalculateSVEOffset(
const RegisterInfo *reg_info) const {
// Start of Z0 data is after GPRs plus 8 bytes of vg register
uint32_t sve_reg_offset = LLDB_INVALID_INDEX32;
if (m_sve_state == SVEState::FPSIMD) {
const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
sve_reg_offset =
SVE_PT_FPSIMD_OFFSET + (reg - GetRegisterInfo().GetRegNumSVEZ0()) * 16;
} else if (m_sve_state == SVEState::Full) {
uint32_t sve_z0_offset = GetGPRSize() + 8;
sve_reg_offset =
SVE_SIG_REGS_OFFSET + reg_info->byte_offset - sve_z0_offset;
}
return sve_reg_offset;
}
void *NativeRegisterContextLinux_arm64::GetSVEBuffer() {
if (m_sve_state == SVEState::FPSIMD)
return m_sve_ptrace_payload.data() + SVE_PT_FPSIMD_OFFSET;
return m_sve_ptrace_payload.data();
}
#endif // defined (__arm64__) || defined (__aarch64__)

View File

@ -14,6 +14,8 @@
#include "Plugins/Process/Linux/NativeRegisterContextLinux.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h"
#include <asm/ptrace.h>
namespace lldb_private {
namespace process_linux {
@ -97,11 +99,19 @@ protected:
private:
bool m_gpr_is_valid;
bool m_fpu_is_valid;
bool m_sve_buffer_is_valid;
bool m_sve_header_is_valid;
RegisterInfoPOSIX_arm64::GPR m_gpr_arm64; // 64-bit general purpose registers.
RegisterInfoPOSIX_arm64::FPU
m_fpr; // floating-point registers including extended register sets.
SVEState m_sve_state;
struct user_sve_header m_sve_header;
std::vector<uint8_t> m_sve_ptrace_payload;
// Debug register info for hardware breakpoints and watchpoints management.
struct DREG {
lldb::addr_t address; // Breakpoint/watchpoint address value.
@ -123,6 +133,28 @@ private:
bool IsFPR(unsigned reg) const;
Status ReadAllSVE();
Status WriteAllSVE();
Status ReadSVEHeader();
Status WriteSVEHeader();
bool IsSVE(unsigned reg) const;
uint64_t GetSVERegVG() { return m_sve_header.vl / 8; }
void SetSVERegVG(uint64_t vg) { m_sve_header.vl = vg * 8; }
void *GetSVEHeader() { return &m_sve_header; }
void *GetSVEBuffer();
size_t GetSVEHeaderSize() { return sizeof(m_sve_header); }
size_t GetSVEBufferSize() { return m_sve_ptrace_payload.size(); }
Status ReadHardwareDebugInfo();
Status WriteHardwareDebugRegs(int hwbType);
@ -130,6 +162,10 @@ private:
uint32_t CalculateFprOffset(const RegisterInfo *reg_info) const;
RegisterInfoPOSIX_arm64 &GetRegisterInfo() const;
void ConfigureRegisterContext();
uint32_t CalculateSVEOffset(const RegisterInfo *reg_info) const;
};
} // namespace process_linux

View File

@ -66,7 +66,9 @@ protected:
uint32_t GetRegNumSVEZ0() const {
return m_register_info_up->GetRegNumSVEZ0();
}
uint32_t GetRegNumSVEFFR() const {
return m_register_info_up->GetRegNumSVEFFR();
}
uint32_t GetRegNumFPCR() const { return m_register_info_up->GetRegNumFPCR(); }
uint32_t GetRegNumFPSR() const { return m_register_info_up->GetRegNumFPSR(); }

View File

@ -336,6 +336,8 @@ bool RegisterInfoPOSIX_arm64::IsSVERegVG(unsigned reg) const {
uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEZ0() const { return sve_z0; }
uint32_t RegisterInfoPOSIX_arm64::GetRegNumSVEFFR() const { return sve_ffr; }
uint32_t RegisterInfoPOSIX_arm64::GetRegNumFPCR() const { return fpu_fpcr; }
uint32_t RegisterInfoPOSIX_arm64::GetRegNumFPSR() const { return fpu_fpsr; }

View File

@ -98,6 +98,7 @@ public:
bool IsSVERegVG(unsigned reg) const;
uint32_t GetRegNumSVEZ0() const;
uint32_t GetRegNumSVEFFR() const;
uint32_t GetRegNumFPCR() const;
uint32_t GetRegNumFPSR() const;

View File

@ -0,0 +1,5 @@
C_SOURCES := main.c
CFLAGS_EXTRAS := -march=armv8-a+sve
include Makefile.rules

View File

@ -0,0 +1,176 @@
"""
Test the AArch64 SVE registers.
"""
import lldb
from lldbsuite.test.decorators import *
from lldbsuite.test.lldbtest import *
from lldbsuite.test import lldbutil
class RegisterCommandsTestCase(TestBase):
def targetHasSVE(self):
triple = self.dbg.GetSelectedPlatform().GetTriple()
# TODO other platforms, please implement this function
if not re.match(".*-.*-linux", triple):
return False
# Need to do something different for non-Linux/Android targets
cpuinfo_path = self.getBuildArtifact("cpuinfo")
if configuration.lldb_platform_name:
self.runCmd('platform get-file "/proc/cpuinfo" ' + cpuinfo_path)
f = open(cpuinfo_path, 'r')
cpuinfo = f.read()
f.close()
return " sve " in cpuinfo
def check_sve_register_size(self, set, name, expected):
reg_value = set.GetChildMemberWithName(name)
self.assertTrue(reg_value.IsValid(),
'Verify we have a register named "%s"' % (name))
self.assertEqual(reg_value.GetByteSize(), expected,
'Verify "%s" == %i' % (name, expected))
mydir = TestBase.compute_mydir(__file__)
@no_debug_info_test
@skipIf(archs=no_match(["aarch64"]))
@skipIf(oslist=no_match(['linux']))
def test_sve_registers_configuration(self):
"""Test AArch64 SVE registers size configuration."""
self.build()
self.line = line_number('main.c', '// Set a break point here.')
exe = self.getBuildArtifact("a.out")
self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET)
if not self.targetHasSVE():
self.skipTest('SVE registers must be supported.')
lldbutil.run_break_set_by_file_and_line(
self, "main.c", self.line, num_expected_locations=1)
self.runCmd("run", RUN_SUCCEEDED)
self.expect("thread backtrace", STOPPED_DUE_TO_BREAKPOINT,
substrs=["stop reason = breakpoint 1."])
target = self.dbg.GetSelectedTarget()
process = target.GetProcess()
thread = process.GetThreadAtIndex(0)
currentFrame = thread.GetFrameAtIndex(0)
has_sve = False
for registerSet in currentFrame.GetRegisters():
if 'Scalable Vector Extension Registers' in registerSet.GetName():
has_sve = True
registerSets = process.GetThreadAtIndex(
0).GetFrameAtIndex(0).GetRegisters()
sve_registers = registerSets.GetValueAtIndex(2)
vg_reg = sve_registers.GetChildMemberWithName("vg")
vg_reg_value = sve_registers.GetChildMemberWithName(
"vg").GetValueAsUnsigned()
z_reg_size = vg_reg_value * 8
p_reg_size = z_reg_size / 8
for i in range(32):
self.check_sve_register_size(
sve_registers, 'z%i' % (i), z_reg_size)
for i in range(16):
self.check_sve_register_size(
sve_registers, 'p%i' % (i), p_reg_size)
self.check_sve_register_size(sve_registers, 'ffr', p_reg_size)
@no_debug_info_test
@skipIf(archs=no_match(["aarch64"]))
@skipIf(oslist=no_match(['linux']))
def test_sve_registers_read_write(self):
"""Test AArch64 SVE registers read and write."""
self.build()
self.line = line_number('main.c', '// Set a break point here.')
exe = self.getBuildArtifact("a.out")
self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET)
if not self.targetHasSVE():
self.skipTest('SVE registers must be supported.')
lldbutil.run_break_set_by_file_and_line(
self, "main.c", self.line, num_expected_locations=1)
self.runCmd("run", RUN_SUCCEEDED)
self.expect("thread backtrace", STOPPED_DUE_TO_BREAKPOINT,
substrs=["stop reason = breakpoint 1."])
target = self.dbg.GetSelectedTarget()
process = target.GetProcess()
thread = process.GetThreadAtIndex(0)
currentFrame = thread.GetFrameAtIndex(0)
has_sve = False
for registerSet in currentFrame.GetRegisters():
if 'Scalable Vector Extension Registers' in registerSet.GetName():
has_sve = True
registerSets = process.GetThreadAtIndex(
0).GetFrameAtIndex(0).GetRegisters()
sve_registers = registerSets.GetValueAtIndex(2)
vg_reg = sve_registers.GetChildMemberWithName("vg")
vg_reg_value = sve_registers.GetChildMemberWithName(
"vg").GetValueAsUnsigned()
z_reg_size = vg_reg_value * 8
p_reg_size = int(z_reg_size / 8)
for i in range(32):
z_regs_value = '{' + \
' '.join('0x{:02x}'.format(i + 1)
for _ in range(z_reg_size)) + '}'
self.expect("register read " + 'z%i' %
(i), substrs=[z_regs_value])
p_value_bytes = ['0xff', '0x55', '0x11', '0x01', '0x00']
for i in range(16):
p_regs_value = '{' + \
' '.join(p_value_bytes[i % 5] for _ in range(p_reg_size)) + '}'
self.expect("register read " + 'p%i' % (i), substrs=[p_regs_value])
self.expect("register read ffr", substrs=[p_regs_value])
z_regs_value = '{' + \
' '.join(('0x9d' for _ in range(z_reg_size))) + '}'
p_regs_value = '{' + \
' '.join(('0xee' for _ in range(p_reg_size))) + '}'
for i in range(32):
self.runCmd('register write ' + 'z%i' %
(i) + " '" + z_regs_value + "'")
for i in range(32):
self.expect("register read " + 'z%i' % (i), substrs=[z_regs_value])
for i in range(16):
self.runCmd('register write ' + 'p%i' %
(i) + " '" + p_regs_value + "'")
for i in range(16):
self.expect("register read " + 'p%i' % (i), substrs=[p_regs_value])
self.runCmd('register write ' + 'ffr ' + "'" + p_regs_value + "'")
self.expect("register read " + 'ffr', substrs=[p_regs_value])

View File

@ -0,0 +1,53 @@
int main() {
asm volatile("setffr\n\t");
asm volatile("ptrue p0.b\n\t");
asm volatile("ptrue p1.h\n\t");
asm volatile("ptrue p2.s\n\t");
asm volatile("ptrue p3.d\n\t");
asm volatile("pfalse p4.b\n\t");
asm volatile("ptrue p5.b\n\t");
asm volatile("ptrue p6.h\n\t");
asm volatile("ptrue p7.s\n\t");
asm volatile("ptrue p8.d\n\t");
asm volatile("pfalse p9.b\n\t");
asm volatile("ptrue p10.b\n\t");
asm volatile("ptrue p11.h\n\t");
asm volatile("ptrue p12.s\n\t");
asm volatile("ptrue p13.d\n\t");
asm volatile("pfalse p14.b\n\t");
asm volatile("ptrue p15.b\n\t");
asm volatile("cpy z0.b, p0/z, #1\n\t");
asm volatile("cpy z1.b, p5/z, #2\n\t");
asm volatile("cpy z2.b, p10/z, #3\n\t");
asm volatile("cpy z3.b, p15/z, #4\n\t");
asm volatile("cpy z4.b, p0/z, #5\n\t");
asm volatile("cpy z5.b, p5/z, #6\n\t");
asm volatile("cpy z6.b, p10/z, #7\n\t");
asm volatile("cpy z7.b, p15/z, #8\n\t");
asm volatile("cpy z8.b, p0/z, #9\n\t");
asm volatile("cpy z9.b, p5/z, #10\n\t");
asm volatile("cpy z10.b, p10/z, #11\n\t");
asm volatile("cpy z11.b, p15/z, #12\n\t");
asm volatile("cpy z12.b, p0/z, #13\n\t");
asm volatile("cpy z13.b, p5/z, #14\n\t");
asm volatile("cpy z14.b, p10/z, #15\n\t");
asm volatile("cpy z15.b, p15/z, #16\n\t");
asm volatile("cpy z16.b, p0/z, #17\n\t");
asm volatile("cpy z17.b, p5/z, #18\n\t");
asm volatile("cpy z18.b, p10/z, #19\n\t");
asm volatile("cpy z19.b, p15/z, #20\n\t");
asm volatile("cpy z20.b, p0/z, #21\n\t");
asm volatile("cpy z21.b, p5/z, #22\n\t");
asm volatile("cpy z22.b, p10/z, #23\n\t");
asm volatile("cpy z23.b, p15/z, #24\n\t");
asm volatile("cpy z24.b, p0/z, #25\n\t");
asm volatile("cpy z25.b, p5/z, #26\n\t");
asm volatile("cpy z26.b, p10/z, #27\n\t");
asm volatile("cpy z27.b, p15/z, #28\n\t");
asm volatile("cpy z28.b, p0/z, #29\n\t");
asm volatile("cpy z29.b, p5/z, #30\n\t");
asm volatile("cpy z30.b, p10/z, #31\n\t");
asm volatile("cpy z31.b, p15/z, #32\n\t");
return 0; // Set a break point here.
}