[MLGO] Use binary protobufs for improved training performance.

It turns out that during training, the time required to parse the
textual protobuf of a training log is about the same as the time it
takes to compile the module generating that log. Using binary protobufs
instead elides that cost almost completely.

Differential Revision: https://reviews.llvm.org/D106157
This commit is contained in:
Mircea Trofin 2021-07-14 15:03:14 -07:00
parent 4ae575b999
commit 55e2d2060a
6 changed files with 162 additions and 184 deletions

View File

@ -788,8 +788,26 @@ endif()
set(TENSORFLOW_C_LIB_PATH "" CACHE PATH "Path to TensorFlow C library install")
if (TENSORFLOW_C_LIB_PATH)
find_library(tensorflow_c_api tensorflow PATHS ${TENSORFLOW_C_LIB_PATH}/lib NO_DEFAULT_PATH REQUIRED)
# Currently, the protobuf headers are distributed with the pip package that corresponds to the version
# of the C API library.
find_library(tensorflow_fx tensorflow_framework PATHS ${TENSORFLOW_C_LIB_PATH}/lib NO_DEFAULT_PATH REQUIRED)
set(LLVM_HAVE_TF_API "ON" CACHE BOOL "Full Tensorflow API available")
include_directories(${TENSORFLOW_C_LIB_PATH}/include)
if (NOT TF_PROTO_HEADERS)
message(STATUS "TF_PROTO_HEADERS not defined. Looking for tensorflow pip package.")
execute_process(COMMAND
${Python3_EXECUTABLE} "-m" "pip" "show" "tensorflow"
OUTPUT_VARIABLE TF_PIP_OUT)
if ("${TF_PIP_OUT}" STREQUAL "")
message(FATAL ERROR "Tensorflow pip package is also required for 'development' mode (protobuf headers)")
endif()
string(REGEX MATCH "Location: ([^\n]*\n)" TF_PIP_LOC "${TF_PIP_OUT}")
string(REPLACE "Location: " "" TF_PIP ${TF_PIP_LOC})
set(TF_PROTO_HEADERS ${TF_PIP}/include)
endif()
include_directories(${TF_PROTO_HEADERS})
add_definitions("-DGOOGLE_PROTOBUF_NO_RTTI")
add_definitions("-D_GLIBCXX_USE_CXX11_ABI=0")
endif()
# For up-to-date instructions for installing the Tensorflow dependency, refer to

View File

@ -27,7 +27,7 @@ if (DEFINED LLVM_HAVE_TF_AOT OR DEFINED LLVM_HAVE_TF_API)
endif()
if (DEFINED LLVM_HAVE_TF_API)
list(APPEND MLLinkDeps ${tensorflow_c_api})
list(APPEND MLLinkDeps ${tensorflow_c_api} ${tensorflow_fx})
endif()
endif()

View File

@ -15,6 +15,7 @@
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/ManagedStatic.h"
@ -22,14 +23,19 @@
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "google/protobuf/text_format.h"
#include "tensorflow/c/c_api.h"
#include "tensorflow/c/c_api_experimental.h"
#include "tensorflow/core/example/example.pb.h"
#include <cassert>
#include <numeric>
using namespace llvm;
static cl::opt<bool>
ProtobufTextMode("tfutils-text-log", cl::init(false), cl::Hidden,
cl::desc("Output textual (human-readable) protobuf."));
namespace {
using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
@ -65,85 +71,53 @@ TFSessionOptionsPtr createTFSessionOptions() {
return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions);
}
/// Write the values of one tensor as a list.
template <typename T>
void writeTensorValues(raw_ostream &OutFile, const char *TensorData,
size_t ElemCount) {
OutFile << "[";
const T *TypedData = reinterpret_cast<const T *>(TensorData);
ListSeparator LS;
for (size_t I = 0; I < ElemCount; ++I)
OutFile << LS << TypedData[I];
OutFile << "]";
}
/// Write a list of tensors as a sequence of TensorFlow FeatureList protobufs.
/// The tensors are assumed to be stored contiguously, in row-major format,
/// in the TensorData buffer. Each tensor has the shape given by Spec. The
/// feature name in the output is either the provided LoggingName, if
/// specified, otherwise it's the name of the tensor (as given by Spec).
void writeRawTensorsAsFeatureLists(raw_ostream &OutFile,
void writeRawTensorsAsFeatureLists(tensorflow::FeatureLists *FE,
const LoggedFeatureSpec &LoggedSpec,
const char *TensorData, size_t TensorCount,
bool FinalReward = false) {
const char *FieldName = "<invalid>";
std::function<void(const char *)> ValueWriter;
const auto &Spec = LoggedSpec.Spec;
// The 'Feature' protobuf only has 3 possible fields: float_list,
// int64_list, or bytes_list, so we capture int32 values as int64. We don't
// support any other types.
if (Spec.isElementType<int64_t>()) {
FieldName = "int64_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<int64_t>(OutFile, Data, Spec.getElementCount());
};
} else if (Spec.isElementType<int32_t>()) {
FieldName = "int64_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<int32_t>(OutFile, Data, Spec.getElementCount());
};
} else if (Spec.isElementType<float>()) {
FieldName = "float_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<float>(OutFile, Data, Spec.getElementCount());
};
} else {
llvm_unreachable("Unsupported tensor type.");
}
OutFile << " feature_list: {\n";
OutFile << " key: "
<< "\""
<< (LoggedSpec.LoggingName ? *LoggedSpec.LoggingName : Spec.name())
<< "\" ";
OutFile << "value: {\n";
size_t TensorByteSize = Spec.getElementCount() * Spec.getElementByteSize();
auto WriteFeatureProto = [&](const char *P) {
OutFile << " feature: { " << FieldName << ": { value: ";
ValueWriter(P);
OutFile << " } }\n";
};
tensorflow::FeatureList &FL = (*FE->mutable_feature_list())[(
LoggedSpec.LoggingName ? *LoggedSpec.LoggingName : Spec.name())];
const char *CurrentTensor = TensorData;
static int64_t Zero = 0;
// Write all but the last value. If this is the final reward, don't increment
// the CurrentTensor, and just write 0.
for (size_t I = 0; I < TensorCount - 1; ++I) {
if (FinalReward)
WriteFeatureProto(reinterpret_cast<const char *>(&Zero));
else {
WriteFeatureProto(CurrentTensor);
CurrentTensor += TensorByteSize;
const size_t TensorByteSize =
Spec.getElementCount() * Spec.getElementByteSize();
const size_t ElemCount = Spec.getElementCount();
for (size_t E = 0; E < TensorCount; ++E) {
const bool ShouldWrite = E + 1 == TensorCount || !FinalReward;
if (Spec.isElementType<int64_t>()) {
auto *MF = FL.add_feature()->mutable_int64_list()->mutable_value();
MF->Resize(ElemCount, 0);
if (ShouldWrite)
memcpy(MF->mutable_data(), CurrentTensor, TensorByteSize);
} else if (Spec.isElementType<int32_t>()) {
auto *MF = FL.add_feature()->mutable_int64_list()->mutable_value();
MF->Resize(ElemCount, 0);
if (ShouldWrite) {
const int32_t *TD = reinterpret_cast<const int32_t *>(CurrentTensor);
for (size_t I = 0; I < ElemCount; ++I)
(*MF)[I] = TD[I];
}
} else if (Spec.isElementType<float>()) {
auto *MF = FL.add_feature()->mutable_float_list()->mutable_value();
MF->Resize(ElemCount, 0.0);
if (ShouldWrite)
memcpy(MF->mutable_data(), CurrentTensor, TensorByteSize);
} else {
llvm_unreachable("Unsupported tensor type.");
}
if (ShouldWrite)
CurrentTensor += TensorByteSize;
}
WriteFeatureProto(CurrentTensor);
OutFile << " }\n";
OutFile << " }\n";
}
} // namespace
@ -475,6 +449,8 @@ TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
TFModelEvaluator::~TFModelEvaluator() {}
void Logger::print(raw_ostream &OS) {
tensorflow::SequenceExample SE;
if (RawLogData.empty())
return;
if (RawLogData[0].empty())
@ -488,16 +464,21 @@ void Logger::print(raw_ostream &OS) {
RewardSpec.getElementCount() * RewardSpec.getElementByteSize();
size_t NumberOfRewards = RawLogData.back().size() / RewardSize;
OS << "feature_lists: {\n";
tensorflow::FeatureLists *FE = SE.mutable_feature_lists();
for (size_t I = 0; I < FeatureSpecs.size(); ++I)
writeRawTensorsAsFeatureLists(OS, FeatureSpecs[I], RawLogData[I].data(),
writeRawTensorsAsFeatureLists(FE, FeatureSpecs[I], RawLogData[I].data(),
NumberOfRecords);
if (IncludeReward)
writeRawTensorsAsFeatureLists(OS, {RewardSpec, None},
writeRawTensorsAsFeatureLists(FE, {RewardSpec, None},
RawLogData.back().data(), NumberOfRecords,
NumberOfRewards == 1);
OS << "}\n";
std::string OutStr;
if (ProtobufTextMode) {
google::protobuf::TextFormat::PrintToString(SE, &OutStr);
} else {
OutStr = SE.SerializeAsString();
}
OS << OutStr;
}
#endif // defined(LLVM_HAVE_TF_API)

View File

@ -7,40 +7,35 @@
; REQUIRES: have_tf_api
;
; Generate mock model
; RUN: rm -rf %t && mkdir %t
; RUN: rm -rf %t
; RUN: %python %S/../../../../lib/Analysis/models/generate_mock_model.py %S/../../../../lib/Analysis/models/inlining/config.py %t
;
; When the bounds are very wide ("no bounds"), all inlinings happen.
; RUN: opt -passes=scc-oz-module-inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-model-under-training=%t -training-log=- -enable-ml-inliner=development -ml-advisor-size-increase-threshold=10.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=NOBOUNDS
; RUN: opt -passes=scc-oz-module-inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-model-under-training=%t -training-log=- -tfutils-text-log -enable-ml-inliner=development -ml-advisor-size-increase-threshold=10.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=NOBOUNDS
;
; When the bounds are very restrictive, the first inlining happens but it's
; considered as "bad" (since it trips over the bounds) and its reward is a
; penalty. However, the mandatory inlining, which is considered next, happens.
; No other inlinings happend.
; RUN: opt -passes=scc-oz-module-inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-model-under-training=%t -training-log=- -enable-ml-inliner=development -ml-advisor-size-increase-threshold=1.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=BOUNDS
; RUN: opt -passes=scc-oz-module-inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-model-under-training=%t -training-log=- -tfutils-text-log -enable-ml-inliner=development -ml-advisor-size-increase-threshold=1.0 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=BOUNDS
;
; With more restrictive bounds, the first inlining happens and is OK. The
; mandatory inlining happens next, and it trips over the bounds, which then
; forces no further inlinings.
; RUN: opt -passes=scc-oz-module-inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-model-under-training=%t -training-log=- -enable-ml-inliner=development -ml-advisor-size-increase-threshold=1.1 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=RELAXED-BOUNDS
; RUN: opt -passes=scc-oz-module-inliner -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-model-under-training=%t -training-log=- -tfutils-text-log -enable-ml-inliner=development -ml-advisor-size-increase-threshold=1.1 -S < %s 2>&1 | FileCheck %s --check-prefix=CHECK --check-prefix=RELAXED-BOUNDS
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-grtev4-linux-gnu"
declare i64 @f1()
define i64 @may_not_be_inlined() {
%r = call i64 @f1()
%r2 = add i64 13, %r
ret i64 %r2
}
define i64 @must_be_inlined() #0 {
%r = call i64 @may_not_be_inlined()
%r2 = add i64 13, %r
ret i64 %r2
}
define i64 @top() {
%r = call i64 @must_be_inlined()
%r2 = call i64 @may_not_be_inlined()
@ -49,15 +44,25 @@ define i64 @top() {
%r5 = add i64 %r3, %r4
ret i64 %r5
}
attributes #0 = { alwaysinline }
; CHECK: key: "delta_size" value: {
; NOBOUNDS-NEXT: feature: { int64_list: { value: [6] } }
; RELAXED-BOUNDS-NEXT: feature: { int64_list: { value: [6] } }
; NOBOUNDS-NEXT: feature: { int64_list: { value: [-11] } }
; NOBOUNDS-NEXT: feature: { int64_list: { value: [4] } }
; BOUNDS-NEXT: feature: { int64_list: { value: [2147483647] } }
; CHECK-NEXT: }
; CHECK: key: "delta_size"
; CHECK-NEXT: value {
; CHECK-NEXT: feature {
; CHECK-NEXT: int64_list {
; NOBOUNDS-NEXT: value: 6
; RELAXED-BOUNDS-NEXT: value: 6
; NOBOUNDS-NEXT: }
; NOBOUNDS-NEXT: }
; NOBOUNDS-NEXT: feature {
; NOBOUNDS-NEXT: int64_list {
; NOBOUNDS-NEXT: value: -11
; NOBOUNDS-NEXT: }
; NOBOUNDS-NEXT: }
; NOBOUNDS-NEXT: feature {
; NOBOUNDS-NEXT: int64_list {
; NOBOUNDS-NEXT: value: 4
; BOUNDS-NEXT: value: 2147483647
; CHECK-NEXT: }
; CHECK-LABEL: @top
; must_be_inlined must always be inlined, so we won't find a call to it in @top()
; CHECK-NOT: call i64 @must_be_inlined

View File

@ -1,58 +1,56 @@
; Test that we can produce a log if we have or do not have a model, in development mode.
; REQUIRES: have_tf_api
; Generate mock model
; RUN: rm -rf %t && mkdir %t
; RUN: rm -rf %t
; RUN: %python %S/../../../../lib/Analysis/models/generate_mock_model.py %S/../../../../lib/Analysis/models/inlining/config.py %t
;
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-model-under-training=%t -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-model-under-training=%t -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-output-spec-override=%S/Inputs/test_output_spec.json -S < %s | FileCheck %s --check-prefixes=EXTRA-OUTPUTS,CHECK
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -ml-inliner-model-under-training=%t -S < %s | FileCheck %s --check-prefix=NOREWARD
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -S < %s | FileCheck %s --check-prefix=NOREWARD
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -tfutils-text-log -ml-inliner-model-under-training=%t -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -tfutils-text-log -ml-inliner-model-under-training=%t -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -ml-inliner-output-spec-override=%S/Inputs/test_output_spec.json -S < %s | FileCheck %s --check-prefixes=EXTRA-OUTPUTS,CHECK
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -tfutils-text-log -ml-inliner-ir2native-model=%S/../../../../unittests/Analysis/Inputs/ir2native_x86_64_model -S < %s | FileCheck %s
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -tfutils-text-log -ml-inliner-model-under-training=%t -S < %s | FileCheck %s --check-prefix=NOREWARD
; RUN: opt -enable-ml-inliner=development -passes=scc-oz-module-inliner -training-log=- -tfutils-text-log -S < %s | FileCheck %s --check-prefix=NOREWARD
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
declare i32 @f1(i32)
declare i32 @f2(i32)
define dso_local i32 @branches(i32) {
%cond = icmp slt i32 %0, 3
br i1 %cond, label %then, label %else
then:
%ret.1 = call i32 @f1(i32 %0)
br label %last.block
else:
%ret.2 = call i32 @f2(i32 %0)
br label %last.block
last.block:
%ret = phi i32 [%ret.1, %then], [%ret.2, %else]
ret i32 %ret
}
define dso_local i32 @top() {
%1 = call i32 @branches(i32 2)
ret i32 %1
}
!llvm.module.flags = !{!0}
!llvm.ident = !{!1}
!0 = !{i32 1, !"wchar_size", i32 4}
!1 = !{!"clang version 7.0.0-6 (tags/RELEASE_700/final)"}
; Check we produce a protobuf that has inlining decisions and rewards.
; CHECK: key: "delta_size"
; CHECK-NEXT: value {
; CHECK-NEXT: feature {
; CHECK-NEXT: int64_list {
; CHECK-NEXT: value: 0
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NOT: fake_extra_output
; EXTRA-OUTPUTS: key: "fake_extra_output" value: {
; EXTRA-OUTPUTS-NEXT: feature: { int64_list: { value: [{{[0-9]+}}] } }
; CHECK: key: "inlining_decision" value: {
; CHECK-NEXT: feature: { int64_list: { value: [1] } }
; CHECK: key: "delta_size" value: {
; CHECK-NEXT: feature: { int64_list: { value: [0] } }
; CHECK-NEXT: }
; CHECK-NEXT: }
; NOREWARD-NOT: key: "delta_size" value: {
; EXTRA-OUTPUTS: key: "fake_extra_output"
; EXTRA-OUTPUTS-NEXT: value {
; EXTRA-OUTPUTS-NEXT: feature {
; EXTRA-OUTPUTS-NEXT: int64_list {
; EXTRA-OUTPUTS-NEXT: value: {{[0-9]+}}
; CHECK: key: "inlining_decision"
; CHECK-NEXT: value {
; CHECK-NEXT: feature {
; CHECK-NEXT: int64_list {
; CHECK-NEXT: value: 1
; NOREWARD-NOT: key: "delta_size"

View File

@ -7,6 +7,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Utils/TFUtils.h"
#include "tensorflow/core/example/example.pb.h"
#include "tensorflow/core/example/feature.pb.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
@ -143,6 +145,18 @@ TEST(TFUtilsTest, TensorSpecSizesAndTypes) {
EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t));
}
#define PROTO_CHECKER(FNAME, TYPE, INDEX, EXP) \
do { \
const auto &V = Expected.feature_lists() \
.feature_list() \
.at(FNAME) \
.feature(INDEX) \
.TYPE() \
.value(); \
for (auto I = 0; I < V.size(); ++I) \
EXPECT_EQ(V.at(I), EXP[I]); \
} while (false)
TEST(TFUtilsTest, Logger) {
std::vector<LoggedFeatureSpec> Features;
Features.push_back(
@ -152,42 +166,31 @@ TEST(TFUtilsTest, Logger) {
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
Logger L(Features, Rewards, true);
float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
int64_t F01[]{2, 3};
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
const int64_t F01[]{2, 3};
L.logTensorValue(0, F00, 6);
L.logTensorValue(1, F01, 2);
L.logReward<float>(3.4);
float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
int64_t F11[]{-2, -3};
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
const int64_t F11[]{-2, -3};
L.logTensorValue(0, F10, 6);
L.logTensorValue(1, F11, 2);
L.logReward<float>(-3.0);
const auto *Expected = R"(feature_lists: {
feature_list: {
key: "the_float" value: {
feature: { float_list: { value: [0.000000e+00, 1.000000e-01, 2.000000e-01, 3.000000e-01, 4.000000e-01, 5.000000e-01] } }
feature: { float_list: { value: [0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00] } }
}
}
feature_list: {
key: "alternate_name" value: {
feature: { int64_list: { value: [2, 3] } }
feature: { int64_list: { value: [-2, -3] } }
}
}
feature_list: {
key: "reward" value: {
feature: { float_list: { value: [3.400000e+00] } }
feature: { float_list: { value: [-3.000000e+00] } }
}
}
}
)";
std::string Result;
raw_string_ostream OS(Result);
L.print(OS);
EXPECT_EQ(Result, Expected);
tensorflow::SequenceExample Expected;
EXPECT_TRUE(Expected.ParseFromString(Result));
PROTO_CHECKER("the_float", float_list, 0, F00);
PROTO_CHECKER("the_float", float_list, 1, F10);
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
float R0[]{3.4};
float R1[]{-3.0};
PROTO_CHECKER("reward", float_list, 0, R0);
PROTO_CHECKER("reward", float_list, 1, R1);
}
TEST(TFUtilsTest, LoggerNoReward) {
@ -199,34 +202,25 @@ TEST(TFUtilsTest, LoggerNoReward) {
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
Logger L(Features, Rewards, false);
float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
int64_t F01[]{2, 3};
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
const int64_t F01[]{2, 3};
L.logTensorValue(0, F00, 6);
L.logTensorValue(1, F01, 2);
float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
int64_t F11[]{-2, -3};
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
const int64_t F11[]{-2, -3};
L.logTensorValue(0, F10, 6);
L.logTensorValue(1, F11, 2);
const auto *Expected = R"(feature_lists: {
feature_list: {
key: "the_float" value: {
feature: { float_list: { value: [0.000000e+00, 1.000000e-01, 2.000000e-01, 3.000000e-01, 4.000000e-01, 5.000000e-01] } }
feature: { float_list: { value: [0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00] } }
}
}
feature_list: {
key: "alternate_name" value: {
feature: { int64_list: { value: [2, 3] } }
feature: { int64_list: { value: [-2, -3] } }
}
}
}
)";
std::string Result;
raw_string_ostream OS(Result);
L.print(OS);
EXPECT_EQ(Result, Expected);
tensorflow::SequenceExample Expected;
EXPECT_TRUE(Expected.ParseFromString(Result));
PROTO_CHECKER("the_float", float_list, 0, F00);
PROTO_CHECKER("the_float", float_list, 1, F10);
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
}
TEST(TFUtilsTest, LoggerFinalReward) {
@ -242,32 +236,14 @@ TEST(TFUtilsTest, LoggerFinalReward) {
L.logTensorValue(1, &I);
}
L.logFinalReward<float>(3.14);
const auto *Expected = R"(feature_lists: {
feature_list: {
key: "the_float" value: {
feature: { float_list: { value: [0.000000e+00] } }
feature: { float_list: { value: [1.000000e+00] } }
feature: { float_list: { value: [2.000000e+00] } }
}
}
feature_list: {
key: "the_int" value: {
feature: { int64_list: { value: [0] } }
feature: { int64_list: { value: [1] } }
feature: { int64_list: { value: [2] } }
}
}
feature_list: {
key: "reward" value: {
feature: { float_list: { value: [0.000000e+00] } }
feature: { float_list: { value: [0.000000e+00] } }
feature: { float_list: { value: [3.140000e+00] } }
}
}
}
)";
std::string Result;
raw_string_ostream OS(Result);
L.print(OS);
EXPECT_EQ(Result, Expected);
const float Zero[]{0.0};
const float R[]{3.14};
tensorflow::SequenceExample Expected;
EXPECT_TRUE(Expected.ParseFromString(Result));
PROTO_CHECKER("reward", float_list, 0, Zero);
PROTO_CHECKER("reward", float_list, 1, Zero);
PROTO_CHECKER("reward", float_list, 2, R);
}