forked from OSchip/llvm-project
[mlir] fix wrong symbol order in AffineApplyNormalizer
Summary: AffineApplyNormalizer provides common logic for folding affine maps that appear in affine.apply into other affine operations that use the result of said affine.apply. In the process, affine maps of both operations are composed. During the composition `A.compose(B)` the symbols from the map A are placed before those of the map B in a single concatenated symbol list. However, AffineApplyNormalizer was ordering the operands of the operation being normalized by iteratively appending the symbols into a single list accoridng to the operand order, regardless of whether these operands are symbols of the current operation or of the map that is being folded into it. This could lead to wrong order of symbols and, when the symbols were bound to constant values, to visibly incorrect folding of constants into affine maps as reported in PR45031. Make sure symbols operands to the current operation are always placed before symbols coming from the folded maps. Update the test that was exercising the incorrect folder behavior. For some reason, the order of symbol operands was swapped in the test input compared to the previous operations, making it easy to assume the correct maps were produced whereas they were swapping the symbols back due to the problem described above. Closes https://bugs.llvm.org/show_bug.cgi?id=45031 Differential Revision: https://reviews.llvm.org/D75247
This commit is contained in:
parent
aa324c5441
commit
54e5600e4d
|
@ -654,6 +654,10 @@ private:
|
|||
SmallVector<Value, 8> reorderedDims;
|
||||
SmallVector<Value, 8> concatenatedSymbols;
|
||||
|
||||
/// The number of symbols in concatenated symbols that belong to the original
|
||||
/// map as opposed to those concatendated during map composition.
|
||||
unsigned numProperSymbols;
|
||||
|
||||
AffineMap affineMap;
|
||||
|
||||
/// Used with RAII to control the depth at which AffineApply are composed
|
||||
|
@ -667,7 +671,7 @@ private:
|
|||
}
|
||||
static constexpr unsigned kMaxAffineApplyDepth = 1;
|
||||
|
||||
AffineApplyNormalizer() { affineApplyDepth()++; }
|
||||
AffineApplyNormalizer() : numProperSymbols(0) { affineApplyDepth()++; }
|
||||
|
||||
public:
|
||||
~AffineApplyNormalizer() { affineApplyDepth()--; }
|
||||
|
|
|
@ -536,8 +536,12 @@ AffineApplyNormalizer::AffineApplyNormalizer(AffineMap map,
|
|||
auxiliaryExprs.push_back(renumberOneDim(t));
|
||||
} else {
|
||||
// c. The mathematical composition of AffineMap concatenates symbols.
|
||||
// We do the same for symbol operands.
|
||||
concatenatedSymbols.push_back(t);
|
||||
// Note that the map composition will put symbols already present
|
||||
// in the map before any symbols coming from the auxiliary map, so
|
||||
// we insert them before any symbols that are due to renumbering,
|
||||
// and after the proper symbols we have seen already.
|
||||
concatenatedSymbols.insert(
|
||||
std::next(concatenatedSymbols.begin(), numProperSymbols++), t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
// Affine maps for test case: compose_affine_maps_dependent_loads
|
||||
// CHECK-DAG: [[MAP9:#map[0-9]+]] = affine_map<(d0) -> (d0 + 3)>
|
||||
// CHECK-DAG: [[MAP10:#map[0-9]+]] = affine_map<(d0) -> (d0 * 3)>
|
||||
// CHECK-DAG: [[MAP11:#map[0-9]+]] = affine_map<(d0) -> ((d0 + 7) ceildiv 3)>
|
||||
// CHECK-DAG: [[MAP11:#map[0-9]+]] = affine_map<(d0) -> ((d0 + 3) ceildiv 3)>
|
||||
// CHECK-DAG: [[MAP12:#map[0-9]+]] = affine_map<(d0) -> (d0 * 7 - 49)>
|
||||
|
||||
// Affine maps for test case: compose_affine_maps_diamond_dependency
|
||||
|
@ -187,9 +187,9 @@ func @compose_affine_maps_dependent_loads() {
|
|||
|
||||
// Swizzle %x00, %x01 and %c3, %c7
|
||||
%x10 = affine.apply affine_map<(d0, d1)[s0, s1] -> (d0 * s1)>
|
||||
(%x01, %x00)[%c7, %c3]
|
||||
(%x01, %x00)[%c3, %c7]
|
||||
%x11 = affine.apply affine_map<(d0, d1)[s0, s1] -> (d1 ceildiv s0)>
|
||||
(%x01, %x00)[%c7, %c3]
|
||||
(%x01, %x00)[%c3, %c7]
|
||||
|
||||
// CHECK-NEXT: [[I2A:%[0-9]+]] = affine.apply [[MAP12]](%{{.*}})
|
||||
// CHECK-NEXT: [[I2B:%[0-9]+]] = affine.apply [[MAP11]](%{{.*}})
|
||||
|
@ -568,3 +568,29 @@ func @affine_min(%arg0: index) {
|
|||
}
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// Reproducer for PR45031. This used to fold into an incorrect map because
|
||||
// symbols were concatenated in the wrong order during map folding. Map
|
||||
// composition places the symbols of the original map before those of the map
|
||||
// it is composed with, e.g. A.compose(B) will first have all symbols of A,
|
||||
// then all symbols of B.
|
||||
|
||||
#map1 = affine_map<(d0)[s0, s1] -> (d0 * s0 + s1)>
|
||||
#map2 = affine_map<(d0)[s0] -> (1024, -d0 + s0)>
|
||||
|
||||
// CHECK: #[[MAP:.*]] = affine_map<()[s0, s1] -> (1024, s1 * -1024 + s0)>
|
||||
|
||||
// CHECK: func @rep(%[[ARG0:.*]]: index, %[[ARG1:.*]]: index)
|
||||
func @rep(%arg0 : index, %arg1 : index) -> index {
|
||||
// CHECK-NOT: constant
|
||||
%c0 = constant 0 : index
|
||||
%c1024 = constant 1024 : index
|
||||
// CHECK-NOT: affine.apply
|
||||
%0 = affine.apply #map1(%arg0)[%c1024, %c0]
|
||||
|
||||
// CHECK: affine.min #[[MAP]]()[%[[ARG1]], %[[ARG0]]]
|
||||
%1 = affine.min #map2(%0)[%arg1]
|
||||
return %1 : index
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue