Revert r348645 - "[MemCpyOpt] memset->memcpy forwarding with undef tail"

This revision caused trucated memsets for structs with padding. See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181210/610520.html

llvm-svn: 349002
This commit is contained in:
David L. Jones 2018-12-13 03:15:11 +00:00
parent 43071080cd
commit 54c01ad6a9
3 changed files with 20 additions and 40 deletions

View File

@ -154,12 +154,6 @@ static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
return ModRefInfo::Mod;
}
if (const MemSetInst *MI = dyn_cast<MemSetInst>(Inst)) {
Loc = MemoryLocation::getForDest(MI);
// Conversatively assume ModRef for volatile memset.
return MI->isVolatile() ? ModRefInfo::ModRef : ModRefInfo::Mod;
}
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::lifetime_start:

View File

@ -1144,21 +1144,6 @@ bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
return true;
}
/// Determine whether the instruction has undefined content for the given Size,
/// either because it was freshly alloca'd or started its lifetime.
static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
if (isa<AllocaInst>(I))
return true;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
if (II->getIntrinsicID() == Intrinsic::lifetime_start)
if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
if (LTSize->getZExtValue() >= Size->getZExtValue())
return true;
return false;
}
/// Transform memcpy to memset when its source was just memset.
/// In other words, turn:
/// \code
@ -1182,23 +1167,12 @@ bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
return false;
// A known memset size is required.
ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
if (!MemSetSize)
return false;
// Make sure the memcpy doesn't read any more than what the memset wrote.
// Don't worry about sizes larger than i64.
ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
// If the memcpy is larger than the memset, but the memory was undef prior
// to the memset, we can just ignore the tail.
MemDepResult DepInfo = MD->getDependency(MemSet);
if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
CopySize = MemSetSize;
else
return false;
}
if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
return false;
IRBuilder<> Builder(MemCpy);
Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
@ -1278,7 +1252,19 @@ bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
return processMemCpyMemCpyDependence(M, MDep);
} else if (SrcDepInfo.isDef()) {
if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
Instruction *I = SrcDepInfo.getInst();
bool hasUndefContents = false;
if (isa<AllocaInst>(I)) {
hasUndefContents = true;
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_start)
if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
if (LTSize->getZExtValue() >= CopySize->getZExtValue())
hasUndefContents = true;
}
if (hasUndefContents) {
MD->removeInstruction(M);
M->eraseFromParent();
++NumMemCpyInstr;

View File

@ -12,7 +12,7 @@ define void @test_alloca(i8* %result) {
; CHECK-NEXT: [[A:%.*]] = alloca [[T:%.*]], align 8
; CHECK-NEXT: [[B:%.*]] = bitcast %T* [[A]] to i8*
; CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* align 8 [[B]], i8 0, i64 12, i1 false)
; CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* [[RESULT:%.*]], i8 0, i64 12, i1 false)
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[RESULT:%.*]], i8* align 8 [[B]], i64 16, i1 false)
; CHECK-NEXT: ret void
;
%a = alloca %T, align 8
@ -28,7 +28,7 @@ define void @test_alloca_with_lifetimes(i8* %result) {
; CHECK-NEXT: [[B:%.*]] = bitcast %T* [[A]] to i8*
; CHECK-NEXT: call void @llvm.lifetime.start.p0i8(i64 16, i8* [[B]])
; CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* align 8 [[B]], i8 0, i64 12, i1 false)
; CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* [[RESULT:%.*]], i8 0, i64 12, i1 false)
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[RESULT:%.*]], i8* align 8 [[B]], i64 16, i1 false)
; CHECK-NEXT: call void @llvm.lifetime.end.p0i8(i64 16, i8* [[B]])
; CHECK-NEXT: ret void
;
@ -46,7 +46,7 @@ define void @test_malloc_with_lifetimes(i8* %result) {
; CHECK-NEXT: [[A:%.*]] = call i8* @malloc(i64 16)
; CHECK-NEXT: call void @llvm.lifetime.start.p0i8(i64 16, i8* [[A]])
; CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* align 8 [[A]], i8 0, i64 12, i1 false)
; CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* [[RESULT:%.*]], i8 0, i64 12, i1 false)
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[RESULT:%.*]], i8* align 8 [[A]], i64 16, i1 false)
; CHECK-NEXT: call void @llvm.lifetime.end.p0i8(i64 16, i8* [[A]])
; CHECK-NEXT: call void @free(i8* [[A]])
; CHECK-NEXT: ret void
@ -98,7 +98,7 @@ define void @test_volatile_memset(i8* %result) {
; CHECK-NEXT: [[A:%.*]] = alloca [[T:%.*]], align 8
; CHECK-NEXT: [[B:%.*]] = bitcast %T* [[A]] to i8*
; CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* align 8 [[B]], i8 0, i64 12, i1 true)
; CHECK-NEXT: call void @llvm.memset.p0i8.i64(i8* [[RESULT:%.*]], i8 0, i64 12, i1 false)
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[RESULT:%.*]], i8* align 8 [[B]], i64 16, i1 false)
; CHECK-NEXT: ret void
;
%a = alloca %T, align 8