forked from OSchip/llvm-project
Temporarily Revert "[clangd] Add Random Forest runtime for code completion."
as a header doesn't appear to have made it into the commit.
This reverts commit 9b6765e784
and followup
This commit is contained in:
parent
1f0b43638e
commit
549e55b3d5
|
@ -28,9 +28,6 @@ set(LLVM_LINK_COMPONENTS
|
|||
FrontendOpenMP
|
||||
Option
|
||||
)
|
||||
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/quality/CompletionModel.cmake)
|
||||
gen_decision_forest(${CMAKE_CURRENT_SOURCE_DIR}/quality/model CompletionModel clang::clangd::Example)
|
||||
|
||||
if(MSVC AND NOT CLANG_CL)
|
||||
set_source_files_properties(CompileCommands.cpp PROPERTIES COMPILE_FLAGS -wd4130) # disables C4130: logical operation on address of string constant
|
||||
|
@ -80,7 +77,6 @@ add_clang_library(clangDaemon
|
|||
TUScheduler.cpp
|
||||
URI.cpp
|
||||
XRefs.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/CompletionModel.cpp
|
||||
|
||||
index/Background.cpp
|
||||
index/BackgroundIndexLoader.cpp
|
||||
|
@ -121,11 +117,6 @@ add_clang_library(clangDaemon
|
|||
omp_gen
|
||||
)
|
||||
|
||||
# Include generated CompletionModel headers.
|
||||
target_include_directories(clangDaemon PUBLIC
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
|
||||
)
|
||||
|
||||
clang_target_link_libraries(clangDaemon
|
||||
PRIVATE
|
||||
clangAST
|
||||
|
|
|
@ -1,37 +0,0 @@
|
|||
# Run the Completion Model Codegenerator on the model present in the
|
||||
# ${model} directory.
|
||||
# Produces a pair of files called ${filename}.h and ${filename}.cpp in the
|
||||
# ${CMAKE_CURRENT_BINARY_DIR}. The generated header
|
||||
# will define a C++ class called ${cpp_class} - which may be a
|
||||
# namespace-qualified class name.
|
||||
function(gen_decision_forest model filename cpp_class)
|
||||
set(model_compiler ${CMAKE_SOURCE_DIR}/../clang-tools-extra/clangd/quality/CompletionModelCodegen.py)
|
||||
|
||||
set(output_dir ${CMAKE_CURRENT_BINARY_DIR})
|
||||
set(header_file ${output_dir}/${filename}.h)
|
||||
set(cpp_file ${output_dir}/${filename}.cpp)
|
||||
|
||||
add_custom_command(OUTPUT ${header_file} ${cpp_file}
|
||||
COMMAND "${Python3_EXECUTABLE}" ${model_compiler}
|
||||
--model ${model}
|
||||
--output_dir ${output_dir}
|
||||
--filename ${filename}
|
||||
--cpp_class ${cpp_class}
|
||||
COMMENT "Generating code completion model runtime..."
|
||||
DEPENDS ${model_compiler} ${model}/forest.json ${model}/features.json
|
||||
VERBATIM )
|
||||
|
||||
set_source_files_properties(${header_file} PROPERTIES
|
||||
GENERATED 1)
|
||||
set_source_files_properties(${cpp_file} PROPERTIES
|
||||
GENERATED 1)
|
||||
|
||||
# Disable unused label warning for generated files.
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
set_source_files_properties(${cpp_file} PROPERTIES
|
||||
COMPILE_FLAGS /wd4102)
|
||||
else()
|
||||
set_source_files_properties(${cpp_file} PROPERTIES
|
||||
COMPILE_FLAGS -Wno-unused)
|
||||
endif()
|
||||
endfunction()
|
|
@ -1,290 +0,0 @@
|
|||
"""Code generator for Code Completion Model Inference.
|
||||
|
||||
Tool runs on the Decision Forest model defined in {model} directory.
|
||||
It generates two files: {output_dir}/{filename}.h and {output_dir}/{filename}.cpp
|
||||
The generated files defines the Example class named {cpp_class} having all the features as class members.
|
||||
The generated runtime provides an `Evaluate` function which can be used to score a code completion candidate.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import struct
|
||||
|
||||
|
||||
class CppClass:
|
||||
"""Holds class name and names of the enclosing namespaces."""
|
||||
|
||||
def __init__(self, cpp_class):
|
||||
ns_and_class = cpp_class.split("::")
|
||||
self.ns = [ns for ns in ns_and_class[0:-1] if len(ns) > 0]
|
||||
self.name = ns_and_class[-1]
|
||||
if len(self.name) == 0:
|
||||
raise ValueError("Empty class name.")
|
||||
|
||||
def ns_begin(self):
|
||||
"""Returns snippet for opening namespace declarations."""
|
||||
open_ns = ["namespace %s {" % ns for ns in self.ns]
|
||||
return "\n".join(open_ns)
|
||||
|
||||
def ns_end(self):
|
||||
"""Returns snippet for closing namespace declarations."""
|
||||
close_ns = [
|
||||
"} // namespace %s" % ns for ns in reversed(self.ns)]
|
||||
return "\n".join(close_ns)
|
||||
|
||||
|
||||
def header_guard(filename):
|
||||
'''Returns the header guard for the generated header.'''
|
||||
return "GENERATED_DECISION_FOREST_MODEL_%s_H" % filename.upper()
|
||||
|
||||
|
||||
def boost_node(n, label, next_label):
|
||||
"""Returns code snippet for a leaf/boost node.
|
||||
Adds value of leaf to the score and jumps to the root of the next tree."""
|
||||
return "%s: Score += %s; goto %s;" % (
|
||||
label, n['score'], next_label)
|
||||
|
||||
|
||||
def if_greater_node(n, label, next_label):
|
||||
"""Returns code snippet for a if_greater node.
|
||||
Jumps to true_label if the Example feature (NUMBER) is greater than the threshold.
|
||||
Comparing integers is much faster than comparing floats. Assuming floating points
|
||||
are represented as IEEE 754, it order-encodes the floats to integers before comparing them.
|
||||
Control falls through if condition is evaluated to false."""
|
||||
threshold = n["threshold"]
|
||||
return "%s: if (E.%s >= %s /*%s*/) goto %s;" % (
|
||||
label, n['feature'], order_encode(threshold), threshold, next_label)
|
||||
|
||||
|
||||
def if_member_node(n, label, next_label):
|
||||
"""Returns code snippet for a if_member node.
|
||||
Jumps to true_label if the Example feature (ENUM) is present in the set of enum values
|
||||
described in the node.
|
||||
Control falls through if condition is evaluated to false."""
|
||||
members = '|'.join([
|
||||
"BIT(%s_type::%s)" % (n['feature'], member)
|
||||
for member in n["set"]
|
||||
])
|
||||
return "%s: if (E.%s & (%s)) goto %s;" % (
|
||||
label, n['feature'], members, next_label)
|
||||
|
||||
|
||||
def node(n, label, next_label):
|
||||
"""Returns code snippet for the node."""
|
||||
return {
|
||||
'boost': boost_node,
|
||||
'if_greater': if_greater_node,
|
||||
'if_member': if_member_node,
|
||||
}[n['operation']](n, label, next_label)
|
||||
|
||||
|
||||
def tree(t, tree_num, node_num):
|
||||
"""Returns code for inferencing a Decision Tree.
|
||||
Also returns the size of the decision tree.
|
||||
|
||||
A tree starts with its label `t{tree#}`.
|
||||
A node of the tree starts with label `t{tree#}_n{node#}`.
|
||||
|
||||
The tree contains two types of node: Conditional node and Leaf node.
|
||||
- Conditional node evaluates a condition. If true, it jumps to the true node/child.
|
||||
Code is generated using pre-order traversal of the tree considering
|
||||
false node as the first child. Therefore the false node is always the
|
||||
immediately next label.
|
||||
- Leaf node adds the value to the score and jumps to the next tree.
|
||||
"""
|
||||
label = "t%d_n%d" % (tree_num, node_num)
|
||||
code = []
|
||||
if node_num == 0:
|
||||
code.append("t%d:" % tree_num)
|
||||
|
||||
if t["operation"] == "boost":
|
||||
code.append(node(t, label=label, next_label="t%d" % (tree_num + 1)))
|
||||
return code, 1
|
||||
|
||||
false_code, false_size = tree(
|
||||
t['else'], tree_num=tree_num, node_num=node_num+1)
|
||||
|
||||
true_node_num = node_num+false_size+1
|
||||
true_label = "t%d_n%d" % (tree_num, true_node_num)
|
||||
|
||||
true_code, true_size = tree(
|
||||
t['then'], tree_num=tree_num, node_num=true_node_num)
|
||||
|
||||
code.append(node(t, label=label, next_label=true_label))
|
||||
|
||||
return code+false_code+true_code, 1+false_size+true_size
|
||||
|
||||
|
||||
def gen_header_code(features_json, cpp_class, filename):
|
||||
"""Returns code for header declaring the inference runtime.
|
||||
|
||||
Declares the Example class named {cpp_class} inside relevant namespaces.
|
||||
The Example class contains all the features as class members. This
|
||||
class can be used to represent a code completion candidate.
|
||||
Provides `float Evaluate()` function which can be used to score the Example.
|
||||
"""
|
||||
setters = []
|
||||
for f in features_json:
|
||||
feature = f["name"]
|
||||
if f["kind"] == "NUMBER":
|
||||
# Floats are order-encoded to integers for faster comparison.
|
||||
setters.append(
|
||||
"void set%s(float V) { %s = OrderEncode(V); }" % (
|
||||
feature, feature))
|
||||
elif f["kind"] == "ENUM":
|
||||
setters.append(
|
||||
"void set%s(unsigned V) { %s = 1 << V; }" % (feature, feature))
|
||||
else:
|
||||
raise ValueError("Unhandled feature type.", f["kind"])
|
||||
|
||||
# Class members represent all the features of the Example.
|
||||
class_members = ["uint32_t %s = 0;" % f['name'] for f in features_json]
|
||||
|
||||
nline = "\n "
|
||||
guard = header_guard(filename)
|
||||
return """#ifndef %s
|
||||
#define %s
|
||||
#include <cstdint>
|
||||
|
||||
%s
|
||||
class %s {
|
||||
public:
|
||||
%s
|
||||
|
||||
private:
|
||||
%s
|
||||
|
||||
// Produces an integer that sorts in the same order as F.
|
||||
// That is: a < b <==> orderEncode(a) < orderEncode(b).
|
||||
static uint32_t OrderEncode(float F);
|
||||
friend float Evaluate(const %s&);
|
||||
};
|
||||
|
||||
float Evaluate(const %s&);
|
||||
%s
|
||||
#endif // %s
|
||||
""" % (guard, guard, cpp_class.ns_begin(), cpp_class.name, nline.join(setters),
|
||||
nline.join(class_members), cpp_class.name, cpp_class.name,
|
||||
cpp_class.ns_end(), guard)
|
||||
|
||||
|
||||
def order_encode(v):
|
||||
i = struct.unpack('<I', struct.pack('<f', v))[0]
|
||||
TopBit = 1 << 31
|
||||
# IEEE 754 floats compare like sign-magnitude integers.
|
||||
if (i & TopBit): # Negative float
|
||||
return (1 << 32) - i # low half of integers, order reversed.
|
||||
return TopBit + i # top half of integers
|
||||
|
||||
|
||||
def evaluate_func(forest_json, cpp_class):
|
||||
"""Generates code for `float Evaluate(const {Example}&)` function.
|
||||
The generated function can be used to score an Example."""
|
||||
code = "float Evaluate(const %s& E) {\n" % cpp_class.name
|
||||
lines = []
|
||||
lines.append("float Score = 0;")
|
||||
tree_num = 0
|
||||
for tree_json in forest_json:
|
||||
lines.extend(tree(tree_json, tree_num=tree_num, node_num=0)[0])
|
||||
lines.append("")
|
||||
tree_num += 1
|
||||
|
||||
lines.append("t%s: // No such tree." % len(forest_json))
|
||||
lines.append("return Score;")
|
||||
code += " " + "\n ".join(lines)
|
||||
code += "\n}"
|
||||
return code
|
||||
|
||||
|
||||
def gen_cpp_code(forest_json, features_json, filename, cpp_class):
|
||||
"""Generates code for the .cpp file."""
|
||||
# Headers
|
||||
# Required by OrderEncode(float F).
|
||||
angled_include = [
|
||||
'#include <%s>' % h
|
||||
for h in ["cstring", "limits"]
|
||||
]
|
||||
|
||||
# Include generated header.
|
||||
qouted_headers = {filename + '.h', 'llvm/ADT/bit.h'}
|
||||
# Headers required by ENUM features used by the model.
|
||||
qouted_headers |= {f["header"]
|
||||
for f in features_json if f["kind"] == "ENUM"}
|
||||
quoted_include = ['#include "%s"' % h for h in sorted(qouted_headers)]
|
||||
|
||||
# using-decl for ENUM features.
|
||||
using_decls = "\n".join("using %s_type = %s;" % (
|
||||
feature['name'], feature['type'])
|
||||
for feature in features_json
|
||||
if feature["kind"] == "ENUM")
|
||||
nl = "\n"
|
||||
return """%s
|
||||
|
||||
%s
|
||||
|
||||
#define BIT(X) (1 << X)
|
||||
|
||||
%s
|
||||
|
||||
%s
|
||||
|
||||
uint32_t %s::OrderEncode(float F) {
|
||||
static_assert(std::numeric_limits<float>::is_iec559, "");
|
||||
constexpr uint32_t TopBit = ~(~uint32_t{0} >> 1);
|
||||
|
||||
// Get the bits of the float. Endianness is the same as for integers.
|
||||
uint32_t U = llvm::bit_cast<uint32_t>(F);
|
||||
std::memcpy(&U, &F, sizeof(U));
|
||||
// IEEE 754 floats compare like sign-magnitude integers.
|
||||
if (U & TopBit) // Negative float.
|
||||
return 0 - U; // Map onto the low half of integers, order reversed.
|
||||
return U + TopBit; // Positive floats map onto the high half of integers.
|
||||
}
|
||||
|
||||
%s
|
||||
%s
|
||||
""" % (nl.join(angled_include), nl.join(quoted_include), cpp_class.ns_begin(),
|
||||
using_decls, cpp_class.name, evaluate_func(forest_json, cpp_class),
|
||||
cpp_class.ns_end())
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser('DecisionForestCodegen')
|
||||
parser.add_argument('--filename', help='output file name.')
|
||||
parser.add_argument('--output_dir', help='output directory.')
|
||||
parser.add_argument('--model', help='path to model directory.')
|
||||
parser.add_argument(
|
||||
'--cpp_class',
|
||||
help='The name of the class (which may be a namespace-qualified) created in generated header.'
|
||||
)
|
||||
ns = parser.parse_args()
|
||||
|
||||
output_dir = ns.output_dir
|
||||
filename = ns.filename
|
||||
header_file = "%s/%s.h" % (output_dir, filename)
|
||||
cpp_file = "%s/%s.cpp" % (output_dir, filename)
|
||||
cpp_class = CppClass(cpp_class=ns.cpp_class)
|
||||
|
||||
model_file = "%s/forest.json" % ns.model
|
||||
features_file = "%s/features.json" % ns.model
|
||||
|
||||
with open(features_file) as f:
|
||||
features_json = json.load(f)
|
||||
|
||||
with open(model_file) as m:
|
||||
forest_json = json.load(m)
|
||||
|
||||
with open(cpp_file, 'w+t') as output_cc:
|
||||
output_cc.write(
|
||||
gen_cpp_code(forest_json=forest_json,
|
||||
features_json=features_json,
|
||||
filename=filename,
|
||||
cpp_class=cpp_class))
|
||||
|
||||
with open(header_file, 'w+t') as output_h:
|
||||
output_h.write(gen_header_code(
|
||||
features_json=features_json, cpp_class=cpp_class, filename=filename))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -1,220 +0,0 @@
|
|||
# Decision Forest Code Completion Model
|
||||
|
||||
## Decision Forest
|
||||
A **decision forest** is a collection of many decision trees. A **decision tree** is a full binary tree that provides a quality prediction for an input (code completion item). Internal nodes represent a **binary decision** based on the input data, and leaf nodes represent a prediction.
|
||||
|
||||
In order to predict the relevance of a code completion item, we traverse each of the decision trees beginning with their roots until we reach a leaf.
|
||||
|
||||
An input (code completion candidate) is characterized as a set of **features**, such as the *type of symbol* or the *number of existing references*.
|
||||
|
||||
At every non-leaf node, we evaluate the condition to decide whether to go left or right. The condition compares one *feature** of the input against a constant. The condition can be of two types:
|
||||
- **if_greater**: Checks whether a numerical feature is **>=** a **threshold**.
|
||||
- **if_member**: Check whether the **enum** feature is contained in the **set** defined in the node.
|
||||
|
||||
A leaf node contains the value **score**.
|
||||
To compute an overall **quality** score, we traverse each tree in this way and add up the scores.
|
||||
|
||||
## Model Input Format
|
||||
The input model is represented in json format.
|
||||
|
||||
### Features
|
||||
The file **features.json** defines the features available to the model.
|
||||
It is a json list of features. The features can be of following two kinds.
|
||||
|
||||
#### Number
|
||||
```
|
||||
{
|
||||
"name": "a_numerical_feature",
|
||||
"kind": "NUMBER"
|
||||
}
|
||||
```
|
||||
#### Enum
|
||||
```
|
||||
{
|
||||
"name": "an_enum_feature",
|
||||
"kind": "ENUM",
|
||||
"enum": "fully::qualified::enum",
|
||||
"header": "path/to/HeaderDeclaringEnum.h"
|
||||
}
|
||||
```
|
||||
The field `enum` specifies the fully qualified name of the enum.
|
||||
The maximum cardinality of the enum can be **32**.
|
||||
|
||||
The field `header` specifies the header containing the declaration of the enum.
|
||||
This header is included by the inference runtime.
|
||||
|
||||
|
||||
### Decision Forest
|
||||
The file `forest.json` defines the decision forest. It is a json list of **DecisionTree**.
|
||||
|
||||
**DecisionTree** is one of **IfGreaterNode**, **IfMemberNode**, **LeafNode**.
|
||||
#### IfGreaterNode
|
||||
```
|
||||
{
|
||||
"operation": "if_greater",
|
||||
"feature": "a_numerical_feature",
|
||||
"threshold": A real number,
|
||||
"then": {A DecisionTree},
|
||||
"else": {A DecisionTree}
|
||||
}
|
||||
```
|
||||
#### IfMemberNode
|
||||
```
|
||||
{
|
||||
"operation": "if_member",
|
||||
"feature": "an_enum_feature",
|
||||
"set": ["enum_value1", "enum_value2", ...],
|
||||
"then": {A DecisionTree},
|
||||
"else": {A DecisionTree}
|
||||
}
|
||||
```
|
||||
#### LeafNode
|
||||
```
|
||||
{
|
||||
"operation": "boost",
|
||||
"score": A real number
|
||||
}
|
||||
```
|
||||
|
||||
## Code Generator for Inference
|
||||
The implementation of inference runtime is split across:
|
||||
|
||||
### Code generator
|
||||
The code generator `CompletionModelCodegen.py` takes input the `${model}` dir and generates the inference library:
|
||||
- `${output_dir}/{filename}.h`
|
||||
- `${output_dir}/{filename}.cpp`
|
||||
|
||||
Invocation
|
||||
```
|
||||
python3 CompletionModelCodegen.py \
|
||||
--model path/to/model/dir \
|
||||
--output_dir path/to/output/dir \
|
||||
--filename OutputFileName \
|
||||
--cpp_class clang::clangd::YourExampleClass
|
||||
```
|
||||
### Build System
|
||||
`CompletionModel.cmake` provides `gen_decision_forest` method .
|
||||
Client intending to use the CompletionModel for inference can use this to trigger the code generator and generate the inference library.
|
||||
It can then use the generated API by including and depending on this library.
|
||||
|
||||
### Generated API for inference
|
||||
The code generator defines the Example `class` inside relevant namespaces as specified in option `${cpp_class}`.
|
||||
|
||||
Members of this generated class comprises of all the features mentioned in `features.json`.
|
||||
Thus this class can represent a code completion candidate that needs to be scored.
|
||||
|
||||
The API also provides `float Evaluate(const MyClass&)` which can be used to score the completion candidate.
|
||||
|
||||
|
||||
## Example
|
||||
### model/features.json
|
||||
```
|
||||
[
|
||||
{
|
||||
"name": "ANumber",
|
||||
"type": "NUMBER"
|
||||
},
|
||||
{
|
||||
"name": "AFloat",
|
||||
"type": "NUMBER"
|
||||
},
|
||||
{
|
||||
"name": "ACategorical",
|
||||
"type": "ENUM",
|
||||
"enum": "ns1::ns2::TestEnum",
|
||||
"header": "model/CategoricalFeature.h"
|
||||
}
|
||||
]
|
||||
```
|
||||
### model/forest.json
|
||||
```
|
||||
[
|
||||
{
|
||||
"operation": "if_greater",
|
||||
"feature": "ANumber",
|
||||
"threshold": 200.0,
|
||||
"then": {
|
||||
"operation": "if_greater",
|
||||
"feature": "AFloat",
|
||||
"threshold": -1,
|
||||
"then": {
|
||||
"operation": "boost",
|
||||
"score": 10.0
|
||||
},
|
||||
"else": {
|
||||
"operation": "boost",
|
||||
"score": -20.0
|
||||
}
|
||||
},
|
||||
"else": {
|
||||
"operation": "if_member",
|
||||
"feature": "ACategorical",
|
||||
"set": [
|
||||
"A",
|
||||
"C"
|
||||
],
|
||||
"then": {
|
||||
"operation": "boost",
|
||||
"score": 3.0
|
||||
},
|
||||
"else": {
|
||||
"operation": "boost",
|
||||
"score": -4.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"operation": "if_member",
|
||||
"feature": "ACategorical",
|
||||
"set": [
|
||||
"A",
|
||||
"B"
|
||||
],
|
||||
"then": {
|
||||
"operation": "boost",
|
||||
"score": 5.0
|
||||
},
|
||||
"else": {
|
||||
"operation": "boost",
|
||||
"score": -6.0
|
||||
}
|
||||
}
|
||||
]
|
||||
```
|
||||
### DecisionForestRuntime.h
|
||||
```
|
||||
...
|
||||
namespace ns1 {
|
||||
namespace ns2 {
|
||||
namespace test {
|
||||
class Example {
|
||||
public:
|
||||
void setANumber(float V) { ... }
|
||||
void setAFloat(float V) { ... }
|
||||
void setACategorical(unsigned V) { ... }
|
||||
|
||||
private:
|
||||
...
|
||||
};
|
||||
|
||||
float Evaluate(const Example&);
|
||||
} // namespace test
|
||||
} // namespace ns2
|
||||
} // namespace ns1
|
||||
```
|
||||
|
||||
### CMake Invocation
|
||||
Inorder to use the inference runtime, one can use `gen_decision_forest` function
|
||||
described in `CompletionModel.cmake` which invokes `CodeCompletionCodegen.py` with the appropriate arguments.
|
||||
|
||||
For example, the following invocation reads the model present in `path/to/model` and creates
|
||||
`${CMAKE_CURRENT_BINARY_DIR}/myfilename.h` and `${CMAKE_CURRENT_BINARY_DIR}/myfilename.cpp`
|
||||
describing a `class` named `MyClass` in namespace `fully::qualified`.
|
||||
|
||||
|
||||
|
||||
```
|
||||
gen_decision_forest(path/to/model
|
||||
myfilename
|
||||
::fully::qualifed::MyClass)
|
||||
```
|
|
@ -1,8 +0,0 @@
|
|||
[
|
||||
{
|
||||
"name": "ContextKind",
|
||||
"kind": "ENUM",
|
||||
"type": "clang::CodeCompletionContext::Kind",
|
||||
"header": "clang/Sema/CodeCompleteConsumer.h"
|
||||
}
|
||||
]
|
|
@ -1,18 +0,0 @@
|
|||
[
|
||||
{
|
||||
"operation": "if_member",
|
||||
"feature": "ContextKind",
|
||||
"set": [
|
||||
"CCC_DotMemberAccess",
|
||||
"CCC_ArrowMemberAccess"
|
||||
],
|
||||
"then": {
|
||||
"operation": "boost",
|
||||
"score": 3.0
|
||||
},
|
||||
"else": {
|
||||
"operation": "boost",
|
||||
"score": 1.0
|
||||
}
|
||||
}
|
||||
]
|
|
@ -28,9 +28,6 @@ if (CLANGD_ENABLE_REMOTE)
|
|||
set(REMOTE_TEST_SOURCES remote/MarshallingTests.cpp)
|
||||
endif()
|
||||
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/../quality/CompletionModel.cmake)
|
||||
gen_decision_forest(${CMAKE_CURRENT_SOURCE_DIR}/decision_forest_model DecisionForestRuntimeTest ::ns1::ns2::test::Example)
|
||||
|
||||
add_custom_target(ClangdUnitTests)
|
||||
add_unittest(ClangdUnitTests ClangdTests
|
||||
Annotations.cpp
|
||||
|
@ -47,7 +44,6 @@ add_unittest(ClangdUnitTests ClangdTests
|
|||
ConfigCompileTests.cpp
|
||||
ConfigProviderTests.cpp
|
||||
ConfigYAMLTests.cpp
|
||||
DecisionForestTests.cpp
|
||||
DexTests.cpp
|
||||
DiagnosticsTests.cpp
|
||||
DraftStoreTests.cpp
|
||||
|
@ -93,7 +89,6 @@ add_unittest(ClangdUnitTests ClangdTests
|
|||
TweakTesting.cpp
|
||||
URITests.cpp
|
||||
XRefsTests.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/DecisionForestRuntimeTest.cpp
|
||||
|
||||
support/CancellationTests.cpp
|
||||
support/ContextTests.cpp
|
||||
|
@ -108,11 +103,6 @@ add_unittest(ClangdUnitTests ClangdTests
|
|||
$<TARGET_OBJECTS:obj.clangDaemonTweaks>
|
||||
)
|
||||
|
||||
# Include generated ComletionModel headers.
|
||||
target_include_directories(ClangdTests PUBLIC
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
|
||||
)
|
||||
|
||||
clang_target_link_libraries(ClangdTests
|
||||
PRIVATE
|
||||
clangAST
|
||||
|
|
|
@ -10,7 +10,6 @@
|
|||
#include "ClangdServer.h"
|
||||
#include "CodeComplete.h"
|
||||
#include "Compiler.h"
|
||||
#include "CompletionModel.h"
|
||||
#include "Matchers.h"
|
||||
#include "Protocol.h"
|
||||
#include "Quality.h"
|
||||
|
@ -48,7 +47,6 @@ using ::testing::HasSubstr;
|
|||
using ::testing::IsEmpty;
|
||||
using ::testing::Not;
|
||||
using ::testing::UnorderedElementsAre;
|
||||
using ContextKind = CodeCompletionContext::Kind;
|
||||
|
||||
// GMock helpers for matching completion items.
|
||||
MATCHER_P(Named, Name, "") { return arg.Name == Name; }
|
||||
|
@ -163,16 +161,6 @@ Symbol withReferences(int N, Symbol S) {
|
|||
return S;
|
||||
}
|
||||
|
||||
TEST(DecisionForestRuntime, SanityTest) {
|
||||
using Example = clangd::Example;
|
||||
using clangd::Evaluate;
|
||||
Example E1;
|
||||
E1.setContextKind(ContextKind::CCC_ArrowMemberAccess);
|
||||
Example E2;
|
||||
E2.setContextKind(ContextKind::CCC_SymbolOrNewName);
|
||||
EXPECT_GT(Evaluate(E1), Evaluate(E2));
|
||||
}
|
||||
|
||||
TEST(CompletionTest, Limit) {
|
||||
clangd::CodeCompleteOptions Opts;
|
||||
Opts.Limit = 2;
|
||||
|
|
|
@ -1,29 +0,0 @@
|
|||
#include "DecisionForestRuntimeTest.h"
|
||||
#include "decision_forest_model/CategoricalFeature.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace clang {
|
||||
namespace clangd {
|
||||
|
||||
TEST(DecisionForestRuntime, Evaluate) {
|
||||
using Example = ::ns1::ns2::test::Example;
|
||||
using Cat = ::ns1::ns2::TestEnum;
|
||||
using ::ns1::ns2::test::Evaluate;
|
||||
|
||||
Example E;
|
||||
E.setANumber(200); // True
|
||||
E.setAFloat(0); // True: +10.0
|
||||
E.setACategorical(Cat::A); // True: +5.0
|
||||
EXPECT_EQ(Evaluate(E), 15.0);
|
||||
|
||||
E.setANumber(200); // True
|
||||
E.setAFloat(-2.5); // False: -20.0
|
||||
E.setACategorical(Cat::B); // True: +5.0
|
||||
EXPECT_EQ(Evaluate(E), -15.0);
|
||||
|
||||
E.setANumber(100); // False
|
||||
E.setACategorical(Cat::C); // True: +3.0, False: -6.0
|
||||
EXPECT_EQ(Evaluate(E), -3.0);
|
||||
}
|
||||
} // namespace clangd
|
||||
} // namespace clang
|
|
@ -1,5 +0,0 @@
|
|||
namespace ns1 {
|
||||
namespace ns2 {
|
||||
enum TestEnum { A, B, C, D };
|
||||
} // namespace ns2
|
||||
} // namespace ns1
|
|
@ -1,16 +0,0 @@
|
|||
[
|
||||
{
|
||||
"name": "ANumber",
|
||||
"kind": "NUMBER"
|
||||
},
|
||||
{
|
||||
"name": "AFloat",
|
||||
"kind": "NUMBER"
|
||||
},
|
||||
{
|
||||
"name": "ACategorical",
|
||||
"kind": "ENUM",
|
||||
"type": "ns1::ns2::TestEnum",
|
||||
"header": "decision_forest_model/CategoricalFeature.h"
|
||||
}
|
||||
]
|
|
@ -1,52 +0,0 @@
|
|||
[
|
||||
{
|
||||
"operation": "if_greater",
|
||||
"feature": "ANumber",
|
||||
"threshold": 200.0,
|
||||
"then": {
|
||||
"operation": "if_greater",
|
||||
"feature": "AFloat",
|
||||
"threshold": -1,
|
||||
"then": {
|
||||
"operation": "boost",
|
||||
"score": 10.0
|
||||
},
|
||||
"else": {
|
||||
"operation": "boost",
|
||||
"score": -20.0
|
||||
}
|
||||
},
|
||||
"else": {
|
||||
"operation": "if_member",
|
||||
"feature": "ACategorical",
|
||||
"set": [
|
||||
"A",
|
||||
"C"
|
||||
],
|
||||
"then": {
|
||||
"operation": "boost",
|
||||
"score": 3.0
|
||||
},
|
||||
"else": {
|
||||
"operation": "boost",
|
||||
"score": -4.0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"operation": "if_member",
|
||||
"feature": "ACategorical",
|
||||
"set": [
|
||||
"A",
|
||||
"B"
|
||||
],
|
||||
"then": {
|
||||
"operation": "boost",
|
||||
"score": 5.0
|
||||
},
|
||||
"else": {
|
||||
"operation": "boost",
|
||||
"score": -6.0
|
||||
}
|
||||
}
|
||||
]
|
Loading…
Reference in New Issue