[Alignment] Remove unnecessary getValueOrABITypeAlignment calls (NFC)

Now that load/store alignment is required, we no longer need most
of them. Also switch the getLoadStoreAlignment() helper to return
Align instead of MaybeAlign.
This commit is contained in:
Nikita Popov 2020-05-17 22:14:42 +02:00
parent fde8eb00e1
commit 52e98f620c
14 changed files with 58 additions and 146 deletions

View File

@ -5151,12 +5151,12 @@ inline Value *getPointerOperand(Value *V) {
}
/// A helper function that returns the alignment of load or store instruction.
inline MaybeAlign getLoadStoreAlignment(Value *I) {
inline Align getLoadStoreAlignment(Value *I) {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction");
if (auto *LI = dyn_cast<LoadInst>(I))
return MaybeAlign(LI->getAlignment());
return MaybeAlign(cast<StoreInst>(I)->getAlignment());
return LI->getAlign();
return cast<StoreInst>(I)->getAlign();
}
/// A helper function that returns the address space of the pointer operand of

View File

@ -210,8 +210,7 @@ bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
DL.getTypeStoreSize(LI->getType()));
const Align Alignment = DL.getValueOrABITypeAlignment(
MaybeAlign(LI->getAlignment()), LI->getType());
const Align Alignment = LI->getAlign();
Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();

View File

@ -946,13 +946,8 @@ void InterleavedAccessInfo::collectConstStrideAccesses(
const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
PointerType *PtrTy = cast<PointerType>(Ptr->getType());
uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
// An alignment of 0 means target ABI alignment.
MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
if (!Alignment)
Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
getLoadStoreAlignment(&I));
}
}

View File

@ -247,7 +247,7 @@ Align IRTranslator::getMemOpAlign(const Instruction &I) {
if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
return SI->getAlign();
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
return DL->getValueOrABITypeAlignment(LI->getAlign(), LI->getType());
return LI->getAlign();
}
if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
// TODO(PR27168): This instruction has no alignment attribute, but unlike

View File

@ -3956,7 +3956,7 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
SDValue Ptr = getValue(SV);
Type *Ty = I.getType();
Align Alignment = DL->getValueOrABITypeAlignment(I.getAlign(), Ty);
Align Alignment = I.getAlign();
AAMDNodes AAInfo;
I.getAAMetadata(AAInfo);
@ -4149,8 +4149,7 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
SDLoc dl = getCurSDLoc();
Align Alignment =
DL->getValueOrABITypeAlignment(I.getAlign(), SrcV->getType());
Align Alignment = I.getAlign();
AAMDNodes AAInfo;
I.getAAMetadata(AAInfo);

View File

@ -3930,14 +3930,12 @@ bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
const X86InstrInfo &XII = (const X86InstrInfo &)TII;
unsigned Size = DL.getTypeAllocSize(LI->getType());
Align Alignment =
DL.getValueOrABITypeAlignment(LI->getAlign(), LI->getType());
SmallVector<MachineOperand, 8> AddrOps;
AM.getFullAddress(AddrOps);
MachineInstr *Result = XII.foldMemoryOperandImpl(
*FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
*FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
/*AllowCommute=*/true);
if (!Result)
return false;

View File

@ -1441,17 +1441,14 @@ void DFSanVisitor::visitStoreInst(StoreInst &SI) {
if (Size == 0)
return;
const Align Alignement =
ClPreserveAlignment ? DL.getValueOrABITypeAlignment(
SI.getAlign(), SI.getValueOperand()->getType())
: Align(1);
const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1);
Value* Shadow = DFSF.getShadow(SI.getValueOperand());
if (ClCombinePointerLabelsOnStore) {
Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
}
DFSF.storeShadow(SI.getPointerOperand(), Size, Alignement, Shadow, &SI);
DFSF.storeShadow(SI.getPointerOperand(), Size, Alignment, Shadow, &SI);
if (ClEventCallbacks) {
IRBuilder<> IRB(&SI);
IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, Shadow);

View File

@ -320,24 +320,19 @@ bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
WorkList.push_back(K);
}
const DataLayout &DL = SE->getDataLayout();
while (!WorkList.empty()) {
Instruction *J = WorkList.pop_back_val();
if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
LI->getPointerOperand(), SE);
Align OldAlignment =
DL.getValueOrABITypeAlignment(LI->getAlign(), LI->getType());
if (NewAlignment > OldAlignment) {
if (NewAlignment > LI->getAlign()) {
LI->setAlignment(NewAlignment);
++NumLoadAlignChanged;
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
SI->getPointerOperand(), SE);
Align OldAlignment = DL.getValueOrABITypeAlignment(
SI->getAlign(), SI->getOperand(0)->getType());
if (NewAlignment > OldAlignment) {
if (NewAlignment > SI->getAlign()) {
SI->setAlignment(NewAlignment);
++NumStoreAlignChanged;
}

View File

@ -143,23 +143,6 @@ bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
return TheStores.size() > NumPointerStores+NumByteStores;
}
static Align findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
return DL.getValueOrABITypeAlignment(SI->getAlign(),
SI->getOperand(0)->getType());
}
static Align findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
return DL.getValueOrABITypeAlignment(LI->getAlign(), LI->getType());
}
static Align findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
const LoadInst *LI) {
Align StoreAlign = findStoreAlignment(DL, SI);
Align LoadAlign = findLoadAlignment(DL, LI);
return commonAlignment(StoreAlign, LoadAlign);
}
namespace {
class MemsetRanges {
@ -190,7 +173,7 @@ public:
int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
findStoreAlignment(DL, SI).value(), SI);
SI->getAlign().value(), SI);
}
void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
@ -579,12 +562,12 @@ bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
Instruction *M;
if (UseMemMove)
M = Builder.CreateMemMove(
SI->getPointerOperand(), findStoreAlignment(DL, SI),
LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
SI->getPointerOperand(), SI->getAlign(),
LI->getPointerOperand(), LI->getAlign(), Size);
else
M = Builder.CreateMemCpy(
SI->getPointerOperand(), findStoreAlignment(DL, SI),
LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
SI->getPointerOperand(), SI->getAlign(),
LI->getPointerOperand(), LI->getAlign(), Size);
LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
<< *M << "\n");
@ -636,7 +619,7 @@ bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
LI, SI->getPointerOperand()->stripPointerCasts(),
LI->getPointerOperand()->stripPointerCasts(),
DL.getTypeStoreSize(SI->getOperand(0)->getType()),
findCommonAlignment(DL, SI, LI), C);
commonAlignment(SI->getAlign(), LI->getAlign()), C);
if (changed) {
MD->removeInstruction(SI);
SI->eraseFromParent();
@ -669,11 +652,9 @@ bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
auto *T = V->getType();
if (T->isAggregateType()) {
uint64_t Size = DL.getTypeStoreSize(T);
const Align MA =
DL.getValueOrABITypeAlignment(MaybeAlign(SI->getAlignment()), T);
IRBuilder<> Builder(SI);
auto *M =
Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, MA);
auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
SI->getAlign());
LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");

View File

@ -1267,7 +1267,6 @@ static void speculatePHINodeLoads(PHINode &PN) {
LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
Type *LoadTy = SomeLoad->getType();
const DataLayout &DL = PN.getModule()->getDataLayout();
IRBuilderTy PHIBuilder(&PN);
PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
PN.getName() + ".sroa.speculated");
@ -1276,8 +1275,7 @@ static void speculatePHINodeLoads(PHINode &PN) {
// matter which one we get and if any differ.
AAMDNodes AATags;
SomeLoad->getAAMetadata(AATags);
Align Alignment =
DL.getValueOrABITypeAlignment(SomeLoad->getAlign(), SomeLoad->getType());
Align Alignment = SomeLoad->getAlign();
// Rewrite all loads of the PN to use the new PHI.
while (!PN.use_empty()) {
@ -1304,11 +1302,10 @@ static void speculatePHINodeLoads(PHINode &PN) {
Instruction *TI = Pred->getTerminator();
IRBuilderTy PredBuilder(TI);
LoadInst *Load = PredBuilder.CreateLoad(
LoadTy, InVal,
LoadInst *Load = PredBuilder.CreateAlignedLoad(
LoadTy, InVal, Alignment,
(PN.getName() + ".sroa.speculate.load." + Pred->getName()));
++NumLoadsSpeculated;
Load->setAlignment(Alignment);
if (AATags)
Load->setAAMetadata(AATags);
NewPN->addIncoming(Load, Pred);
@ -1688,20 +1685,8 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
}
/// Compute the adjusted alignment for a load or store from an offset.
static Align getAdjustedAlignment(Instruction *I, uint64_t Offset,
const DataLayout &DL) {
MaybeAlign Alignment;
Type *Ty;
if (auto *LI = dyn_cast<LoadInst>(I)) {
Alignment = MaybeAlign(LI->getAlignment());
Ty = LI->getType();
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
Alignment = MaybeAlign(SI->getAlignment());
Ty = SI->getValueOperand()->getType();
} else {
llvm_unreachable("Only loads and stores are allowed!");
}
return commonAlignment(DL.getValueOrABITypeAlignment(Alignment, Ty), Offset);
static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
return commonAlignment(getLoadStoreAlignment(I), Offset);
}
/// Test whether we can convert a value from the old to the new type.
@ -2448,9 +2433,8 @@ private:
/// You can optionally pass a type to this routine and if that type's ABI
/// alignment is itself suitable, this will return zero.
Align getSliceAlign() {
Align NewAIAlign = DL.getValueOrABITypeAlignment(
MaybeAlign(NewAI.getAlignment()), NewAI.getAllocatedType());
return commonAlignment(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
return commonAlignment(NewAI.getAlign(),
NewBeginOffset - NewAllocaBeginOffset);
}
unsigned getIndex(uint64_t Offset) {
@ -3139,16 +3123,11 @@ private:
Instruction *I = Uses.pop_back_val();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Align LoadAlign =
DL.getValueOrABITypeAlignment(LI->getAlign(), LI->getType());
LI->setAlignment(std::min(LoadAlign, getSliceAlign()));
LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Value *Op = SI->getOperand(0);
Align StoreAlign = DL.getValueOrABITypeAlignment(
MaybeAlign(SI->getAlignment()), Op->getType());
SI->setAlignment(std::min(StoreAlign, getSliceAlign()));
SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
continue;
}
@ -3399,7 +3378,7 @@ private:
AAMDNodes AATags;
LI.getAAMetadata(AATags);
LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
getAdjustedAlignment(&LI, 0, DL), DL);
getAdjustedAlignment(&LI, 0), DL);
Value *V = UndefValue::get(LI.getType());
Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
LI.replaceAllUsesWith(V);
@ -3446,7 +3425,7 @@ private:
AAMDNodes AATags;
SI.getAAMetadata(AATags);
StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
getAdjustedAlignment(&SI, 0, DL), DL);
getAdjustedAlignment(&SI, 0), DL);
Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
SI.eraseFromParent();
return true;
@ -3895,7 +3874,7 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
getAdjustedPtr(IRB, DL, BasePtr,
APInt(DL.getIndexSizeInBits(AS), PartOffset),
PartPtrTy, BasePtr->getName() + "."),
getAdjustedAlignment(LI, PartOffset, DL),
getAdjustedAlignment(LI, PartOffset),
/*IsVolatile*/ false, LI->getName());
PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
LLVMContext::MD_access_group});
@ -3953,7 +3932,7 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
getAdjustedPtr(IRB, DL, StoreBasePtr,
APInt(DL.getIndexSizeInBits(AS), PartOffset),
PartPtrTy, StoreBasePtr->getName() + "."),
getAdjustedAlignment(SI, PartOffset, DL),
getAdjustedAlignment(SI, PartOffset),
/*IsVolatile*/ false);
PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
LLVMContext::MD_access_group});
@ -4038,7 +4017,7 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
getAdjustedPtr(IRB, DL, LoadBasePtr,
APInt(DL.getIndexSizeInBits(AS), PartOffset),
LoadPartPtrTy, LoadBasePtr->getName() + "."),
getAdjustedAlignment(LI, PartOffset, DL),
getAdjustedAlignment(LI, PartOffset),
/*IsVolatile*/ false, LI->getName());
}
@ -4050,7 +4029,7 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
getAdjustedPtr(IRB, DL, StoreBasePtr,
APInt(DL.getIndexSizeInBits(AS), PartOffset),
StorePartPtrTy, StoreBasePtr->getName() + "."),
getAdjustedAlignment(SI, PartOffset, DL),
getAdjustedAlignment(SI, PartOffset),
/*IsVolatile*/ false);
// Now build a new slice for the alloca.
@ -4186,13 +4165,8 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
// FIXME: We might want to defer PHI speculation until after here.
// FIXME: return nullptr;
} else {
// If alignment is unspecified we fallback on the one required by the ABI
// for this type. We also make sure the alignment is compatible with
// P.beginOffset().
const Align Alignment = commonAlignment(
DL.getValueOrABITypeAlignment(MaybeAlign(AI.getAlignment()),
AI.getAllocatedType()),
P.beginOffset());
// Make sure the alignment is compatible with P.beginOffset().
const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
// If we will get at least this much alignment from the type alone, leave
// the alloca's alignment unconstrained.
const bool IsUnconstrained = Alignment <= DL.getABITypeAlignment(SliceTy);

View File

@ -128,15 +128,6 @@ public:
private:
unsigned getPointerAddressSpace(Value *I);
Align getAlign(LoadInst *LI) const {
return DL.getValueOrABITypeAlignment(LI->getAlign(), LI->getType());
}
Align getAlign(StoreInst *SI) const {
return DL.getValueOrABITypeAlignment(SI->getAlign(),
SI->getValueOperand()->getType());
}
static const unsigned MaxDepth = 3;
bool isConsecutiveAccess(Value *A, Value *B);
@ -950,7 +941,7 @@ bool Vectorizer::vectorizeStoreChain(
unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
unsigned VF = VecRegSize / Sz;
unsigned ChainSize = Chain.size();
Align Alignment = getAlign(S0);
Align Alignment = S0->getAlign();
if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
InstructionsProcessed->insert(Chain.begin(), Chain.end());
@ -1103,7 +1094,7 @@ bool Vectorizer::vectorizeLoadChain(
unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
unsigned VF = VecRegSize / Sz;
unsigned ChainSize = Chain.size();
Align Alignment = getAlign(L0);
Align Alignment = L0->getAlign();
if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
InstructionsProcessed->insert(Chain.begin(), Chain.end());

View File

@ -769,9 +769,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Arbitrarily try a vector of 2 elements.
Type *VecTy = VectorType::get(T, /*NumElements=*/2);
assert(VecTy && "did not find vectorized version of stored type");
const MaybeAlign Alignment = getLoadStoreAlignment(ST);
assert(Alignment && "Alignment should be set");
if (!TTI->isLegalNTStore(VecTy, *Alignment)) {
if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
reportVectorizationFailure(
"nontemporal store instruction cannot be vectorized",
"nontemporal store instruction cannot be vectorized",
@ -786,9 +784,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// supported on the target (arbitrarily try a vector of 2 elements).
Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
assert(VecTy && "did not find vectorized version of load type");
const MaybeAlign Alignment = getLoadStoreAlignment(LD);
assert(Alignment && "Alignment should be set");
if (!TTI->isLegalNTLoad(VecTy, *Alignment)) {
if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
reportVectorizationFailure(
"nontemporal load instruction cannot be vectorized",
"nontemporal load instruction cannot be vectorized",

View File

@ -1233,7 +1233,7 @@ public:
if (!LI && !SI)
return false;
auto *Ty = getMemInstValueType(V);
MaybeAlign Align = getLoadStoreAlignment(V);
Align Align = getLoadStoreAlignment(V);
return (LI && isLegalMaskedGather(Ty, Align)) ||
(SI && isLegalMaskedScatter(Ty, Align));
}
@ -2383,11 +2383,7 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
Type *ScalarDataTy = getMemInstValueType(Instr);
Type *DataTy = VectorType::get(ScalarDataTy, VF);
// An alignment of 0 means target abi alignment. We need to use the scalar's
// target abi alignment in such a case.
const DataLayout &DL = Instr->getModule()->getDataLayout();
const Align Alignment =
DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy);
const Align Alignment = getLoadStoreAlignment(Instr);
// Determine if the pointer operand of the access is either consecutive or
// reverse consecutive.
@ -4650,7 +4646,7 @@ bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigne
"Widening decision should be ready at this moment");
return WideningDecision == CM_Scalarize;
}
const MaybeAlign Alignment = getLoadStoreAlignment(I);
const Align Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
isLegalMaskedGather(Ty, Alignment))
: !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
@ -4697,7 +4693,7 @@ bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
"Masked interleave-groups for predicated accesses are not enabled.");
auto *Ty = getMemInstValueType(I);
const MaybeAlign Alignment = getLoadStoreAlignment(I);
const Align Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
: TTI.isLegalMaskedStore(Ty, Alignment);
}
@ -5845,7 +5841,7 @@ unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
// Don't pass *I here, since it is scalar but will actually be part of a
// vectorized loop where the user of it is a vectorized instruction.
const MaybeAlign Alignment = getLoadStoreAlignment(I);
const Align Alignment = getLoadStoreAlignment(I);
Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
Alignment, AS,
TTI::TCK_RecipThroughput);
@ -5880,12 +5876,11 @@ unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
"Stride should be 1 or -1 for consecutive memory access");
const MaybeAlign Alignment = getLoadStoreAlignment(I);
const Align Alignment = getLoadStoreAlignment(I);
unsigned Cost = 0;
if (Legal->isMaskRequired(I))
Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy,
Alignment ? Alignment->value() : 0, AS,
CostKind);
Alignment.value(), AS, CostKind);
else
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
CostKind, I);
@ -5900,7 +5895,7 @@ unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
const MaybeAlign Alignment = getLoadStoreAlignment(I);
const Align Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
if (isa<LoadInst>(I)) {
@ -5925,13 +5920,12 @@ unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
const MaybeAlign Alignment = getLoadStoreAlignment(I);
const Align Alignment = getLoadStoreAlignment(I);
Value *Ptr = getLoadStorePointerOperand(I);
return TTI.getAddressComputationCost(VectorTy) +
TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
Legal->isMaskRequired(I),
Alignment ? Alignment->value() : 0,
Legal->isMaskRequired(I), Alignment.value(),
TargetTransformInfo::TCK_RecipThroughput,
I);
}
@ -5981,7 +5975,7 @@ unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
// moment.
if (VF == 1) {
Type *ValTy = getMemInstValueType(I);
const MaybeAlign Alignment = getLoadStoreAlignment(I);
const Align Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
return TTI.getAddressComputationCost(ValTy) +

View File

@ -4401,7 +4401,6 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
setInsertPointAfterBundle(E);
LoadInst *LI = cast<LoadInst>(VL0);
Type *ScalarLoadTy = LI->getType();
unsigned AS = LI->getPointerAddressSpace();
Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
@ -4414,9 +4413,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
if (getTreeEntry(PO))
ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
Align Alignment = DL->getValueOrABITypeAlignment(LI->getAlign(),
ScalarLoadTy);
LI = Builder.CreateAlignedLoad(VecTy, VecPtr, Alignment);
LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
Value *V = propagateMetadata(LI, E->Scalars);
if (IsReorder) {
SmallVector<int, 4> Mask;
@ -4437,7 +4434,6 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
bool IsReorder = !E->ReorderIndices.empty();
auto *SI = cast<StoreInst>(
IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
unsigned Alignment = SI->getAlignment();
unsigned AS = SI->getPointerAddressSpace();
setInsertPointAfterBundle(E);
@ -4453,7 +4449,8 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
Value *ScalarPtr = SI->getPointerOperand();
Value *VecPtr = Builder.CreateBitCast(
ScalarPtr, VecValue->getType()->getPointerTo(AS));
StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
SI->getAlign());
// The pointer operand uses an in-tree scalar, so add the new BitCast to
// ExternalUses to make sure that an extract will be generated in the
@ -4461,10 +4458,6 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
if (getTreeEntry(ScalarPtr))
ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
if (!Alignment)
Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
ST->setAlignment(Align(Alignment));
Value *V = propagateMetadata(ST, E->Scalars);
if (NeedToShuffleReuses) {
V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),