* Keep LiveVariable information more up-to-date and consistent

* *** Finally mark values that are inputs to PHIs as killed when appropriate.
   This should make the generated code quite a bit better.  For example, the
   local-ra will not have to spill PHI inputs at the end of predecessor BB's
   anymore.

llvm-svn: 6117
This commit is contained in:
Chris Lattner 2003-05-12 14:28:28 +00:00
parent 2e50ac75a0
commit 51ae817fd6
1 changed files with 87 additions and 7 deletions

View File

@ -12,6 +12,7 @@
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CFG.h"
namespace {
struct PNE : public MachineFunctionPass {
@ -91,7 +92,7 @@ bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
// is defined in multiple entry blocks. Instead, we pretend that this
// instruction defined it and killed it at the same time.
//
LV->addVirtualRegisterDead(IncomingReg, PHICopy);
LV->addVirtualRegisterDead(IncomingReg, &MBB, PHICopy);
// Since we are going to be deleting the PHI node, if it is the last use
// of any registers, or if the value itself is dead, we need to move this
@ -99,17 +100,26 @@ bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
//
std::pair<LiveVariables::killed_iterator, LiveVariables::killed_iterator>
RKs = LV->killed_range(MI);
std::vector<std::pair<MachineInstr*, unsigned> > Range;
if (RKs.first != RKs.second) {
for (LiveVariables::killed_iterator I = RKs.first; I != RKs.second; ++I)
LV->addVirtualRegisterKilled(I->second, PHICopy);
// Copy the range into a vector...
Range.assign(RKs.first, RKs.second);
// Delete the range...
LV->removeVirtualRegistersKilled(RKs.first, RKs.second);
// Add all of the kills back, which will update the appropriate info...
for (unsigned i = 0, e = Range.size(); i != e; ++i)
LV->addVirtualRegisterKilled(Range[i].second, &MBB, PHICopy);
}
RKs = LV->dead_range(MI);
if (RKs.first != RKs.second) {
for (LiveVariables::killed_iterator I = RKs.first; I != RKs.second; ++I)
LV->addVirtualRegisterDead(I->second, PHICopy);
// Works as above...
Range.assign(RKs.first, RKs.second);
LV->removeVirtualRegistersDead(RKs.first, RKs.second);
for (unsigned i = 0, e = Range.size(); i != e; ++i)
LV->addVirtualRegisterDead(Range[i].second, &MBB, PHICopy);
}
}
@ -163,10 +173,80 @@ bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
}
}
if (HaveNotEmitted) {
if (HaveNotEmitted) { // If the copy has not already been emitted, do it.
assert(opVal.isVirtualRegister() &&
"Machine PHI Operands must all be virtual registers!");
RegInfo->copyRegToReg(opBlock, I, IncomingReg, opVal.getReg(), RC);
unsigned SrcReg = opVal.getReg();
RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
// Now update live variable information if we have it.
if (LV) {
// We want to be able to insert a kill of the register if this PHI
// (aka, the copy we just inserted) is the last use of the source
// value. Live variable analysis conservatively handles this by
// saying that the value is live until the end of the block the PHI
// entry lives in. If the value really is dead at the PHI copy, there
// will be no successor blocks which have the value live-in.
//
// Check to see if the copy is the last use, and if so, update the
// live variables information so that it knows the copy source
// instruction kills the incoming value.
//
LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
// Loop over all of the successors of the basic block, checking to
// see if the value is either live in the block, or if it is killed
// in the block.
//
bool ValueIsLive = false;
BasicBlock *BB = opBlock.getBasicBlock();
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB);
SI != E; ++SI) {
const std::pair<MachineBasicBlock*, unsigned> &
SuccInfo = LV->getBasicBlockInfo(*SI);
// Is it alive in this successor?
unsigned SuccIdx = SuccInfo.second;
if (SuccIdx < InRegVI.AliveBlocks.size() &&
InRegVI.AliveBlocks[SuccIdx]) {
ValueIsLive = true;
break;
}
// Is it killed in this successor?
MachineBasicBlock *MBB = SuccInfo.first;
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
if (InRegVI.Kills[i].first == MBB) {
ValueIsLive = true;
break;
}
}
// Okay, if we now know that the value is not live out of the block,
// we can add a kill marker to the copy we inserted saying that it
// kills the incoming value!
//
if (!ValueIsLive) {
// One more complication to worry about. There may actually be
// multiple PHI nodes using this value on this branch. If we aren't
// careful, the first PHI node will end up killing the value, not
// letting it get the to the copy for the final PHI node in the
// block. Therefore we have to check to see if there is already a
// kill in this block, and if so, extend the lifetime to our new
// copy.
//
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
if (InRegVI.Kills[i].first == &opBlock) {
std::pair<LiveVariables::killed_iterator,
LiveVariables::killed_iterator> Range
= LV->killed_range(InRegVI.Kills[i].second);
LV->removeVirtualRegistersKilled(Range.first, Range.second);
break;
}
LV->addVirtualRegisterKilled(SrcReg, &opBlock, *(I-1));
}
}
}
}