forked from OSchip/llvm-project
[mlir][NFC] Split Parser into several different files.
Summary: At this point Parser has grown to be over 5000 lines and can be very difficult to navigate/update/etc. This commit splits Parser.cpp into several sub files focused on parsing specific types of entities; e.g., Attributes, Types, etc. Differential Revision: https://reviews.llvm.org/D81299
This commit is contained in:
parent
94b1404587
commit
51114686d5
|
@ -0,0 +1,726 @@
|
|||
//===- AffineParser.cpp - MLIR Affine Parser ------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements a parser for Affine structures.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Parser.h"
|
||||
#include "mlir/IR/AffineMap.h"
|
||||
#include "mlir/IR/IntegerSet.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::detail;
|
||||
using llvm::SMLoc;
|
||||
|
||||
namespace {
|
||||
|
||||
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
|
||||
/// the boolean sense.
|
||||
enum AffineLowPrecOp {
|
||||
/// Null value.
|
||||
LNoOp,
|
||||
Add,
|
||||
Sub
|
||||
};
|
||||
|
||||
/// Higher precedence ops - all at the same precedence level. HNoOp is false
|
||||
/// in the boolean sense.
|
||||
enum AffineHighPrecOp {
|
||||
/// Null value.
|
||||
HNoOp,
|
||||
Mul,
|
||||
FloorDiv,
|
||||
CeilDiv,
|
||||
Mod
|
||||
};
|
||||
|
||||
/// This is a specialized parser for affine structures (affine maps, affine
|
||||
/// expressions, and integer sets), maintaining the state transient to their
|
||||
/// bodies.
|
||||
class AffineParser : public Parser {
|
||||
public:
|
||||
AffineParser(ParserState &state, bool allowParsingSSAIds = false,
|
||||
function_ref<ParseResult(bool)> parseElement = nullptr)
|
||||
: Parser(state), allowParsingSSAIds(allowParsingSSAIds),
|
||||
parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {}
|
||||
|
||||
AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
|
||||
ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
|
||||
IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
|
||||
ParseResult parseAffineMapOfSSAIds(AffineMap &map,
|
||||
OpAsmParser::Delimiter delimiter);
|
||||
void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
|
||||
unsigned &numDims);
|
||||
|
||||
private:
|
||||
// Binary affine op parsing.
|
||||
AffineLowPrecOp consumeIfLowPrecOp();
|
||||
AffineHighPrecOp consumeIfHighPrecOp();
|
||||
|
||||
// Identifier lists for polyhedral structures.
|
||||
ParseResult parseDimIdList(unsigned &numDims);
|
||||
ParseResult parseSymbolIdList(unsigned &numSymbols);
|
||||
ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
|
||||
unsigned &numSymbols);
|
||||
ParseResult parseIdentifierDefinition(AffineExpr idExpr);
|
||||
|
||||
AffineExpr parseAffineExpr();
|
||||
AffineExpr parseParentheticalExpr();
|
||||
AffineExpr parseNegateExpression(AffineExpr lhs);
|
||||
AffineExpr parseIntegerExpr();
|
||||
AffineExpr parseBareIdExpr();
|
||||
AffineExpr parseSSAIdExpr(bool isSymbol);
|
||||
AffineExpr parseSymbolSSAIdExpr();
|
||||
|
||||
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
|
||||
AffineExpr rhs, llvm::SMLoc opLoc);
|
||||
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
|
||||
AffineExpr rhs);
|
||||
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
|
||||
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
|
||||
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
|
||||
llvm::SMLoc llhsOpLoc);
|
||||
AffineExpr parseAffineConstraint(bool *isEq);
|
||||
|
||||
private:
|
||||
bool allowParsingSSAIds;
|
||||
function_ref<ParseResult(bool)> parseElement;
|
||||
unsigned numDimOperands;
|
||||
unsigned numSymbolOperands;
|
||||
SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
/// Create an affine binary high precedence op expression (mul's, div's, mod).
|
||||
/// opLoc is the location of the op token to be used to report errors
|
||||
/// for non-conforming expressions.
|
||||
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
|
||||
AffineExpr lhs, AffineExpr rhs,
|
||||
SMLoc opLoc) {
|
||||
// TODO: make the error location info accurate.
|
||||
switch (op) {
|
||||
case Mul:
|
||||
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
|
||||
emitError(opLoc, "non-affine expression: at least one of the multiply "
|
||||
"operands has to be either a constant or symbolic");
|
||||
return nullptr;
|
||||
}
|
||||
return lhs * rhs;
|
||||
case FloorDiv:
|
||||
if (!rhs.isSymbolicOrConstant()) {
|
||||
emitError(opLoc, "non-affine expression: right operand of floordiv "
|
||||
"has to be either a constant or symbolic");
|
||||
return nullptr;
|
||||
}
|
||||
return lhs.floorDiv(rhs);
|
||||
case CeilDiv:
|
||||
if (!rhs.isSymbolicOrConstant()) {
|
||||
emitError(opLoc, "non-affine expression: right operand of ceildiv "
|
||||
"has to be either a constant or symbolic");
|
||||
return nullptr;
|
||||
}
|
||||
return lhs.ceilDiv(rhs);
|
||||
case Mod:
|
||||
if (!rhs.isSymbolicOrConstant()) {
|
||||
emitError(opLoc, "non-affine expression: right operand of mod "
|
||||
"has to be either a constant or symbolic");
|
||||
return nullptr;
|
||||
}
|
||||
return lhs % rhs;
|
||||
case HNoOp:
|
||||
llvm_unreachable("can't create affine expression for null high prec op");
|
||||
return nullptr;
|
||||
}
|
||||
llvm_unreachable("Unknown AffineHighPrecOp");
|
||||
}
|
||||
|
||||
/// Create an affine binary low precedence op expression (add, sub).
|
||||
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
|
||||
AffineExpr lhs, AffineExpr rhs) {
|
||||
switch (op) {
|
||||
case AffineLowPrecOp::Add:
|
||||
return lhs + rhs;
|
||||
case AffineLowPrecOp::Sub:
|
||||
return lhs - rhs;
|
||||
case AffineLowPrecOp::LNoOp:
|
||||
llvm_unreachable("can't create affine expression for null low prec op");
|
||||
return nullptr;
|
||||
}
|
||||
llvm_unreachable("Unknown AffineLowPrecOp");
|
||||
}
|
||||
|
||||
/// Consume this token if it is a lower precedence affine op (there are only
|
||||
/// two precedence levels).
|
||||
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
|
||||
switch (getToken().getKind()) {
|
||||
case Token::plus:
|
||||
consumeToken(Token::plus);
|
||||
return AffineLowPrecOp::Add;
|
||||
case Token::minus:
|
||||
consumeToken(Token::minus);
|
||||
return AffineLowPrecOp::Sub;
|
||||
default:
|
||||
return AffineLowPrecOp::LNoOp;
|
||||
}
|
||||
}
|
||||
|
||||
/// Consume this token if it is a higher precedence affine op (there are only
|
||||
/// two precedence levels)
|
||||
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
|
||||
switch (getToken().getKind()) {
|
||||
case Token::star:
|
||||
consumeToken(Token::star);
|
||||
return Mul;
|
||||
case Token::kw_floordiv:
|
||||
consumeToken(Token::kw_floordiv);
|
||||
return FloorDiv;
|
||||
case Token::kw_ceildiv:
|
||||
consumeToken(Token::kw_ceildiv);
|
||||
return CeilDiv;
|
||||
case Token::kw_mod:
|
||||
consumeToken(Token::kw_mod);
|
||||
return Mod;
|
||||
default:
|
||||
return HNoOp;
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse a high precedence op expression list: mul, div, and mod are high
|
||||
/// precedence binary ops, i.e., parse a
|
||||
/// expr_1 op_1 expr_2 op_2 ... expr_n
|
||||
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
|
||||
/// All affine binary ops are left associative.
|
||||
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
|
||||
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
|
||||
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
|
||||
/// report an error for non-conforming expressions.
|
||||
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
|
||||
AffineHighPrecOp llhsOp,
|
||||
SMLoc llhsOpLoc) {
|
||||
AffineExpr lhs = parseAffineOperandExpr(llhs);
|
||||
if (!lhs)
|
||||
return nullptr;
|
||||
|
||||
// Found an LHS. Parse the remaining expression.
|
||||
auto opLoc = getToken().getLoc();
|
||||
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
|
||||
if (llhs) {
|
||||
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
|
||||
if (!expr)
|
||||
return nullptr;
|
||||
return parseAffineHighPrecOpExpr(expr, op, opLoc);
|
||||
}
|
||||
// No LLHS, get RHS
|
||||
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
|
||||
}
|
||||
|
||||
// This is the last operand in this expression.
|
||||
if (llhs)
|
||||
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
|
||||
|
||||
// No llhs, 'lhs' itself is the expression.
|
||||
return lhs;
|
||||
}
|
||||
|
||||
/// Parse an affine expression inside parentheses.
|
||||
///
|
||||
/// affine-expr ::= `(` affine-expr `)`
|
||||
AffineExpr AffineParser::parseParentheticalExpr() {
|
||||
if (parseToken(Token::l_paren, "expected '('"))
|
||||
return nullptr;
|
||||
if (getToken().is(Token::r_paren))
|
||||
return (emitError("no expression inside parentheses"), nullptr);
|
||||
|
||||
auto expr = parseAffineExpr();
|
||||
if (!expr)
|
||||
return nullptr;
|
||||
if (parseToken(Token::r_paren, "expected ')'"))
|
||||
return nullptr;
|
||||
|
||||
return expr;
|
||||
}
|
||||
|
||||
/// Parse the negation expression.
|
||||
///
|
||||
/// affine-expr ::= `-` affine-expr
|
||||
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
|
||||
if (parseToken(Token::minus, "expected '-'"))
|
||||
return nullptr;
|
||||
|
||||
AffineExpr operand = parseAffineOperandExpr(lhs);
|
||||
// Since negation has the highest precedence of all ops (including high
|
||||
// precedence ops) but lower than parentheses, we are only going to use
|
||||
// parseAffineOperandExpr instead of parseAffineExpr here.
|
||||
if (!operand)
|
||||
// Extra error message although parseAffineOperandExpr would have
|
||||
// complained. Leads to a better diagnostic.
|
||||
return (emitError("missing operand of negation"), nullptr);
|
||||
return (-1) * operand;
|
||||
}
|
||||
|
||||
/// Parse a bare id that may appear in an affine expression.
|
||||
///
|
||||
/// affine-expr ::= bare-id
|
||||
AffineExpr AffineParser::parseBareIdExpr() {
|
||||
if (getToken().isNot(Token::bare_identifier))
|
||||
return (emitError("expected bare identifier"), nullptr);
|
||||
|
||||
StringRef sRef = getTokenSpelling();
|
||||
for (auto entry : dimsAndSymbols) {
|
||||
if (entry.first == sRef) {
|
||||
consumeToken(Token::bare_identifier);
|
||||
return entry.second;
|
||||
}
|
||||
}
|
||||
|
||||
return (emitError("use of undeclared identifier"), nullptr);
|
||||
}
|
||||
|
||||
/// Parse an SSA id which may appear in an affine expression.
|
||||
AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
|
||||
if (!allowParsingSSAIds)
|
||||
return (emitError("unexpected ssa identifier"), nullptr);
|
||||
if (getToken().isNot(Token::percent_identifier))
|
||||
return (emitError("expected ssa identifier"), nullptr);
|
||||
auto name = getTokenSpelling();
|
||||
// Check if we already parsed this SSA id.
|
||||
for (auto entry : dimsAndSymbols) {
|
||||
if (entry.first == name) {
|
||||
consumeToken(Token::percent_identifier);
|
||||
return entry.second;
|
||||
}
|
||||
}
|
||||
// Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
|
||||
if (parseElement(isSymbol))
|
||||
return (emitError("failed to parse ssa identifier"), nullptr);
|
||||
auto idExpr = isSymbol
|
||||
? getAffineSymbolExpr(numSymbolOperands++, getContext())
|
||||
: getAffineDimExpr(numDimOperands++, getContext());
|
||||
dimsAndSymbols.push_back({name, idExpr});
|
||||
return idExpr;
|
||||
}
|
||||
|
||||
AffineExpr AffineParser::parseSymbolSSAIdExpr() {
|
||||
if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
|
||||
parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
|
||||
return nullptr;
|
||||
AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
|
||||
if (!symbolExpr)
|
||||
return nullptr;
|
||||
if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
|
||||
return nullptr;
|
||||
return symbolExpr;
|
||||
}
|
||||
|
||||
/// Parse a positive integral constant appearing in an affine expression.
|
||||
///
|
||||
/// affine-expr ::= integer-literal
|
||||
AffineExpr AffineParser::parseIntegerExpr() {
|
||||
auto val = getToken().getUInt64IntegerValue();
|
||||
if (!val.hasValue() || (int64_t)val.getValue() < 0)
|
||||
return (emitError("constant too large for index"), nullptr);
|
||||
|
||||
consumeToken(Token::integer);
|
||||
return builder.getAffineConstantExpr((int64_t)val.getValue());
|
||||
}
|
||||
|
||||
/// Parses an expression that can be a valid operand of an affine expression.
|
||||
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
|
||||
/// operator, the rhs of which is being parsed. This is used to determine
|
||||
/// whether an error should be emitted for a missing right operand.
|
||||
// Eg: for an expression without parentheses (like i + j + k + l), each
|
||||
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
|
||||
// operand expression, it's an op expression and will be parsed via
|
||||
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
|
||||
// -l are valid operands that will be parsed by this function.
|
||||
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
|
||||
switch (getToken().getKind()) {
|
||||
case Token::bare_identifier:
|
||||
return parseBareIdExpr();
|
||||
case Token::kw_symbol:
|
||||
return parseSymbolSSAIdExpr();
|
||||
case Token::percent_identifier:
|
||||
return parseSSAIdExpr(/*isSymbol=*/false);
|
||||
case Token::integer:
|
||||
return parseIntegerExpr();
|
||||
case Token::l_paren:
|
||||
return parseParentheticalExpr();
|
||||
case Token::minus:
|
||||
return parseNegateExpression(lhs);
|
||||
case Token::kw_ceildiv:
|
||||
case Token::kw_floordiv:
|
||||
case Token::kw_mod:
|
||||
case Token::plus:
|
||||
case Token::star:
|
||||
if (lhs)
|
||||
emitError("missing right operand of binary operator");
|
||||
else
|
||||
emitError("missing left operand of binary operator");
|
||||
return nullptr;
|
||||
default:
|
||||
if (lhs)
|
||||
emitError("missing right operand of binary operator");
|
||||
else
|
||||
emitError("expected affine expression");
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse affine expressions that are bare-id's, integer constants,
|
||||
/// parenthetical affine expressions, and affine op expressions that are a
|
||||
/// composition of those.
|
||||
///
|
||||
/// All binary op's associate from left to right.
|
||||
///
|
||||
/// {add, sub} have lower precedence than {mul, div, and mod}.
|
||||
///
|
||||
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
|
||||
/// ceildiv, and mod are at the same higher precedence level. Negation has
|
||||
/// higher precedence than any binary op.
|
||||
///
|
||||
/// llhs: the affine expression appearing on the left of the one being parsed.
|
||||
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
|
||||
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
|
||||
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
|
||||
/// associativity.
|
||||
///
|
||||
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
|
||||
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
|
||||
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
|
||||
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
|
||||
AffineLowPrecOp llhsOp) {
|
||||
AffineExpr lhs;
|
||||
if (!(lhs = parseAffineOperandExpr(llhs)))
|
||||
return nullptr;
|
||||
|
||||
// Found an LHS. Deal with the ops.
|
||||
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
|
||||
if (llhs) {
|
||||
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
|
||||
return parseAffineLowPrecOpExpr(sum, lOp);
|
||||
}
|
||||
// No LLHS, get RHS and form the expression.
|
||||
return parseAffineLowPrecOpExpr(lhs, lOp);
|
||||
}
|
||||
auto opLoc = getToken().getLoc();
|
||||
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
|
||||
// We have a higher precedence op here. Get the rhs operand for the llhs
|
||||
// through parseAffineHighPrecOpExpr.
|
||||
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
|
||||
if (!highRes)
|
||||
return nullptr;
|
||||
|
||||
// If llhs is null, the product forms the first operand of the yet to be
|
||||
// found expression. If non-null, the op to associate with llhs is llhsOp.
|
||||
AffineExpr expr =
|
||||
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
|
||||
|
||||
// Recurse for subsequent low prec op's after the affine high prec op
|
||||
// expression.
|
||||
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
|
||||
return parseAffineLowPrecOpExpr(expr, nextOp);
|
||||
return expr;
|
||||
}
|
||||
// Last operand in the expression list.
|
||||
if (llhs)
|
||||
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
|
||||
// No llhs, 'lhs' itself is the expression.
|
||||
return lhs;
|
||||
}
|
||||
|
||||
/// Parse an affine expression.
|
||||
/// affine-expr ::= `(` affine-expr `)`
|
||||
/// | `-` affine-expr
|
||||
/// | affine-expr `+` affine-expr
|
||||
/// | affine-expr `-` affine-expr
|
||||
/// | affine-expr `*` affine-expr
|
||||
/// | affine-expr `floordiv` affine-expr
|
||||
/// | affine-expr `ceildiv` affine-expr
|
||||
/// | affine-expr `mod` affine-expr
|
||||
/// | bare-id
|
||||
/// | integer-literal
|
||||
///
|
||||
/// Additional conditions are checked depending on the production. For eg.,
|
||||
/// one of the operands for `*` has to be either constant/symbolic; the second
|
||||
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
|
||||
AffineExpr AffineParser::parseAffineExpr() {
|
||||
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
|
||||
}
|
||||
|
||||
/// Parse a dim or symbol from the lists appearing before the actual
|
||||
/// expressions of the affine map. Update our state to store the
|
||||
/// dimensional/symbolic identifier.
|
||||
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
|
||||
if (getToken().isNot(Token::bare_identifier))
|
||||
return emitError("expected bare identifier");
|
||||
|
||||
auto name = getTokenSpelling();
|
||||
for (auto entry : dimsAndSymbols) {
|
||||
if (entry.first == name)
|
||||
return emitError("redefinition of identifier '" + name + "'");
|
||||
}
|
||||
consumeToken(Token::bare_identifier);
|
||||
|
||||
dimsAndSymbols.push_back({name, idExpr});
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse the list of dimensional identifiers to an affine map.
|
||||
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
|
||||
if (parseToken(Token::l_paren,
|
||||
"expected '(' at start of dimensional identifiers list")) {
|
||||
return failure();
|
||||
}
|
||||
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
auto dimension = getAffineDimExpr(numDims++, getContext());
|
||||
return parseIdentifierDefinition(dimension);
|
||||
};
|
||||
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
|
||||
}
|
||||
|
||||
/// Parse the list of symbolic identifiers to an affine map.
|
||||
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
|
||||
consumeToken(Token::l_square);
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
|
||||
return parseIdentifierDefinition(symbol);
|
||||
};
|
||||
return parseCommaSeparatedListUntil(Token::r_square, parseElt);
|
||||
}
|
||||
|
||||
/// Parse the list of symbolic identifiers to an affine map.
|
||||
ParseResult
|
||||
AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
|
||||
unsigned &numSymbols) {
|
||||
if (parseDimIdList(numDims)) {
|
||||
return failure();
|
||||
}
|
||||
if (!getToken().is(Token::l_square)) {
|
||||
numSymbols = 0;
|
||||
return success();
|
||||
}
|
||||
return parseSymbolIdList(numSymbols);
|
||||
}
|
||||
|
||||
/// Parses an ambiguous affine map or integer set definition inline.
|
||||
ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
|
||||
IntegerSet &set) {
|
||||
unsigned numDims = 0, numSymbols = 0;
|
||||
|
||||
// List of dimensional and optional symbol identifiers.
|
||||
if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) {
|
||||
return failure();
|
||||
}
|
||||
|
||||
// This is needed for parsing attributes as we wouldn't know whether we would
|
||||
// be parsing an integer set attribute or an affine map attribute.
|
||||
bool isArrow = getToken().is(Token::arrow);
|
||||
bool isColon = getToken().is(Token::colon);
|
||||
if (!isArrow && !isColon) {
|
||||
return emitError("expected '->' or ':'");
|
||||
} else if (isArrow) {
|
||||
parseToken(Token::arrow, "expected '->' or '['");
|
||||
map = parseAffineMapRange(numDims, numSymbols);
|
||||
return map ? success() : failure();
|
||||
} else if (parseToken(Token::colon, "expected ':' or '['")) {
|
||||
return failure();
|
||||
}
|
||||
|
||||
if ((set = parseIntegerSetConstraints(numDims, numSymbols)))
|
||||
return success();
|
||||
|
||||
return failure();
|
||||
}
|
||||
|
||||
/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
|
||||
ParseResult
|
||||
AffineParser::parseAffineMapOfSSAIds(AffineMap &map,
|
||||
OpAsmParser::Delimiter delimiter) {
|
||||
Token::Kind rightToken;
|
||||
switch (delimiter) {
|
||||
case OpAsmParser::Delimiter::Square:
|
||||
if (parseToken(Token::l_square, "expected '['"))
|
||||
return failure();
|
||||
rightToken = Token::r_square;
|
||||
break;
|
||||
case OpAsmParser::Delimiter::Paren:
|
||||
if (parseToken(Token::l_paren, "expected '('"))
|
||||
return failure();
|
||||
rightToken = Token::r_paren;
|
||||
break;
|
||||
default:
|
||||
return emitError("unexpected delimiter");
|
||||
}
|
||||
|
||||
SmallVector<AffineExpr, 4> exprs;
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
auto elt = parseAffineExpr();
|
||||
exprs.push_back(elt);
|
||||
return elt ? success() : failure();
|
||||
};
|
||||
|
||||
// Parse a multi-dimensional affine expression (a comma-separated list of
|
||||
// 1-d affine expressions); the list can be empty. Grammar:
|
||||
// multi-dim-affine-expr ::= `(` `)`
|
||||
// | `(` affine-expr (`,` affine-expr)* `)`
|
||||
if (parseCommaSeparatedListUntil(rightToken, parseElt,
|
||||
/*allowEmptyList=*/true))
|
||||
return failure();
|
||||
// Parsed a valid affine map.
|
||||
map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
|
||||
exprs, getContext());
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse the range and sizes affine map definition inline.
|
||||
///
|
||||
/// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
|
||||
///
|
||||
/// multi-dim-affine-expr ::= `(` `)`
|
||||
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
|
||||
AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
|
||||
unsigned numSymbols) {
|
||||
parseToken(Token::l_paren, "expected '(' at start of affine map range");
|
||||
|
||||
SmallVector<AffineExpr, 4> exprs;
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
auto elt = parseAffineExpr();
|
||||
ParseResult res = elt ? success() : failure();
|
||||
exprs.push_back(elt);
|
||||
return res;
|
||||
};
|
||||
|
||||
// Parse a multi-dimensional affine expression (a comma-separated list of
|
||||
// 1-d affine expressions). Grammar:
|
||||
// multi-dim-affine-expr ::= `(` `)`
|
||||
// | `(` affine-expr (`,` affine-expr)* `)`
|
||||
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
|
||||
return AffineMap();
|
||||
|
||||
// Parsed a valid affine map.
|
||||
return AffineMap::get(numDims, numSymbols, exprs, getContext());
|
||||
}
|
||||
|
||||
/// Parse an affine constraint.
|
||||
/// affine-constraint ::= affine-expr `>=` `0`
|
||||
/// | affine-expr `==` `0`
|
||||
///
|
||||
/// isEq is set to true if the parsed constraint is an equality, false if it
|
||||
/// is an inequality (greater than or equal).
|
||||
///
|
||||
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
|
||||
AffineExpr expr = parseAffineExpr();
|
||||
if (!expr)
|
||||
return nullptr;
|
||||
|
||||
if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
|
||||
getToken().is(Token::integer)) {
|
||||
auto dim = getToken().getUnsignedIntegerValue();
|
||||
if (dim.hasValue() && dim.getValue() == 0) {
|
||||
consumeToken(Token::integer);
|
||||
*isEq = false;
|
||||
return expr;
|
||||
}
|
||||
return (emitError("expected '0' after '>='"), nullptr);
|
||||
}
|
||||
|
||||
if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
|
||||
getToken().is(Token::integer)) {
|
||||
auto dim = getToken().getUnsignedIntegerValue();
|
||||
if (dim.hasValue() && dim.getValue() == 0) {
|
||||
consumeToken(Token::integer);
|
||||
*isEq = true;
|
||||
return expr;
|
||||
}
|
||||
return (emitError("expected '0' after '=='"), nullptr);
|
||||
}
|
||||
|
||||
return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
|
||||
nullptr);
|
||||
}
|
||||
|
||||
/// Parse the constraints that are part of an integer set definition.
|
||||
/// integer-set-inline
|
||||
/// ::= dim-and-symbol-id-lists `:`
|
||||
/// '(' affine-constraint-conjunction? ')'
|
||||
/// affine-constraint-conjunction ::= affine-constraint (`,`
|
||||
/// affine-constraint)*
|
||||
///
|
||||
IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
|
||||
unsigned numSymbols) {
|
||||
if (parseToken(Token::l_paren,
|
||||
"expected '(' at start of integer set constraint list"))
|
||||
return IntegerSet();
|
||||
|
||||
SmallVector<AffineExpr, 4> constraints;
|
||||
SmallVector<bool, 4> isEqs;
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
bool isEq;
|
||||
auto elt = parseAffineConstraint(&isEq);
|
||||
ParseResult res = elt ? success() : failure();
|
||||
if (elt) {
|
||||
constraints.push_back(elt);
|
||||
isEqs.push_back(isEq);
|
||||
}
|
||||
return res;
|
||||
};
|
||||
|
||||
// Parse a list of affine constraints (comma-separated).
|
||||
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
|
||||
return IntegerSet();
|
||||
|
||||
// If no constraints were parsed, then treat this as a degenerate 'true' case.
|
||||
if (constraints.empty()) {
|
||||
/* 0 == 0 */
|
||||
auto zero = getAffineConstantExpr(0, getContext());
|
||||
return IntegerSet::get(numDims, numSymbols, zero, true);
|
||||
}
|
||||
|
||||
// Parsed a valid integer set.
|
||||
return IntegerSet::get(numDims, numSymbols, constraints, isEqs);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Parser
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Parse an ambiguous reference to either and affine map or an integer set.
|
||||
ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
|
||||
IntegerSet &set) {
|
||||
return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
|
||||
}
|
||||
ParseResult Parser::parseAffineMapReference(AffineMap &map) {
|
||||
llvm::SMLoc curLoc = getToken().getLoc();
|
||||
IntegerSet set;
|
||||
if (parseAffineMapOrIntegerSetReference(map, set))
|
||||
return failure();
|
||||
if (set)
|
||||
return emitError(curLoc, "expected AffineMap, but got IntegerSet");
|
||||
return success();
|
||||
}
|
||||
ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
|
||||
llvm::SMLoc curLoc = getToken().getLoc();
|
||||
AffineMap map;
|
||||
if (parseAffineMapOrIntegerSetReference(map, set))
|
||||
return failure();
|
||||
if (map)
|
||||
return emitError(curLoc, "expected IntegerSet, but got AffineMap");
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
|
||||
/// parse SSA value uses encountered while parsing affine expressions.
|
||||
ParseResult
|
||||
Parser::parseAffineMapOfSSAIds(AffineMap &map,
|
||||
function_ref<ParseResult(bool)> parseElement,
|
||||
OpAsmParser::Delimiter delimiter) {
|
||||
return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
|
||||
.parseAffineMapOfSSAIds(map, delimiter);
|
||||
}
|
|
@ -0,0 +1,910 @@
|
|||
//===- AttributeParser.cpp - MLIR Attribute Parser Implementation ---------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the parser for the MLIR Types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Parser.h"
|
||||
#include "mlir/IR/AffineMap.h"
|
||||
#include "mlir/IR/IntegerSet.h"
|
||||
#include "mlir/IR/StandardTypes.h"
|
||||
#include "llvm/ADT/StringExtras.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::detail;
|
||||
|
||||
/// Parse an arbitrary attribute.
|
||||
///
|
||||
/// attribute-value ::= `unit`
|
||||
/// | bool-literal
|
||||
/// | integer-literal (`:` (index-type | integer-type))?
|
||||
/// | float-literal (`:` float-type)?
|
||||
/// | string-literal (`:` type)?
|
||||
/// | type
|
||||
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
|
||||
/// | `{` (attribute-entry (`,` attribute-entry)*)? `}`
|
||||
/// | symbol-ref-id (`::` symbol-ref-id)*
|
||||
/// | `dense` `<` attribute-value `>` `:`
|
||||
/// (tensor-type | vector-type)
|
||||
/// | `sparse` `<` attribute-value `,` attribute-value `>`
|
||||
/// `:` (tensor-type | vector-type)
|
||||
/// | `opaque` `<` dialect-namespace `,` hex-string-literal
|
||||
/// `>` `:` (tensor-type | vector-type)
|
||||
/// | extended-attribute
|
||||
///
|
||||
Attribute Parser::parseAttribute(Type type) {
|
||||
switch (getToken().getKind()) {
|
||||
// Parse an AffineMap or IntegerSet attribute.
|
||||
case Token::kw_affine_map: {
|
||||
consumeToken(Token::kw_affine_map);
|
||||
|
||||
AffineMap map;
|
||||
if (parseToken(Token::less, "expected '<' in affine map") ||
|
||||
parseAffineMapReference(map) ||
|
||||
parseToken(Token::greater, "expected '>' in affine map"))
|
||||
return Attribute();
|
||||
return AffineMapAttr::get(map);
|
||||
}
|
||||
case Token::kw_affine_set: {
|
||||
consumeToken(Token::kw_affine_set);
|
||||
|
||||
IntegerSet set;
|
||||
if (parseToken(Token::less, "expected '<' in integer set") ||
|
||||
parseIntegerSetReference(set) ||
|
||||
parseToken(Token::greater, "expected '>' in integer set"))
|
||||
return Attribute();
|
||||
return IntegerSetAttr::get(set);
|
||||
}
|
||||
|
||||
// Parse an array attribute.
|
||||
case Token::l_square: {
|
||||
consumeToken(Token::l_square);
|
||||
|
||||
SmallVector<Attribute, 4> elements;
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
elements.push_back(parseAttribute());
|
||||
return elements.back() ? success() : failure();
|
||||
};
|
||||
|
||||
if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
|
||||
return nullptr;
|
||||
return builder.getArrayAttr(elements);
|
||||
}
|
||||
|
||||
// Parse a boolean attribute.
|
||||
case Token::kw_false:
|
||||
consumeToken(Token::kw_false);
|
||||
return builder.getBoolAttr(false);
|
||||
case Token::kw_true:
|
||||
consumeToken(Token::kw_true);
|
||||
return builder.getBoolAttr(true);
|
||||
|
||||
// Parse a dense elements attribute.
|
||||
case Token::kw_dense:
|
||||
return parseDenseElementsAttr(type);
|
||||
|
||||
// Parse a dictionary attribute.
|
||||
case Token::l_brace: {
|
||||
NamedAttrList elements;
|
||||
if (parseAttributeDict(elements))
|
||||
return nullptr;
|
||||
return elements.getDictionary(getContext());
|
||||
}
|
||||
|
||||
// Parse an extended attribute, i.e. alias or dialect attribute.
|
||||
case Token::hash_identifier:
|
||||
return parseExtendedAttr(type);
|
||||
|
||||
// Parse floating point and integer attributes.
|
||||
case Token::floatliteral:
|
||||
return parseFloatAttr(type, /*isNegative=*/false);
|
||||
case Token::integer:
|
||||
return parseDecOrHexAttr(type, /*isNegative=*/false);
|
||||
case Token::minus: {
|
||||
consumeToken(Token::minus);
|
||||
if (getToken().is(Token::integer))
|
||||
return parseDecOrHexAttr(type, /*isNegative=*/true);
|
||||
if (getToken().is(Token::floatliteral))
|
||||
return parseFloatAttr(type, /*isNegative=*/true);
|
||||
|
||||
return (emitError("expected constant integer or floating point value"),
|
||||
nullptr);
|
||||
}
|
||||
|
||||
// Parse a location attribute.
|
||||
case Token::kw_loc: {
|
||||
LocationAttr attr;
|
||||
return failed(parseLocation(attr)) ? Attribute() : attr;
|
||||
}
|
||||
|
||||
// Parse an opaque elements attribute.
|
||||
case Token::kw_opaque:
|
||||
return parseOpaqueElementsAttr(type);
|
||||
|
||||
// Parse a sparse elements attribute.
|
||||
case Token::kw_sparse:
|
||||
return parseSparseElementsAttr(type);
|
||||
|
||||
// Parse a string attribute.
|
||||
case Token::string: {
|
||||
auto val = getToken().getStringValue();
|
||||
consumeToken(Token::string);
|
||||
// Parse the optional trailing colon type if one wasn't explicitly provided.
|
||||
if (!type && consumeIf(Token::colon) && !(type = parseType()))
|
||||
return Attribute();
|
||||
|
||||
return type ? StringAttr::get(val, type)
|
||||
: StringAttr::get(val, getContext());
|
||||
}
|
||||
|
||||
// Parse a symbol reference attribute.
|
||||
case Token::at_identifier: {
|
||||
std::string nameStr = getToken().getSymbolReference();
|
||||
consumeToken(Token::at_identifier);
|
||||
|
||||
// Parse any nested references.
|
||||
std::vector<FlatSymbolRefAttr> nestedRefs;
|
||||
while (getToken().is(Token::colon)) {
|
||||
// Check for the '::' prefix.
|
||||
const char *curPointer = getToken().getLoc().getPointer();
|
||||
consumeToken(Token::colon);
|
||||
if (!consumeIf(Token::colon)) {
|
||||
state.lex.resetPointer(curPointer);
|
||||
consumeToken();
|
||||
break;
|
||||
}
|
||||
// Parse the reference itself.
|
||||
auto curLoc = getToken().getLoc();
|
||||
if (getToken().isNot(Token::at_identifier)) {
|
||||
emitError(curLoc, "expected nested symbol reference identifier");
|
||||
return Attribute();
|
||||
}
|
||||
|
||||
std::string nameStr = getToken().getSymbolReference();
|
||||
consumeToken(Token::at_identifier);
|
||||
nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext()));
|
||||
}
|
||||
|
||||
return builder.getSymbolRefAttr(nameStr, nestedRefs);
|
||||
}
|
||||
|
||||
// Parse a 'unit' attribute.
|
||||
case Token::kw_unit:
|
||||
consumeToken(Token::kw_unit);
|
||||
return builder.getUnitAttr();
|
||||
|
||||
default:
|
||||
// Parse a type attribute.
|
||||
if (Type type = parseType())
|
||||
return TypeAttr::get(type);
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
/// Attribute dictionary.
|
||||
///
|
||||
/// attribute-dict ::= `{` `}`
|
||||
/// | `{` attribute-entry (`,` attribute-entry)* `}`
|
||||
/// attribute-entry ::= (bare-id | string-literal) `=` attribute-value
|
||||
///
|
||||
ParseResult Parser::parseAttributeDict(NamedAttrList &attributes) {
|
||||
if (parseToken(Token::l_brace, "expected '{' in attribute dictionary"))
|
||||
return failure();
|
||||
|
||||
llvm::SmallDenseSet<Identifier> seenKeys;
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
// The name of an attribute can either be a bare identifier, or a string.
|
||||
Optional<Identifier> nameId;
|
||||
if (getToken().is(Token::string))
|
||||
nameId = builder.getIdentifier(getToken().getStringValue());
|
||||
else if (getToken().isAny(Token::bare_identifier, Token::inttype) ||
|
||||
getToken().isKeyword())
|
||||
nameId = builder.getIdentifier(getTokenSpelling());
|
||||
else
|
||||
return emitError("expected attribute name");
|
||||
if (!seenKeys.insert(*nameId).second)
|
||||
return emitError("duplicate key in dictionary attribute");
|
||||
consumeToken();
|
||||
|
||||
// Try to parse the '=' for the attribute value.
|
||||
if (!consumeIf(Token::equal)) {
|
||||
// If there is no '=', we treat this as a unit attribute.
|
||||
attributes.push_back({*nameId, builder.getUnitAttr()});
|
||||
return success();
|
||||
}
|
||||
|
||||
auto attr = parseAttribute();
|
||||
if (!attr)
|
||||
return failure();
|
||||
attributes.push_back({*nameId, attr});
|
||||
return success();
|
||||
};
|
||||
|
||||
if (parseCommaSeparatedListUntil(Token::r_brace, parseElt))
|
||||
return failure();
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse a float attribute.
|
||||
Attribute Parser::parseFloatAttr(Type type, bool isNegative) {
|
||||
auto val = getToken().getFloatingPointValue();
|
||||
if (!val.hasValue())
|
||||
return (emitError("floating point value too large for attribute"), nullptr);
|
||||
consumeToken(Token::floatliteral);
|
||||
if (!type) {
|
||||
// Default to F64 when no type is specified.
|
||||
if (!consumeIf(Token::colon))
|
||||
type = builder.getF64Type();
|
||||
else if (!(type = parseType()))
|
||||
return nullptr;
|
||||
}
|
||||
if (!type.isa<FloatType>())
|
||||
return (emitError("floating point value not valid for specified type"),
|
||||
nullptr);
|
||||
return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue());
|
||||
}
|
||||
|
||||
/// Construct a float attribute bitwise equivalent to the integer literal.
|
||||
static Optional<APFloat> buildHexadecimalFloatLiteral(Parser *p, FloatType type,
|
||||
uint64_t value) {
|
||||
if (type.isF64())
|
||||
return APFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value));
|
||||
|
||||
APInt apInt(type.getWidth(), value);
|
||||
if (apInt != value) {
|
||||
p->emitError("hexadecimal float constant out of range for type");
|
||||
return llvm::None;
|
||||
}
|
||||
return APFloat(type.getFloatSemantics(), apInt);
|
||||
}
|
||||
|
||||
/// Construct an APint from a parsed value, a known attribute type and
|
||||
/// sign.
|
||||
static Optional<APInt> buildAttributeAPInt(Type type, bool isNegative,
|
||||
StringRef spelling) {
|
||||
// Parse the integer value into an APInt that is big enough to hold the value.
|
||||
APInt result;
|
||||
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
|
||||
if (spelling.getAsInteger(isHex ? 0 : 10, result))
|
||||
return llvm::None;
|
||||
|
||||
// Extend or truncate the bitwidth to the right size.
|
||||
unsigned width = type.isIndex() ? IndexType::kInternalStorageBitWidth
|
||||
: type.getIntOrFloatBitWidth();
|
||||
if (width > result.getBitWidth()) {
|
||||
result = result.zext(width);
|
||||
} else if (width < result.getBitWidth()) {
|
||||
// The parser can return an unnecessarily wide result with leading zeros.
|
||||
// This isn't a problem, but truncating off bits is bad.
|
||||
if (result.countLeadingZeros() < result.getBitWidth() - width)
|
||||
return llvm::None;
|
||||
|
||||
result = result.trunc(width);
|
||||
}
|
||||
|
||||
if (isNegative) {
|
||||
// The value is negative, we have an overflow if the sign bit is not set
|
||||
// in the negated apInt.
|
||||
result.negate();
|
||||
if (!result.isSignBitSet())
|
||||
return llvm::None;
|
||||
} else if ((type.isSignedInteger() || type.isIndex()) &&
|
||||
result.isSignBitSet()) {
|
||||
// The value is a positive signed integer or index,
|
||||
// we have an overflow if the sign bit is set.
|
||||
return llvm::None;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Parse a decimal or a hexadecimal literal, which can be either an integer
|
||||
/// or a float attribute.
|
||||
Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) {
|
||||
// Remember if the literal is hexadecimal.
|
||||
StringRef spelling = getToken().getSpelling();
|
||||
auto loc = state.curToken.getLoc();
|
||||
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
|
||||
|
||||
consumeToken(Token::integer);
|
||||
if (!type) {
|
||||
// Default to i64 if not type is specified.
|
||||
if (!consumeIf(Token::colon))
|
||||
type = builder.getIntegerType(64);
|
||||
else if (!(type = parseType()))
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (auto floatType = type.dyn_cast<FloatType>()) {
|
||||
if (isNegative)
|
||||
return emitError(
|
||||
loc,
|
||||
"hexadecimal float literal should not have a leading minus"),
|
||||
nullptr;
|
||||
if (!isHex) {
|
||||
emitError(loc, "unexpected decimal integer literal for a float attribute")
|
||||
.attachNote()
|
||||
<< "add a trailing dot to make the literal a float";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto val = Token::getUInt64IntegerValue(spelling);
|
||||
if (!val.hasValue())
|
||||
return emitError("integer constant out of range for attribute"), nullptr;
|
||||
|
||||
// Construct a float attribute bitwise equivalent to the integer literal.
|
||||
Optional<APFloat> apVal =
|
||||
buildHexadecimalFloatLiteral(this, floatType, *val);
|
||||
return apVal ? FloatAttr::get(floatType, *apVal) : Attribute();
|
||||
}
|
||||
|
||||
if (!type.isa<IntegerType>() && !type.isa<IndexType>())
|
||||
return emitError(loc, "integer literal not valid for specified type"),
|
||||
nullptr;
|
||||
|
||||
if (isNegative && type.isUnsignedInteger()) {
|
||||
emitError(loc,
|
||||
"negative integer literal not valid for unsigned integer type");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Optional<APInt> apInt = buildAttributeAPInt(type, isNegative, spelling);
|
||||
if (!apInt)
|
||||
return emitError(loc, "integer constant out of range for attribute"),
|
||||
nullptr;
|
||||
return builder.getIntegerAttr(type, *apInt);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// TensorLiteralParser
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Parse elements values stored within a hex etring. On success, the values are
|
||||
/// stored into 'result'.
|
||||
static ParseResult parseElementAttrHexValues(Parser &parser, Token tok,
|
||||
std::string &result) {
|
||||
std::string val = tok.getStringValue();
|
||||
if (val.size() < 2 || val[0] != '0' || val[1] != 'x')
|
||||
return parser.emitError(tok.getLoc(),
|
||||
"elements hex string should start with '0x'");
|
||||
|
||||
StringRef hexValues = StringRef(val).drop_front(2);
|
||||
if (!llvm::all_of(hexValues, llvm::isHexDigit))
|
||||
return parser.emitError(tok.getLoc(),
|
||||
"elements hex string only contains hex digits");
|
||||
|
||||
result = llvm::fromHex(hexValues);
|
||||
return success();
|
||||
}
|
||||
|
||||
namespace {
|
||||
/// This class implements a parser for TensorLiterals. A tensor literal is
|
||||
/// either a single element (e.g, 5) or a multi-dimensional list of elements
|
||||
/// (e.g., [[5, 5]]).
|
||||
class TensorLiteralParser {
|
||||
public:
|
||||
TensorLiteralParser(Parser &p) : p(p) {}
|
||||
|
||||
/// Parse the elements of a tensor literal. If 'allowHex' is true, the parser
|
||||
/// may also parse a tensor literal that is store as a hex string.
|
||||
ParseResult parse(bool allowHex);
|
||||
|
||||
/// Build a dense attribute instance with the parsed elements and the given
|
||||
/// shaped type.
|
||||
DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type);
|
||||
|
||||
ArrayRef<int64_t> getShape() const { return shape; }
|
||||
|
||||
private:
|
||||
/// Get the parsed elements for an integer attribute.
|
||||
ParseResult getIntAttrElements(llvm::SMLoc loc, Type eltTy,
|
||||
std::vector<APInt> &intValues);
|
||||
|
||||
/// Get the parsed elements for a float attribute.
|
||||
ParseResult getFloatAttrElements(llvm::SMLoc loc, FloatType eltTy,
|
||||
std::vector<APFloat> &floatValues);
|
||||
|
||||
/// Build a Dense String attribute for the given type.
|
||||
DenseElementsAttr getStringAttr(llvm::SMLoc loc, ShapedType type, Type eltTy);
|
||||
|
||||
/// Build a Dense attribute with hex data for the given type.
|
||||
DenseElementsAttr getHexAttr(llvm::SMLoc loc, ShapedType type);
|
||||
|
||||
/// Parse a single element, returning failure if it isn't a valid element
|
||||
/// literal. For example:
|
||||
/// parseElement(1) -> Success, 1
|
||||
/// parseElement([1]) -> Failure
|
||||
ParseResult parseElement();
|
||||
|
||||
/// Parse a list of either lists or elements, returning the dimensions of the
|
||||
/// parsed sub-tensors in dims. For example:
|
||||
/// parseList([1, 2, 3]) -> Success, [3]
|
||||
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
|
||||
/// parseList([[1, 2], 3]) -> Failure
|
||||
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
|
||||
ParseResult parseList(SmallVectorImpl<int64_t> &dims);
|
||||
|
||||
/// Parse a literal that was printed as a hex string.
|
||||
ParseResult parseHexElements();
|
||||
|
||||
Parser &p;
|
||||
|
||||
/// The shape inferred from the parsed elements.
|
||||
SmallVector<int64_t, 4> shape;
|
||||
|
||||
/// Storage used when parsing elements, this is a pair of <is_negated, token>.
|
||||
std::vector<std::pair<bool, Token>> storage;
|
||||
|
||||
/// Storage used when parsing elements that were stored as hex values.
|
||||
Optional<Token> hexStorage;
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
/// Parse the elements of a tensor literal. If 'allowHex' is true, the parser
|
||||
/// may also parse a tensor literal that is store as a hex string.
|
||||
ParseResult TensorLiteralParser::parse(bool allowHex) {
|
||||
// If hex is allowed, check for a string literal.
|
||||
if (allowHex && p.getToken().is(Token::string)) {
|
||||
hexStorage = p.getToken();
|
||||
p.consumeToken(Token::string);
|
||||
return success();
|
||||
}
|
||||
// Otherwise, parse a list or an individual element.
|
||||
if (p.getToken().is(Token::l_square))
|
||||
return parseList(shape);
|
||||
return parseElement();
|
||||
}
|
||||
|
||||
/// Build a dense attribute instance with the parsed elements and the given
|
||||
/// shaped type.
|
||||
DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc,
|
||||
ShapedType type) {
|
||||
Type eltType = type.getElementType();
|
||||
|
||||
// Check to see if we parse the literal from a hex string.
|
||||
if (hexStorage.hasValue() &&
|
||||
(eltType.isIntOrFloat() || eltType.isa<ComplexType>()))
|
||||
return getHexAttr(loc, type);
|
||||
|
||||
// Check that the parsed storage size has the same number of elements to the
|
||||
// type, or is a known splat.
|
||||
if (!shape.empty() && getShape() != type.getShape()) {
|
||||
p.emitError(loc) << "inferred shape of elements literal ([" << getShape()
|
||||
<< "]) does not match type ([" << type.getShape() << "])";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Handle complex types in the specific element type cases below.
|
||||
bool isComplex = false;
|
||||
if (ComplexType complexTy = eltType.dyn_cast<ComplexType>()) {
|
||||
eltType = complexTy.getElementType();
|
||||
isComplex = true;
|
||||
}
|
||||
|
||||
// Handle integer and index types.
|
||||
if (eltType.isIntOrIndex()) {
|
||||
std::vector<APInt> intValues;
|
||||
if (failed(getIntAttrElements(loc, eltType, intValues)))
|
||||
return nullptr;
|
||||
if (isComplex) {
|
||||
// If this is a complex, treat the parsed values as complex values.
|
||||
auto complexData = llvm::makeArrayRef(
|
||||
reinterpret_cast<std::complex<APInt> *>(intValues.data()),
|
||||
intValues.size() / 2);
|
||||
return DenseElementsAttr::get(type, complexData);
|
||||
}
|
||||
return DenseElementsAttr::get(type, intValues);
|
||||
}
|
||||
// Handle floating point types.
|
||||
if (FloatType floatTy = eltType.dyn_cast<FloatType>()) {
|
||||
std::vector<APFloat> floatValues;
|
||||
if (failed(getFloatAttrElements(loc, floatTy, floatValues)))
|
||||
return nullptr;
|
||||
if (isComplex) {
|
||||
// If this is a complex, treat the parsed values as complex values.
|
||||
auto complexData = llvm::makeArrayRef(
|
||||
reinterpret_cast<std::complex<APFloat> *>(floatValues.data()),
|
||||
floatValues.size() / 2);
|
||||
return DenseElementsAttr::get(type, complexData);
|
||||
}
|
||||
return DenseElementsAttr::get(type, floatValues);
|
||||
}
|
||||
|
||||
// Other types are assumed to be string representations.
|
||||
return getStringAttr(loc, type, type.getElementType());
|
||||
}
|
||||
|
||||
/// Build a Dense Integer attribute for the given type.
|
||||
ParseResult
|
||||
TensorLiteralParser::getIntAttrElements(llvm::SMLoc loc, Type eltTy,
|
||||
std::vector<APInt> &intValues) {
|
||||
intValues.reserve(storage.size());
|
||||
bool isUintType = eltTy.isUnsignedInteger();
|
||||
for (const auto &signAndToken : storage) {
|
||||
bool isNegative = signAndToken.first;
|
||||
const Token &token = signAndToken.second;
|
||||
auto tokenLoc = token.getLoc();
|
||||
|
||||
if (isNegative && isUintType) {
|
||||
return p.emitError(tokenLoc)
|
||||
<< "expected unsigned integer elements, but parsed negative value";
|
||||
}
|
||||
|
||||
// Check to see if floating point values were parsed.
|
||||
if (token.is(Token::floatliteral)) {
|
||||
return p.emitError(tokenLoc)
|
||||
<< "expected integer elements, but parsed floating-point";
|
||||
}
|
||||
|
||||
assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) &&
|
||||
"unexpected token type");
|
||||
if (token.isAny(Token::kw_true, Token::kw_false)) {
|
||||
if (!eltTy.isInteger(1)) {
|
||||
return p.emitError(tokenLoc)
|
||||
<< "expected i1 type for 'true' or 'false' values";
|
||||
}
|
||||
APInt apInt(1, token.is(Token::kw_true), /*isSigned=*/false);
|
||||
intValues.push_back(apInt);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create APInt values for each element with the correct bitwidth.
|
||||
Optional<APInt> apInt =
|
||||
buildAttributeAPInt(eltTy, isNegative, token.getSpelling());
|
||||
if (!apInt)
|
||||
return p.emitError(tokenLoc, "integer constant out of range for type");
|
||||
intValues.push_back(*apInt);
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Build a Dense Float attribute for the given type.
|
||||
ParseResult
|
||||
TensorLiteralParser::getFloatAttrElements(llvm::SMLoc loc, FloatType eltTy,
|
||||
std::vector<APFloat> &floatValues) {
|
||||
floatValues.reserve(storage.size());
|
||||
for (const auto &signAndToken : storage) {
|
||||
bool isNegative = signAndToken.first;
|
||||
const Token &token = signAndToken.second;
|
||||
|
||||
// Handle hexadecimal float literals.
|
||||
if (token.is(Token::integer) && token.getSpelling().startswith("0x")) {
|
||||
if (isNegative) {
|
||||
return p.emitError(token.getLoc())
|
||||
<< "hexadecimal float literal should not have a leading minus";
|
||||
}
|
||||
auto val = token.getUInt64IntegerValue();
|
||||
if (!val.hasValue()) {
|
||||
return p.emitError(
|
||||
"hexadecimal float constant out of range for attribute");
|
||||
}
|
||||
Optional<APFloat> apVal = buildHexadecimalFloatLiteral(&p, eltTy, *val);
|
||||
if (!apVal)
|
||||
return failure();
|
||||
floatValues.push_back(*apVal);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check to see if any decimal integers or booleans were parsed.
|
||||
if (!token.is(Token::floatliteral))
|
||||
return p.emitError()
|
||||
<< "expected floating-point elements, but parsed integer";
|
||||
|
||||
// Build the float values from tokens.
|
||||
auto val = token.getFloatingPointValue();
|
||||
if (!val.hasValue())
|
||||
return p.emitError("floating point value too large for attribute");
|
||||
|
||||
APFloat apVal(isNegative ? -*val : *val);
|
||||
if (!eltTy.isF64()) {
|
||||
bool unused;
|
||||
apVal.convert(eltTy.getFloatSemantics(), APFloat::rmNearestTiesToEven,
|
||||
&unused);
|
||||
}
|
||||
floatValues.push_back(apVal);
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Build a Dense String attribute for the given type.
|
||||
DenseElementsAttr TensorLiteralParser::getStringAttr(llvm::SMLoc loc,
|
||||
ShapedType type,
|
||||
Type eltTy) {
|
||||
if (hexStorage.hasValue()) {
|
||||
auto stringValue = hexStorage.getValue().getStringValue();
|
||||
return DenseStringElementsAttr::get(type, {stringValue});
|
||||
}
|
||||
|
||||
std::vector<std::string> stringValues;
|
||||
std::vector<StringRef> stringRefValues;
|
||||
stringValues.reserve(storage.size());
|
||||
stringRefValues.reserve(storage.size());
|
||||
|
||||
for (auto val : storage) {
|
||||
stringValues.push_back(val.second.getStringValue());
|
||||
stringRefValues.push_back(stringValues.back());
|
||||
}
|
||||
|
||||
return DenseStringElementsAttr::get(type, stringRefValues);
|
||||
}
|
||||
|
||||
/// Build a Dense attribute with hex data for the given type.
|
||||
DenseElementsAttr TensorLiteralParser::getHexAttr(llvm::SMLoc loc,
|
||||
ShapedType type) {
|
||||
Type elementType = type.getElementType();
|
||||
if (!elementType.isIntOrIndexOrFloat() && !elementType.isa<ComplexType>()) {
|
||||
p.emitError(loc)
|
||||
<< "expected floating-point, integer, or complex element type, got "
|
||||
<< elementType;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::string data;
|
||||
if (parseElementAttrHexValues(p, hexStorage.getValue(), data))
|
||||
return nullptr;
|
||||
|
||||
ArrayRef<char> rawData(data.data(), data.size());
|
||||
bool detectedSplat = false;
|
||||
if (!DenseElementsAttr::isValidRawBuffer(type, rawData, detectedSplat)) {
|
||||
p.emitError(loc) << "elements hex data size is invalid for provided type: "
|
||||
<< type;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return DenseElementsAttr::getFromRawBuffer(type, rawData, detectedSplat);
|
||||
}
|
||||
|
||||
ParseResult TensorLiteralParser::parseElement() {
|
||||
switch (p.getToken().getKind()) {
|
||||
// Parse a boolean element.
|
||||
case Token::kw_true:
|
||||
case Token::kw_false:
|
||||
case Token::floatliteral:
|
||||
case Token::integer:
|
||||
storage.emplace_back(/*isNegative=*/false, p.getToken());
|
||||
p.consumeToken();
|
||||
break;
|
||||
|
||||
// Parse a signed integer or a negative floating-point element.
|
||||
case Token::minus:
|
||||
p.consumeToken(Token::minus);
|
||||
if (!p.getToken().isAny(Token::floatliteral, Token::integer))
|
||||
return p.emitError("expected integer or floating point literal");
|
||||
storage.emplace_back(/*isNegative=*/true, p.getToken());
|
||||
p.consumeToken();
|
||||
break;
|
||||
|
||||
case Token::string:
|
||||
storage.emplace_back(/*isNegative=*/false, p.getToken());
|
||||
p.consumeToken();
|
||||
break;
|
||||
|
||||
// Parse a complex element of the form '(' element ',' element ')'.
|
||||
case Token::l_paren:
|
||||
p.consumeToken(Token::l_paren);
|
||||
if (parseElement() ||
|
||||
p.parseToken(Token::comma, "expected ',' between complex elements") ||
|
||||
parseElement() ||
|
||||
p.parseToken(Token::r_paren, "expected ')' after complex elements"))
|
||||
return failure();
|
||||
break;
|
||||
|
||||
default:
|
||||
return p.emitError("expected element literal of primitive type");
|
||||
}
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse a list of either lists or elements, returning the dimensions of the
|
||||
/// parsed sub-tensors in dims. For example:
|
||||
/// parseList([1, 2, 3]) -> Success, [3]
|
||||
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
|
||||
/// parseList([[1, 2], 3]) -> Failure
|
||||
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
|
||||
ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) {
|
||||
p.consumeToken(Token::l_square);
|
||||
|
||||
auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims,
|
||||
const SmallVectorImpl<int64_t> &newDims) -> ParseResult {
|
||||
if (prevDims == newDims)
|
||||
return success();
|
||||
return p.emitError("tensor literal is invalid; ranks are not consistent "
|
||||
"between elements");
|
||||
};
|
||||
|
||||
bool first = true;
|
||||
SmallVector<int64_t, 4> newDims;
|
||||
unsigned size = 0;
|
||||
auto parseCommaSeparatedList = [&]() -> ParseResult {
|
||||
SmallVector<int64_t, 4> thisDims;
|
||||
if (p.getToken().getKind() == Token::l_square) {
|
||||
if (parseList(thisDims))
|
||||
return failure();
|
||||
} else if (parseElement()) {
|
||||
return failure();
|
||||
}
|
||||
++size;
|
||||
if (!first)
|
||||
return checkDims(newDims, thisDims);
|
||||
newDims = thisDims;
|
||||
first = false;
|
||||
return success();
|
||||
};
|
||||
if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList))
|
||||
return failure();
|
||||
|
||||
// Return the sublists' dimensions with 'size' prepended.
|
||||
dims.clear();
|
||||
dims.push_back(size);
|
||||
dims.append(newDims.begin(), newDims.end());
|
||||
return success();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ElementsAttr Parser
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Parse a dense elements attribute.
|
||||
Attribute Parser::parseDenseElementsAttr(Type attrType) {
|
||||
consumeToken(Token::kw_dense);
|
||||
if (parseToken(Token::less, "expected '<' after 'dense'"))
|
||||
return nullptr;
|
||||
|
||||
// Parse the literal data.
|
||||
TensorLiteralParser literalParser(*this);
|
||||
if (literalParser.parse(/*allowHex=*/true))
|
||||
return nullptr;
|
||||
|
||||
if (parseToken(Token::greater, "expected '>'"))
|
||||
return nullptr;
|
||||
|
||||
auto typeLoc = getToken().getLoc();
|
||||
auto type = parseElementsLiteralType(attrType);
|
||||
if (!type)
|
||||
return nullptr;
|
||||
return literalParser.getAttr(typeLoc, type);
|
||||
}
|
||||
|
||||
/// Parse an opaque elements attribute.
|
||||
Attribute Parser::parseOpaqueElementsAttr(Type attrType) {
|
||||
consumeToken(Token::kw_opaque);
|
||||
if (parseToken(Token::less, "expected '<' after 'opaque'"))
|
||||
return nullptr;
|
||||
|
||||
if (getToken().isNot(Token::string))
|
||||
return (emitError("expected dialect namespace"), nullptr);
|
||||
|
||||
auto name = getToken().getStringValue();
|
||||
auto *dialect = builder.getContext()->getRegisteredDialect(name);
|
||||
// TODO(shpeisman): Allow for having an unknown dialect on an opaque
|
||||
// attribute. Otherwise, it can't be roundtripped without having the dialect
|
||||
// registered.
|
||||
if (!dialect)
|
||||
return (emitError("no registered dialect with namespace '" + name + "'"),
|
||||
nullptr);
|
||||
consumeToken(Token::string);
|
||||
|
||||
if (parseToken(Token::comma, "expected ','"))
|
||||
return nullptr;
|
||||
|
||||
Token hexTok = getToken();
|
||||
if (parseToken(Token::string, "elements hex string should start with '0x'") ||
|
||||
parseToken(Token::greater, "expected '>'"))
|
||||
return nullptr;
|
||||
auto type = parseElementsLiteralType(attrType);
|
||||
if (!type)
|
||||
return nullptr;
|
||||
|
||||
std::string data;
|
||||
if (parseElementAttrHexValues(*this, hexTok, data))
|
||||
return nullptr;
|
||||
return OpaqueElementsAttr::get(dialect, type, data);
|
||||
}
|
||||
|
||||
/// Shaped type for elements attribute.
|
||||
///
|
||||
/// elements-literal-type ::= vector-type | ranked-tensor-type
|
||||
///
|
||||
/// This method also checks the type has static shape.
|
||||
ShapedType Parser::parseElementsLiteralType(Type type) {
|
||||
// If the user didn't provide a type, parse the colon type for the literal.
|
||||
if (!type) {
|
||||
if (parseToken(Token::colon, "expected ':'"))
|
||||
return nullptr;
|
||||
if (!(type = parseType()))
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) {
|
||||
emitError("elements literal must be a ranked tensor or vector type");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto sType = type.cast<ShapedType>();
|
||||
if (!sType.hasStaticShape())
|
||||
return (emitError("elements literal type must have static shape"), nullptr);
|
||||
|
||||
return sType;
|
||||
}
|
||||
|
||||
/// Parse a sparse elements attribute.
|
||||
Attribute Parser::parseSparseElementsAttr(Type attrType) {
|
||||
consumeToken(Token::kw_sparse);
|
||||
if (parseToken(Token::less, "Expected '<' after 'sparse'"))
|
||||
return nullptr;
|
||||
|
||||
/// Parse the indices. We don't allow hex values here as we may need to use
|
||||
/// the inferred shape.
|
||||
auto indicesLoc = getToken().getLoc();
|
||||
TensorLiteralParser indiceParser(*this);
|
||||
if (indiceParser.parse(/*allowHex=*/false))
|
||||
return nullptr;
|
||||
|
||||
if (parseToken(Token::comma, "expected ','"))
|
||||
return nullptr;
|
||||
|
||||
/// Parse the values.
|
||||
auto valuesLoc = getToken().getLoc();
|
||||
TensorLiteralParser valuesParser(*this);
|
||||
if (valuesParser.parse(/*allowHex=*/true))
|
||||
return nullptr;
|
||||
|
||||
if (parseToken(Token::greater, "expected '>'"))
|
||||
return nullptr;
|
||||
|
||||
auto type = parseElementsLiteralType(attrType);
|
||||
if (!type)
|
||||
return nullptr;
|
||||
|
||||
// If the indices are a splat, i.e. the literal parser parsed an element and
|
||||
// not a list, we set the shape explicitly. The indices are represented by a
|
||||
// 2-dimensional shape where the second dimension is the rank of the type.
|
||||
// Given that the parsed indices is a splat, we know that we only have one
|
||||
// indice and thus one for the first dimension.
|
||||
auto indiceEltType = builder.getIntegerType(64);
|
||||
ShapedType indicesType;
|
||||
if (indiceParser.getShape().empty()) {
|
||||
indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType);
|
||||
} else {
|
||||
// Otherwise, set the shape to the one parsed by the literal parser.
|
||||
indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType);
|
||||
}
|
||||
auto indices = indiceParser.getAttr(indicesLoc, indicesType);
|
||||
|
||||
// If the values are a splat, set the shape explicitly based on the number of
|
||||
// indices. The number of indices is encoded in the first dimension of the
|
||||
// indice shape type.
|
||||
auto valuesEltType = type.getElementType();
|
||||
ShapedType valuesType =
|
||||
valuesParser.getShape().empty()
|
||||
? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType)
|
||||
: RankedTensorType::get(valuesParser.getShape(), valuesEltType);
|
||||
auto values = valuesParser.getAttr(valuesLoc, valuesType);
|
||||
|
||||
/// Sanity check.
|
||||
if (valuesType.getRank() != 1)
|
||||
return (emitError("expected 1-d tensor for values"), nullptr);
|
||||
|
||||
auto sameShape = (indicesType.getRank() == 1) ||
|
||||
(type.getRank() == indicesType.getDimSize(1));
|
||||
auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0);
|
||||
if (!sameShape || !sameElementNum) {
|
||||
emitError() << "expected shape ([" << type.getShape()
|
||||
<< "]); inferred shape of indices literal (["
|
||||
<< indicesType.getShape()
|
||||
<< "]); inferred shape of values literal (["
|
||||
<< valuesType.getShape() << "])";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Build the sparse elements attribute by the indices and values.
|
||||
return SparseElementsAttr::get(type, indices, values);
|
||||
}
|
|
@ -1,7 +1,12 @@
|
|||
add_mlir_library(MLIRParser
|
||||
AffineParser.cpp
|
||||
AttributeParser.cpp
|
||||
DialectSymbolParser.cpp
|
||||
Lexer.cpp
|
||||
LocationParser.cpp
|
||||
Parser.cpp
|
||||
Token.cpp
|
||||
TypeParser.cpp
|
||||
|
||||
ADDITIONAL_HEADER_DIRS
|
||||
${MLIR_MAIN_INCLUDE_DIR}/mlir/Parser
|
||||
|
|
|
@ -0,0 +1,617 @@
|
|||
//===- DialectSymbolParser.cpp - MLIR Dialect Symbol Parser --------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the parser for the dialect symbols, such as extended
|
||||
// attributes and types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Parser.h"
|
||||
#include "mlir/IR/Dialect.h"
|
||||
#include "mlir/IR/DialectImplementation.h"
|
||||
#include "mlir/IR/StandardTypes.h"
|
||||
#include "llvm/Support/SourceMgr.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::detail;
|
||||
using llvm::MemoryBuffer;
|
||||
using llvm::SMLoc;
|
||||
using llvm::SourceMgr;
|
||||
|
||||
namespace {
|
||||
/// This class provides the main implementation of the DialectAsmParser that
|
||||
/// allows for dialects to parse attributes and types. This allows for dialect
|
||||
/// hooking into the main MLIR parsing logic.
|
||||
class CustomDialectAsmParser : public DialectAsmParser {
|
||||
public:
|
||||
CustomDialectAsmParser(StringRef fullSpec, Parser &parser)
|
||||
: fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()),
|
||||
parser(parser) {}
|
||||
~CustomDialectAsmParser() override {}
|
||||
|
||||
/// Emit a diagnostic at the specified location and return failure.
|
||||
InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
|
||||
return parser.emitError(loc, message);
|
||||
}
|
||||
|
||||
/// Return a builder which provides useful access to MLIRContext, global
|
||||
/// objects like types and attributes.
|
||||
Builder &getBuilder() const override { return parser.builder; }
|
||||
|
||||
/// Get the location of the next token and store it into the argument. This
|
||||
/// always succeeds.
|
||||
llvm::SMLoc getCurrentLocation() override {
|
||||
return parser.getToken().getLoc();
|
||||
}
|
||||
|
||||
/// Return the location of the original name token.
|
||||
llvm::SMLoc getNameLoc() const override { return nameLoc; }
|
||||
|
||||
/// Re-encode the given source location as an MLIR location and return it.
|
||||
Location getEncodedSourceLoc(llvm::SMLoc loc) override {
|
||||
return parser.getEncodedSourceLocation(loc);
|
||||
}
|
||||
|
||||
/// Returns the full specification of the symbol being parsed. This allows
|
||||
/// for using a separate parser if necessary.
|
||||
StringRef getFullSymbolSpec() const override { return fullSpec; }
|
||||
|
||||
/// Parse a floating point value from the stream.
|
||||
ParseResult parseFloat(double &result) override {
|
||||
bool negative = parser.consumeIf(Token::minus);
|
||||
Token curTok = parser.getToken();
|
||||
|
||||
// Check for a floating point value.
|
||||
if (curTok.is(Token::floatliteral)) {
|
||||
auto val = curTok.getFloatingPointValue();
|
||||
if (!val.hasValue())
|
||||
return emitError(curTok.getLoc(), "floating point value too large");
|
||||
parser.consumeToken(Token::floatliteral);
|
||||
result = negative ? -*val : *val;
|
||||
return success();
|
||||
}
|
||||
|
||||
// TODO(riverriddle) support hex floating point values.
|
||||
return emitError(getCurrentLocation(), "expected floating point literal");
|
||||
}
|
||||
|
||||
/// Parse an optional integer value from the stream.
|
||||
OptionalParseResult parseOptionalInteger(uint64_t &result) override {
|
||||
Token curToken = parser.getToken();
|
||||
if (curToken.isNot(Token::integer, Token::minus))
|
||||
return llvm::None;
|
||||
|
||||
bool negative = parser.consumeIf(Token::minus);
|
||||
Token curTok = parser.getToken();
|
||||
if (parser.parseToken(Token::integer, "expected integer value"))
|
||||
return failure();
|
||||
|
||||
auto val = curTok.getUInt64IntegerValue();
|
||||
if (!val)
|
||||
return emitError(curTok.getLoc(), "integer value too large");
|
||||
result = negative ? -*val : *val;
|
||||
return success();
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Token Parsing
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
/// Parse a `->` token.
|
||||
ParseResult parseArrow() override {
|
||||
return parser.parseToken(Token::arrow, "expected '->'");
|
||||
}
|
||||
|
||||
/// Parses a `->` if present.
|
||||
ParseResult parseOptionalArrow() override {
|
||||
return success(parser.consumeIf(Token::arrow));
|
||||
}
|
||||
|
||||
/// Parse a '{' token.
|
||||
ParseResult parseLBrace() override {
|
||||
return parser.parseToken(Token::l_brace, "expected '{'");
|
||||
}
|
||||
|
||||
/// Parse a '{' token if present
|
||||
ParseResult parseOptionalLBrace() override {
|
||||
return success(parser.consumeIf(Token::l_brace));
|
||||
}
|
||||
|
||||
/// Parse a `}` token.
|
||||
ParseResult parseRBrace() override {
|
||||
return parser.parseToken(Token::r_brace, "expected '}'");
|
||||
}
|
||||
|
||||
/// Parse a `}` token if present
|
||||
ParseResult parseOptionalRBrace() override {
|
||||
return success(parser.consumeIf(Token::r_brace));
|
||||
}
|
||||
|
||||
/// Parse a `:` token.
|
||||
ParseResult parseColon() override {
|
||||
return parser.parseToken(Token::colon, "expected ':'");
|
||||
}
|
||||
|
||||
/// Parse a `:` token if present.
|
||||
ParseResult parseOptionalColon() override {
|
||||
return success(parser.consumeIf(Token::colon));
|
||||
}
|
||||
|
||||
/// Parse a `,` token.
|
||||
ParseResult parseComma() override {
|
||||
return parser.parseToken(Token::comma, "expected ','");
|
||||
}
|
||||
|
||||
/// Parse a `,` token if present.
|
||||
ParseResult parseOptionalComma() override {
|
||||
return success(parser.consumeIf(Token::comma));
|
||||
}
|
||||
|
||||
/// Parses a `...` if present.
|
||||
ParseResult parseOptionalEllipsis() override {
|
||||
return success(parser.consumeIf(Token::ellipsis));
|
||||
}
|
||||
|
||||
/// Parse a `=` token.
|
||||
ParseResult parseEqual() override {
|
||||
return parser.parseToken(Token::equal, "expected '='");
|
||||
}
|
||||
|
||||
/// Parse a `=` token if present.
|
||||
ParseResult parseOptionalEqual() override {
|
||||
return success(parser.consumeIf(Token::equal));
|
||||
}
|
||||
|
||||
/// Parse a '<' token.
|
||||
ParseResult parseLess() override {
|
||||
return parser.parseToken(Token::less, "expected '<'");
|
||||
}
|
||||
|
||||
/// Parse a `<` token if present.
|
||||
ParseResult parseOptionalLess() override {
|
||||
return success(parser.consumeIf(Token::less));
|
||||
}
|
||||
|
||||
/// Parse a '>' token.
|
||||
ParseResult parseGreater() override {
|
||||
return parser.parseToken(Token::greater, "expected '>'");
|
||||
}
|
||||
|
||||
/// Parse a `>` token if present.
|
||||
ParseResult parseOptionalGreater() override {
|
||||
return success(parser.consumeIf(Token::greater));
|
||||
}
|
||||
|
||||
/// Parse a `(` token.
|
||||
ParseResult parseLParen() override {
|
||||
return parser.parseToken(Token::l_paren, "expected '('");
|
||||
}
|
||||
|
||||
/// Parses a '(' if present.
|
||||
ParseResult parseOptionalLParen() override {
|
||||
return success(parser.consumeIf(Token::l_paren));
|
||||
}
|
||||
|
||||
/// Parse a `)` token.
|
||||
ParseResult parseRParen() override {
|
||||
return parser.parseToken(Token::r_paren, "expected ')'");
|
||||
}
|
||||
|
||||
/// Parses a ')' if present.
|
||||
ParseResult parseOptionalRParen() override {
|
||||
return success(parser.consumeIf(Token::r_paren));
|
||||
}
|
||||
|
||||
/// Parse a `[` token.
|
||||
ParseResult parseLSquare() override {
|
||||
return parser.parseToken(Token::l_square, "expected '['");
|
||||
}
|
||||
|
||||
/// Parses a '[' if present.
|
||||
ParseResult parseOptionalLSquare() override {
|
||||
return success(parser.consumeIf(Token::l_square));
|
||||
}
|
||||
|
||||
/// Parse a `]` token.
|
||||
ParseResult parseRSquare() override {
|
||||
return parser.parseToken(Token::r_square, "expected ']'");
|
||||
}
|
||||
|
||||
/// Parses a ']' if present.
|
||||
ParseResult parseOptionalRSquare() override {
|
||||
return success(parser.consumeIf(Token::r_square));
|
||||
}
|
||||
|
||||
/// Parses a '?' if present.
|
||||
ParseResult parseOptionalQuestion() override {
|
||||
return success(parser.consumeIf(Token::question));
|
||||
}
|
||||
|
||||
/// Parses a '*' if present.
|
||||
ParseResult parseOptionalStar() override {
|
||||
return success(parser.consumeIf(Token::star));
|
||||
}
|
||||
|
||||
/// Returns if the current token corresponds to a keyword.
|
||||
bool isCurrentTokenAKeyword() const {
|
||||
return parser.getToken().is(Token::bare_identifier) ||
|
||||
parser.getToken().isKeyword();
|
||||
}
|
||||
|
||||
/// Parse the given keyword if present.
|
||||
ParseResult parseOptionalKeyword(StringRef keyword) override {
|
||||
// Check that the current token has the same spelling.
|
||||
if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
|
||||
return failure();
|
||||
parser.consumeToken();
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse a keyword, if present, into 'keyword'.
|
||||
ParseResult parseOptionalKeyword(StringRef *keyword) override {
|
||||
// Check that the current token is a keyword.
|
||||
if (!isCurrentTokenAKeyword())
|
||||
return failure();
|
||||
|
||||
*keyword = parser.getTokenSpelling();
|
||||
parser.consumeToken();
|
||||
return success();
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Attribute Parsing
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
/// Parse an arbitrary attribute and return it in result.
|
||||
ParseResult parseAttribute(Attribute &result, Type type) override {
|
||||
result = parser.parseAttribute(type);
|
||||
return success(static_cast<bool>(result));
|
||||
}
|
||||
|
||||
/// Parse an affine map instance into 'map'.
|
||||
ParseResult parseAffineMap(AffineMap &map) override {
|
||||
return parser.parseAffineMapReference(map);
|
||||
}
|
||||
|
||||
/// Parse an integer set instance into 'set'.
|
||||
ParseResult printIntegerSet(IntegerSet &set) override {
|
||||
return parser.parseIntegerSetReference(set);
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Type Parsing
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
ParseResult parseType(Type &result) override {
|
||||
result = parser.parseType();
|
||||
return success(static_cast<bool>(result));
|
||||
}
|
||||
|
||||
ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions,
|
||||
bool allowDynamic) override {
|
||||
return parser.parseDimensionListRanked(dimensions, allowDynamic);
|
||||
}
|
||||
|
||||
private:
|
||||
/// The full symbol specification.
|
||||
StringRef fullSpec;
|
||||
|
||||
/// The source location of the dialect symbol.
|
||||
SMLoc nameLoc;
|
||||
|
||||
/// The main parser.
|
||||
Parser &parser;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
/// Parse the body of a pretty dialect symbol, which starts and ends with <>'s,
|
||||
/// and may be recursive. Return with the 'prettyName' StringRef encompassing
|
||||
/// the entire pretty name.
|
||||
///
|
||||
/// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>'
|
||||
/// pretty-dialect-sym-contents ::= pretty-dialect-sym-body
|
||||
/// | '(' pretty-dialect-sym-contents+ ')'
|
||||
/// | '[' pretty-dialect-sym-contents+ ']'
|
||||
/// | '{' pretty-dialect-sym-contents+ '}'
|
||||
/// | '[^[<({>\])}\0]+'
|
||||
///
|
||||
ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) {
|
||||
// Pretty symbol names are a relatively unstructured format that contains a
|
||||
// series of properly nested punctuation, with anything else in the middle.
|
||||
// Scan ahead to find it and consume it if successful, otherwise emit an
|
||||
// error.
|
||||
auto *curPtr = getTokenSpelling().data();
|
||||
|
||||
SmallVector<char, 8> nestedPunctuation;
|
||||
|
||||
// Scan over the nested punctuation, bailing out on error and consuming until
|
||||
// we find the end. We know that we're currently looking at the '<', so we
|
||||
// can go until we find the matching '>' character.
|
||||
assert(*curPtr == '<');
|
||||
do {
|
||||
char c = *curPtr++;
|
||||
switch (c) {
|
||||
case '\0':
|
||||
// This also handles the EOF case.
|
||||
return emitError("unexpected nul or EOF in pretty dialect name");
|
||||
case '<':
|
||||
case '[':
|
||||
case '(':
|
||||
case '{':
|
||||
nestedPunctuation.push_back(c);
|
||||
continue;
|
||||
|
||||
case '-':
|
||||
// The sequence `->` is treated as special token.
|
||||
if (*curPtr == '>')
|
||||
++curPtr;
|
||||
continue;
|
||||
|
||||
case '>':
|
||||
if (nestedPunctuation.pop_back_val() != '<')
|
||||
return emitError("unbalanced '>' character in pretty dialect name");
|
||||
break;
|
||||
case ']':
|
||||
if (nestedPunctuation.pop_back_val() != '[')
|
||||
return emitError("unbalanced ']' character in pretty dialect name");
|
||||
break;
|
||||
case ')':
|
||||
if (nestedPunctuation.pop_back_val() != '(')
|
||||
return emitError("unbalanced ')' character in pretty dialect name");
|
||||
break;
|
||||
case '}':
|
||||
if (nestedPunctuation.pop_back_val() != '{')
|
||||
return emitError("unbalanced '}' character in pretty dialect name");
|
||||
break;
|
||||
|
||||
default:
|
||||
continue;
|
||||
}
|
||||
} while (!nestedPunctuation.empty());
|
||||
|
||||
// Ok, we succeeded, remember where we stopped, reset the lexer to know it is
|
||||
// consuming all this stuff, and return.
|
||||
state.lex.resetPointer(curPtr);
|
||||
|
||||
unsigned length = curPtr - prettyName.begin();
|
||||
prettyName = StringRef(prettyName.begin(), length);
|
||||
consumeToken();
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse an extended dialect symbol.
|
||||
template <typename Symbol, typename SymbolAliasMap, typename CreateFn>
|
||||
static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok,
|
||||
SymbolAliasMap &aliases,
|
||||
CreateFn &&createSymbol) {
|
||||
// Parse the dialect namespace.
|
||||
StringRef identifier = p.getTokenSpelling().drop_front();
|
||||
auto loc = p.getToken().getLoc();
|
||||
p.consumeToken(identifierTok);
|
||||
|
||||
// If there is no '<' token following this, and if the typename contains no
|
||||
// dot, then we are parsing a symbol alias.
|
||||
if (p.getToken().isNot(Token::less) && !identifier.contains('.')) {
|
||||
// Check for an alias for this type.
|
||||
auto aliasIt = aliases.find(identifier);
|
||||
if (aliasIt == aliases.end())
|
||||
return (p.emitError("undefined symbol alias id '" + identifier + "'"),
|
||||
nullptr);
|
||||
return aliasIt->second;
|
||||
}
|
||||
|
||||
// Otherwise, we are parsing a dialect-specific symbol. If the name contains
|
||||
// a dot, then this is the "pretty" form. If not, it is the verbose form that
|
||||
// looks like <"...">.
|
||||
std::string symbolData;
|
||||
auto dialectName = identifier;
|
||||
|
||||
// Handle the verbose form, where "identifier" is a simple dialect name.
|
||||
if (!identifier.contains('.')) {
|
||||
// Consume the '<'.
|
||||
if (p.parseToken(Token::less, "expected '<' in dialect type"))
|
||||
return nullptr;
|
||||
|
||||
// Parse the symbol specific data.
|
||||
if (p.getToken().isNot(Token::string))
|
||||
return (p.emitError("expected string literal data in dialect symbol"),
|
||||
nullptr);
|
||||
symbolData = p.getToken().getStringValue();
|
||||
loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1);
|
||||
p.consumeToken(Token::string);
|
||||
|
||||
// Consume the '>'.
|
||||
if (p.parseToken(Token::greater, "expected '>' in dialect symbol"))
|
||||
return nullptr;
|
||||
} else {
|
||||
// Ok, the dialect name is the part of the identifier before the dot, the
|
||||
// part after the dot is the dialect's symbol, or the start thereof.
|
||||
auto dotHalves = identifier.split('.');
|
||||
dialectName = dotHalves.first;
|
||||
auto prettyName = dotHalves.second;
|
||||
loc = llvm::SMLoc::getFromPointer(prettyName.data());
|
||||
|
||||
// If the dialect's symbol is followed immediately by a <, then lex the body
|
||||
// of it into prettyName.
|
||||
if (p.getToken().is(Token::less) &&
|
||||
prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) {
|
||||
if (p.parsePrettyDialectSymbolName(prettyName))
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
symbolData = prettyName.str();
|
||||
}
|
||||
|
||||
// Record the name location of the type remapped to the top level buffer.
|
||||
llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc);
|
||||
p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer);
|
||||
|
||||
// Call into the provided symbol construction function.
|
||||
Symbol sym = createSymbol(dialectName, symbolData, loc);
|
||||
|
||||
// Pop the last parser location.
|
||||
p.getState().symbols.nestedParserLocs.pop_back();
|
||||
return sym;
|
||||
}
|
||||
|
||||
/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
|
||||
/// parsing failed, nullptr is returned. The number of bytes read from the input
|
||||
/// string is returned in 'numRead'.
|
||||
template <typename T, typename ParserFn>
|
||||
static T parseSymbol(StringRef inputStr, MLIRContext *context,
|
||||
SymbolState &symbolState, ParserFn &&parserFn,
|
||||
size_t *numRead = nullptr) {
|
||||
SourceMgr sourceMgr;
|
||||
auto memBuffer = MemoryBuffer::getMemBuffer(
|
||||
inputStr, /*BufferName=*/"<mlir_parser_buffer>",
|
||||
/*RequiresNullTerminator=*/false);
|
||||
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
|
||||
ParserState state(sourceMgr, context, symbolState);
|
||||
Parser parser(state);
|
||||
|
||||
Token startTok = parser.getToken();
|
||||
T symbol = parserFn(parser);
|
||||
if (!symbol)
|
||||
return T();
|
||||
|
||||
// If 'numRead' is valid, then provide the number of bytes that were read.
|
||||
Token endTok = parser.getToken();
|
||||
if (numRead) {
|
||||
*numRead = static_cast<size_t>(endTok.getLoc().getPointer() -
|
||||
startTok.getLoc().getPointer());
|
||||
|
||||
// Otherwise, ensure that all of the tokens were parsed.
|
||||
} else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) {
|
||||
parser.emitError(endTok.getLoc(), "encountered unexpected token");
|
||||
return T();
|
||||
}
|
||||
return symbol;
|
||||
}
|
||||
|
||||
/// Parse an extended attribute.
|
||||
///
|
||||
/// extended-attribute ::= (dialect-attribute | attribute-alias)
|
||||
/// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>`
|
||||
/// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body?
|
||||
/// attribute-alias ::= `#` alias-name
|
||||
///
|
||||
Attribute Parser::parseExtendedAttr(Type type) {
|
||||
Attribute attr = parseExtendedSymbol<Attribute>(
|
||||
*this, Token::hash_identifier, state.symbols.attributeAliasDefinitions,
|
||||
[&](StringRef dialectName, StringRef symbolData,
|
||||
llvm::SMLoc loc) -> Attribute {
|
||||
// Parse an optional trailing colon type.
|
||||
Type attrType = type;
|
||||
if (consumeIf(Token::colon) && !(attrType = parseType()))
|
||||
return Attribute();
|
||||
|
||||
// If we found a registered dialect, then ask it to parse the attribute.
|
||||
if (auto *dialect = state.context->getRegisteredDialect(dialectName)) {
|
||||
return parseSymbol<Attribute>(
|
||||
symbolData, state.context, state.symbols, [&](Parser &parser) {
|
||||
CustomDialectAsmParser customParser(symbolData, parser);
|
||||
return dialect->parseAttribute(customParser, attrType);
|
||||
});
|
||||
}
|
||||
|
||||
// Otherwise, form a new opaque attribute.
|
||||
return OpaqueAttr::getChecked(
|
||||
Identifier::get(dialectName, state.context), symbolData,
|
||||
attrType ? attrType : NoneType::get(state.context),
|
||||
getEncodedSourceLocation(loc));
|
||||
});
|
||||
|
||||
// Ensure that the attribute has the same type as requested.
|
||||
if (attr && type && attr.getType() != type) {
|
||||
emitError("attribute type different than expected: expected ")
|
||||
<< type << ", but got " << attr.getType();
|
||||
return nullptr;
|
||||
}
|
||||
return attr;
|
||||
}
|
||||
|
||||
/// Parse an extended type.
|
||||
///
|
||||
/// extended-type ::= (dialect-type | type-alias)
|
||||
/// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>`
|
||||
/// dialect-type ::= `!` alias-name pretty-dialect-attribute-body?
|
||||
/// type-alias ::= `!` alias-name
|
||||
///
|
||||
Type Parser::parseExtendedType() {
|
||||
return parseExtendedSymbol<Type>(
|
||||
*this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions,
|
||||
[&](StringRef dialectName, StringRef symbolData,
|
||||
llvm::SMLoc loc) -> Type {
|
||||
// If we found a registered dialect, then ask it to parse the type.
|
||||
if (auto *dialect = state.context->getRegisteredDialect(dialectName)) {
|
||||
return parseSymbol<Type>(
|
||||
symbolData, state.context, state.symbols, [&](Parser &parser) {
|
||||
CustomDialectAsmParser customParser(symbolData, parser);
|
||||
return dialect->parseType(customParser);
|
||||
});
|
||||
}
|
||||
|
||||
// Otherwise, form a new opaque type.
|
||||
return OpaqueType::getChecked(
|
||||
Identifier::get(dialectName, state.context), symbolData,
|
||||
state.context, getEncodedSourceLocation(loc));
|
||||
});
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// mlir::parseAttribute/parseType
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
|
||||
/// parsing failed, nullptr is returned. The number of bytes read from the input
|
||||
/// string is returned in 'numRead'.
|
||||
template <typename T, typename ParserFn>
|
||||
static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead,
|
||||
ParserFn &&parserFn) {
|
||||
SymbolState aliasState;
|
||||
return parseSymbol<T>(
|
||||
inputStr, context, aliasState,
|
||||
[&](Parser &parser) {
|
||||
SourceMgrDiagnosticHandler handler(
|
||||
const_cast<llvm::SourceMgr &>(parser.getSourceMgr()),
|
||||
parser.getContext());
|
||||
return parserFn(parser);
|
||||
},
|
||||
&numRead);
|
||||
}
|
||||
|
||||
Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) {
|
||||
size_t numRead = 0;
|
||||
return parseAttribute(attrStr, context, numRead);
|
||||
}
|
||||
Attribute mlir::parseAttribute(StringRef attrStr, Type type) {
|
||||
size_t numRead = 0;
|
||||
return parseAttribute(attrStr, type, numRead);
|
||||
}
|
||||
|
||||
Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context,
|
||||
size_t &numRead) {
|
||||
return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) {
|
||||
return parser.parseAttribute();
|
||||
});
|
||||
}
|
||||
Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) {
|
||||
return parseSymbol<Attribute>(
|
||||
attrStr, type.getContext(), numRead,
|
||||
[type](Parser &parser) { return parser.parseAttribute(type); });
|
||||
}
|
||||
|
||||
Type mlir::parseType(StringRef typeStr, MLIRContext *context) {
|
||||
size_t numRead = 0;
|
||||
return parseType(typeStr, context, numRead);
|
||||
}
|
||||
|
||||
Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) {
|
||||
return parseSymbol<Type>(typeStr, context, numRead,
|
||||
[](Parser &parser) { return parser.parseType(); });
|
||||
}
|
|
@ -0,0 +1,197 @@
|
|||
//===- LocationParser.cpp - MLIR Location Parser -------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Parser.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::detail;
|
||||
|
||||
/// Parse a location.
|
||||
///
|
||||
/// location ::= `loc` inline-location
|
||||
/// inline-location ::= '(' location-inst ')'
|
||||
///
|
||||
ParseResult Parser::parseLocation(LocationAttr &loc) {
|
||||
// Check for 'loc' identifier.
|
||||
if (parseToken(Token::kw_loc, "expected 'loc' keyword"))
|
||||
return emitError();
|
||||
|
||||
// Parse the inline-location.
|
||||
if (parseToken(Token::l_paren, "expected '(' in inline location") ||
|
||||
parseLocationInstance(loc) ||
|
||||
parseToken(Token::r_paren, "expected ')' in inline location"))
|
||||
return failure();
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Specific location instances.
|
||||
///
|
||||
/// location-inst ::= filelinecol-location |
|
||||
/// name-location |
|
||||
/// callsite-location |
|
||||
/// fused-location |
|
||||
/// unknown-location
|
||||
/// filelinecol-location ::= string-literal ':' integer-literal
|
||||
/// ':' integer-literal
|
||||
/// name-location ::= string-literal
|
||||
/// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')'
|
||||
/// fused-location ::= fused ('<' attribute-value '>')?
|
||||
/// '[' location-inst (location-inst ',')* ']'
|
||||
/// unknown-location ::= 'unknown'
|
||||
///
|
||||
ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) {
|
||||
consumeToken(Token::bare_identifier);
|
||||
|
||||
// Parse the '('.
|
||||
if (parseToken(Token::l_paren, "expected '(' in callsite location"))
|
||||
return failure();
|
||||
|
||||
// Parse the callee location.
|
||||
LocationAttr calleeLoc;
|
||||
if (parseLocationInstance(calleeLoc))
|
||||
return failure();
|
||||
|
||||
// Parse the 'at'.
|
||||
if (getToken().isNot(Token::bare_identifier) ||
|
||||
getToken().getSpelling() != "at")
|
||||
return emitError("expected 'at' in callsite location");
|
||||
consumeToken(Token::bare_identifier);
|
||||
|
||||
// Parse the caller location.
|
||||
LocationAttr callerLoc;
|
||||
if (parseLocationInstance(callerLoc))
|
||||
return failure();
|
||||
|
||||
// Parse the ')'.
|
||||
if (parseToken(Token::r_paren, "expected ')' in callsite location"))
|
||||
return failure();
|
||||
|
||||
// Return the callsite location.
|
||||
loc = CallSiteLoc::get(calleeLoc, callerLoc);
|
||||
return success();
|
||||
}
|
||||
|
||||
ParseResult Parser::parseFusedLocation(LocationAttr &loc) {
|
||||
consumeToken(Token::bare_identifier);
|
||||
|
||||
// Try to parse the optional metadata.
|
||||
Attribute metadata;
|
||||
if (consumeIf(Token::less)) {
|
||||
metadata = parseAttribute();
|
||||
if (!metadata)
|
||||
return emitError("expected valid attribute metadata");
|
||||
// Parse the '>' token.
|
||||
if (parseToken(Token::greater,
|
||||
"expected '>' after fused location metadata"))
|
||||
return failure();
|
||||
}
|
||||
|
||||
SmallVector<Location, 4> locations;
|
||||
auto parseElt = [&] {
|
||||
LocationAttr newLoc;
|
||||
if (parseLocationInstance(newLoc))
|
||||
return failure();
|
||||
locations.push_back(newLoc);
|
||||
return success();
|
||||
};
|
||||
|
||||
if (parseToken(Token::l_square, "expected '[' in fused location") ||
|
||||
parseCommaSeparatedList(parseElt) ||
|
||||
parseToken(Token::r_square, "expected ']' in fused location"))
|
||||
return failure();
|
||||
|
||||
// Return the fused location.
|
||||
loc = FusedLoc::get(locations, metadata, getContext());
|
||||
return success();
|
||||
}
|
||||
|
||||
ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) {
|
||||
auto *ctx = getContext();
|
||||
auto str = getToken().getStringValue();
|
||||
consumeToken(Token::string);
|
||||
|
||||
// If the next token is ':' this is a filelinecol location.
|
||||
if (consumeIf(Token::colon)) {
|
||||
// Parse the line number.
|
||||
if (getToken().isNot(Token::integer))
|
||||
return emitError("expected integer line number in FileLineColLoc");
|
||||
auto line = getToken().getUnsignedIntegerValue();
|
||||
if (!line.hasValue())
|
||||
return emitError("expected integer line number in FileLineColLoc");
|
||||
consumeToken(Token::integer);
|
||||
|
||||
// Parse the ':'.
|
||||
if (parseToken(Token::colon, "expected ':' in FileLineColLoc"))
|
||||
return failure();
|
||||
|
||||
// Parse the column number.
|
||||
if (getToken().isNot(Token::integer))
|
||||
return emitError("expected integer column number in FileLineColLoc");
|
||||
auto column = getToken().getUnsignedIntegerValue();
|
||||
if (!column.hasValue())
|
||||
return emitError("expected integer column number in FileLineColLoc");
|
||||
consumeToken(Token::integer);
|
||||
|
||||
loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx);
|
||||
return success();
|
||||
}
|
||||
|
||||
// Otherwise, this is a NameLoc.
|
||||
|
||||
// Check for a child location.
|
||||
if (consumeIf(Token::l_paren)) {
|
||||
auto childSourceLoc = getToken().getLoc();
|
||||
|
||||
// Parse the child location.
|
||||
LocationAttr childLoc;
|
||||
if (parseLocationInstance(childLoc))
|
||||
return failure();
|
||||
|
||||
// The child must not be another NameLoc.
|
||||
if (childLoc.isa<NameLoc>())
|
||||
return emitError(childSourceLoc,
|
||||
"child of NameLoc cannot be another NameLoc");
|
||||
loc = NameLoc::get(Identifier::get(str, ctx), childLoc);
|
||||
|
||||
// Parse the closing ')'.
|
||||
if (parseToken(Token::r_paren,
|
||||
"expected ')' after child location of NameLoc"))
|
||||
return failure();
|
||||
} else {
|
||||
loc = NameLoc::get(Identifier::get(str, ctx), ctx);
|
||||
}
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
ParseResult Parser::parseLocationInstance(LocationAttr &loc) {
|
||||
// Handle either name or filelinecol locations.
|
||||
if (getToken().is(Token::string))
|
||||
return parseNameOrFileLineColLocation(loc);
|
||||
|
||||
// Bare tokens required for other cases.
|
||||
if (!getToken().is(Token::bare_identifier))
|
||||
return emitError("expected location instance");
|
||||
|
||||
// Check for the 'callsite' signifying a callsite location.
|
||||
if (getToken().getSpelling() == "callsite")
|
||||
return parseCallSiteLocation(loc);
|
||||
|
||||
// If the token is 'fused', then this is a fused location.
|
||||
if (getToken().getSpelling() == "fused")
|
||||
return parseFusedLocation(loc);
|
||||
|
||||
// Check for a 'unknown' for an unknown location.
|
||||
if (getToken().getSpelling() == "unknown") {
|
||||
consumeToken(Token::bare_identifier);
|
||||
loc = UnknownLoc::get(getContext());
|
||||
return success();
|
||||
}
|
||||
|
||||
return emitError("expected location instance");
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,270 @@
|
|||
//===- Parser.h - MLIR Base Parser Class ------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef MLIR_LIB_PARSER_PARSER_H
|
||||
#define MLIR_LIB_PARSER_PARSER_H
|
||||
|
||||
#include "ParserState.h"
|
||||
#include "mlir/IR/Builders.h"
|
||||
#include "mlir/IR/OpImplementation.h"
|
||||
|
||||
namespace mlir {
|
||||
namespace detail {
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Parser
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// This class implement support for parsing global entities like attributes and
|
||||
/// types. It is intended to be subclassed by specialized subparsers that
|
||||
/// include state.
|
||||
class Parser {
|
||||
public:
|
||||
Builder builder;
|
||||
|
||||
Parser(ParserState &state) : builder(state.context), state(state) {}
|
||||
|
||||
// Helper methods to get stuff from the parser-global state.
|
||||
ParserState &getState() const { return state; }
|
||||
MLIRContext *getContext() const { return state.context; }
|
||||
const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); }
|
||||
|
||||
/// Parse a comma-separated list of elements up until the specified end token.
|
||||
ParseResult
|
||||
parseCommaSeparatedListUntil(Token::Kind rightToken,
|
||||
const std::function<ParseResult()> &parseElement,
|
||||
bool allowEmptyList = true);
|
||||
|
||||
/// Parse a comma separated list of elements that must have at least one entry
|
||||
/// in it.
|
||||
ParseResult
|
||||
parseCommaSeparatedList(const std::function<ParseResult()> &parseElement);
|
||||
|
||||
ParseResult parsePrettyDialectSymbolName(StringRef &prettyName);
|
||||
|
||||
// We have two forms of parsing methods - those that return a non-null
|
||||
// pointer on success, and those that return a ParseResult to indicate whether
|
||||
// they returned a failure. The second class fills in by-reference arguments
|
||||
// as the results of their action.
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Error Handling
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
/// Emit an error and return failure.
|
||||
InFlightDiagnostic emitError(const Twine &message = {}) {
|
||||
return emitError(state.curToken.getLoc(), message);
|
||||
}
|
||||
InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message = {});
|
||||
|
||||
/// Encode the specified source location information into an attribute for
|
||||
/// attachment to the IR.
|
||||
Location getEncodedSourceLocation(llvm::SMLoc loc) {
|
||||
// If there are no active nested parsers, we can get the encoded source
|
||||
// location directly.
|
||||
if (state.parserDepth == 0)
|
||||
return state.lex.getEncodedSourceLocation(loc);
|
||||
// Otherwise, we need to re-encode it to point to the top level buffer.
|
||||
return state.symbols.topLevelLexer->getEncodedSourceLocation(
|
||||
remapLocationToTopLevelBuffer(loc));
|
||||
}
|
||||
|
||||
/// Remaps the given SMLoc to the top level lexer of the parser. This is used
|
||||
/// to adjust locations of potentially nested parsers to ensure that they can
|
||||
/// be emitted properly as diagnostics.
|
||||
llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) {
|
||||
// If there are no active nested parsers, we can return location directly.
|
||||
SymbolState &symbols = state.symbols;
|
||||
if (state.parserDepth == 0)
|
||||
return loc;
|
||||
assert(symbols.topLevelLexer && "expected valid top-level lexer");
|
||||
|
||||
// Otherwise, we need to remap the location to the main parser. This is
|
||||
// simply offseting the location onto the location of the last nested
|
||||
// parser.
|
||||
size_t offset = loc.getPointer() - state.lex.getBufferBegin();
|
||||
auto *rawLoc =
|
||||
symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset;
|
||||
return llvm::SMLoc::getFromPointer(rawLoc);
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Token Parsing
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
/// Return the current token the parser is inspecting.
|
||||
const Token &getToken() const { return state.curToken; }
|
||||
StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }
|
||||
|
||||
/// If the current token has the specified kind, consume it and return true.
|
||||
/// If not, return false.
|
||||
bool consumeIf(Token::Kind kind) {
|
||||
if (state.curToken.isNot(kind))
|
||||
return false;
|
||||
consumeToken(kind);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Advance the current lexer onto the next token.
|
||||
void consumeToken() {
|
||||
assert(state.curToken.isNot(Token::eof, Token::error) &&
|
||||
"shouldn't advance past EOF or errors");
|
||||
state.curToken = state.lex.lexToken();
|
||||
}
|
||||
|
||||
/// Advance the current lexer onto the next token, asserting what the expected
|
||||
/// current token is. This is preferred to the above method because it leads
|
||||
/// to more self-documenting code with better checking.
|
||||
void consumeToken(Token::Kind kind) {
|
||||
assert(state.curToken.is(kind) && "consumed an unexpected token");
|
||||
consumeToken();
|
||||
}
|
||||
|
||||
/// Consume the specified token if present and return success. On failure,
|
||||
/// output a diagnostic and return failure.
|
||||
ParseResult parseToken(Token::Kind expectedToken, const Twine &message);
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Type Parsing
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements);
|
||||
ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements);
|
||||
ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements);
|
||||
|
||||
/// Optionally parse a type.
|
||||
OptionalParseResult parseOptionalType(Type &type);
|
||||
|
||||
/// Parse an arbitrary type.
|
||||
Type parseType();
|
||||
|
||||
/// Parse a complex type.
|
||||
Type parseComplexType();
|
||||
|
||||
/// Parse an extended type.
|
||||
Type parseExtendedType();
|
||||
|
||||
/// Parse a function type.
|
||||
Type parseFunctionType();
|
||||
|
||||
/// Parse a memref type.
|
||||
Type parseMemRefType();
|
||||
|
||||
/// Parse a non function type.
|
||||
Type parseNonFunctionType();
|
||||
|
||||
/// Parse a tensor type.
|
||||
Type parseTensorType();
|
||||
|
||||
/// Parse a tuple type.
|
||||
Type parseTupleType();
|
||||
|
||||
/// Parse a vector type.
|
||||
VectorType parseVectorType();
|
||||
ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
|
||||
bool allowDynamic = true);
|
||||
ParseResult parseXInDimensionList();
|
||||
|
||||
/// Parse strided layout specification.
|
||||
ParseResult parseStridedLayout(int64_t &offset,
|
||||
SmallVectorImpl<int64_t> &strides);
|
||||
|
||||
// Parse a brace-delimiter list of comma-separated integers with `?` as an
|
||||
// unknown marker.
|
||||
ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions);
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Attribute Parsing
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
/// Parse an arbitrary attribute with an optional type.
|
||||
Attribute parseAttribute(Type type = {});
|
||||
|
||||
/// Parse an attribute dictionary.
|
||||
ParseResult parseAttributeDict(NamedAttrList &attributes);
|
||||
|
||||
/// Parse an extended attribute.
|
||||
Attribute parseExtendedAttr(Type type);
|
||||
|
||||
/// Parse a float attribute.
|
||||
Attribute parseFloatAttr(Type type, bool isNegative);
|
||||
|
||||
/// Parse a decimal or a hexadecimal literal, which can be either an integer
|
||||
/// or a float attribute.
|
||||
Attribute parseDecOrHexAttr(Type type, bool isNegative);
|
||||
|
||||
/// Parse an opaque elements attribute.
|
||||
Attribute parseOpaqueElementsAttr(Type attrType);
|
||||
|
||||
/// Parse a dense elements attribute.
|
||||
Attribute parseDenseElementsAttr(Type attrType);
|
||||
ShapedType parseElementsLiteralType(Type type);
|
||||
|
||||
/// Parse a sparse elements attribute.
|
||||
Attribute parseSparseElementsAttr(Type attrType);
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Location Parsing
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
/// Parse an inline location.
|
||||
ParseResult parseLocation(LocationAttr &loc);
|
||||
|
||||
/// Parse a raw location instance.
|
||||
ParseResult parseLocationInstance(LocationAttr &loc);
|
||||
|
||||
/// Parse a callsite location instance.
|
||||
ParseResult parseCallSiteLocation(LocationAttr &loc);
|
||||
|
||||
/// Parse a fused location instance.
|
||||
ParseResult parseFusedLocation(LocationAttr &loc);
|
||||
|
||||
/// Parse a name or FileLineCol location instance.
|
||||
ParseResult parseNameOrFileLineColLocation(LocationAttr &loc);
|
||||
|
||||
/// Parse an optional trailing location.
|
||||
///
|
||||
/// trailing-location ::= (`loc` `(` location `)`)?
|
||||
///
|
||||
ParseResult parseOptionalTrailingLocation(Location &loc) {
|
||||
// If there is a 'loc' we parse a trailing location.
|
||||
if (!getToken().is(Token::kw_loc))
|
||||
return success();
|
||||
|
||||
// Parse the location.
|
||||
LocationAttr directLoc;
|
||||
if (parseLocation(directLoc))
|
||||
return failure();
|
||||
loc = directLoc;
|
||||
return success();
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Affine Parsing
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
/// Parse a reference to either an affine map, or an integer set.
|
||||
ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map,
|
||||
IntegerSet &set);
|
||||
ParseResult parseAffineMapReference(AffineMap &map);
|
||||
ParseResult parseIntegerSetReference(IntegerSet &set);
|
||||
|
||||
/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
|
||||
ParseResult
|
||||
parseAffineMapOfSSAIds(AffineMap &map,
|
||||
function_ref<ParseResult(bool)> parseElement,
|
||||
OpAsmParser::Delimiter delimiter);
|
||||
|
||||
private:
|
||||
/// The Parser is subclassed and reinstantiated. Do not add additional
|
||||
/// non-trivial state here, add it to the ParserState class.
|
||||
ParserState &state;
|
||||
};
|
||||
} // end namespace detail
|
||||
} // end namespace mlir
|
||||
|
||||
#endif // MLIR_LIB_PARSER_PARSER_H
|
|
@ -0,0 +1,85 @@
|
|||
//===- ParserState.h - MLIR ParserState -------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef MLIR_LIB_PARSER_PARSERSTATE_H
|
||||
#define MLIR_LIB_PARSER_PARSERSTATE_H
|
||||
|
||||
#include "Lexer.h"
|
||||
#include "mlir/IR/Attributes.h"
|
||||
#include "llvm/ADT/StringMap.h"
|
||||
|
||||
namespace mlir {
|
||||
namespace detail {
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// SymbolState
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// This class contains record of any parsed top-level symbols.
|
||||
struct SymbolState {
|
||||
// A map from attribute alias identifier to Attribute.
|
||||
llvm::StringMap<Attribute> attributeAliasDefinitions;
|
||||
|
||||
// A map from type alias identifier to Type.
|
||||
llvm::StringMap<Type> typeAliasDefinitions;
|
||||
|
||||
/// A set of locations into the main parser memory buffer for each of the
|
||||
/// active nested parsers. Given that some nested parsers, i.e. custom dialect
|
||||
/// parsers, operate on a temporary memory buffer, this provides an anchor
|
||||
/// point for emitting diagnostics.
|
||||
SmallVector<llvm::SMLoc, 1> nestedParserLocs;
|
||||
|
||||
/// The top-level lexer that contains the original memory buffer provided by
|
||||
/// the user. This is used by nested parsers to get a properly encoded source
|
||||
/// location.
|
||||
Lexer *topLevelLexer = nullptr;
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ParserState
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// This class refers to all of the state maintained globally by the parser,
|
||||
/// such as the current lexer position etc.
|
||||
struct ParserState {
|
||||
ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx,
|
||||
SymbolState &symbols)
|
||||
: context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()),
|
||||
symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) {
|
||||
// Set the top level lexer for the symbol state if one doesn't exist.
|
||||
if (!symbols.topLevelLexer)
|
||||
symbols.topLevelLexer = &lex;
|
||||
}
|
||||
~ParserState() {
|
||||
// Reset the top level lexer if it refers the lexer in our state.
|
||||
if (symbols.topLevelLexer == &lex)
|
||||
symbols.topLevelLexer = nullptr;
|
||||
}
|
||||
ParserState(const ParserState &) = delete;
|
||||
void operator=(const ParserState &) = delete;
|
||||
|
||||
/// The context we're parsing into.
|
||||
MLIRContext *const context;
|
||||
|
||||
/// The lexer for the source file we're parsing.
|
||||
Lexer lex;
|
||||
|
||||
/// This is the next token that hasn't been consumed yet.
|
||||
Token curToken;
|
||||
|
||||
/// The current state for symbol parsing.
|
||||
SymbolState &symbols;
|
||||
|
||||
/// The depth of this parser in the nested parsing stack.
|
||||
size_t parserDepth;
|
||||
};
|
||||
|
||||
} // end namespace detail
|
||||
} // end namespace mlir
|
||||
|
||||
#endif // MLIR_LIB_PARSER_PARSERSTATE_H
|
|
@ -124,6 +124,18 @@ std::string Token::getStringValue() const {
|
|||
return result;
|
||||
}
|
||||
|
||||
/// Given a token containing a symbol reference, return the unescaped string
|
||||
/// value.
|
||||
std::string Token::getSymbolReference() const {
|
||||
assert(is(Token::at_identifier) && "expected valid @-identifier");
|
||||
StringRef nameStr = getSpelling().drop_front();
|
||||
|
||||
// Check to see if the reference is a string literal, or a bare identifier.
|
||||
if (nameStr.front() == '"')
|
||||
return getStringValue();
|
||||
return std::string(nameStr);
|
||||
}
|
||||
|
||||
/// Given a hash_identifier token like #123, try to parse the number out of
|
||||
/// the identifier, returning None if it is a named identifier like #x or
|
||||
/// if the integer doesn't fit.
|
||||
|
|
|
@ -91,6 +91,10 @@ public:
|
|||
/// removing the quote characters and unescaping the contents of the string.
|
||||
std::string getStringValue() const;
|
||||
|
||||
/// Given a token containing a symbol reference, return the unescaped string
|
||||
/// value.
|
||||
std::string getSymbolReference() const;
|
||||
|
||||
// Location processing.
|
||||
llvm::SMLoc getLoc() const;
|
||||
llvm::SMLoc getEndLoc() const;
|
||||
|
|
|
@ -0,0 +1,570 @@
|
|||
//===- TypeParser.cpp - MLIR Type Parser Implementation -------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the parser for the MLIR Types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Parser.h"
|
||||
#include "mlir/IR/AffineMap.h"
|
||||
#include "mlir/IR/StandardTypes.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::detail;
|
||||
|
||||
/// Optionally parse a type.
|
||||
OptionalParseResult Parser::parseOptionalType(Type &type) {
|
||||
// There are many different starting tokens for a type, check them here.
|
||||
switch (getToken().getKind()) {
|
||||
case Token::l_paren:
|
||||
case Token::kw_memref:
|
||||
case Token::kw_tensor:
|
||||
case Token::kw_complex:
|
||||
case Token::kw_tuple:
|
||||
case Token::kw_vector:
|
||||
case Token::inttype:
|
||||
case Token::kw_bf16:
|
||||
case Token::kw_f16:
|
||||
case Token::kw_f32:
|
||||
case Token::kw_f64:
|
||||
case Token::kw_index:
|
||||
case Token::kw_none:
|
||||
case Token::exclamation_identifier:
|
||||
return failure(!(type = parseType()));
|
||||
|
||||
default:
|
||||
return llvm::None;
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse an arbitrary type.
|
||||
///
|
||||
/// type ::= function-type
|
||||
/// | non-function-type
|
||||
///
|
||||
Type Parser::parseType() {
|
||||
if (getToken().is(Token::l_paren))
|
||||
return parseFunctionType();
|
||||
return parseNonFunctionType();
|
||||
}
|
||||
|
||||
/// Parse a function result type.
|
||||
///
|
||||
/// function-result-type ::= type-list-parens
|
||||
/// | non-function-type
|
||||
///
|
||||
ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) {
|
||||
if (getToken().is(Token::l_paren))
|
||||
return parseTypeListParens(elements);
|
||||
|
||||
Type t = parseNonFunctionType();
|
||||
if (!t)
|
||||
return failure();
|
||||
elements.push_back(t);
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse a list of types without an enclosing parenthesis. The list must have
|
||||
/// at least one member.
|
||||
///
|
||||
/// type-list-no-parens ::= type (`,` type)*
|
||||
///
|
||||
ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) {
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
auto elt = parseType();
|
||||
elements.push_back(elt);
|
||||
return elt ? success() : failure();
|
||||
};
|
||||
|
||||
return parseCommaSeparatedList(parseElt);
|
||||
}
|
||||
|
||||
/// Parse a parenthesized list of types.
|
||||
///
|
||||
/// type-list-parens ::= `(` `)`
|
||||
/// | `(` type-list-no-parens `)`
|
||||
///
|
||||
ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) {
|
||||
if (parseToken(Token::l_paren, "expected '('"))
|
||||
return failure();
|
||||
|
||||
// Handle empty lists.
|
||||
if (getToken().is(Token::r_paren))
|
||||
return consumeToken(), success();
|
||||
|
||||
if (parseTypeListNoParens(elements) ||
|
||||
parseToken(Token::r_paren, "expected ')'"))
|
||||
return failure();
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse a complex type.
|
||||
///
|
||||
/// complex-type ::= `complex` `<` type `>`
|
||||
///
|
||||
Type Parser::parseComplexType() {
|
||||
consumeToken(Token::kw_complex);
|
||||
|
||||
// Parse the '<'.
|
||||
if (parseToken(Token::less, "expected '<' in complex type"))
|
||||
return nullptr;
|
||||
|
||||
llvm::SMLoc elementTypeLoc = getToken().getLoc();
|
||||
auto elementType = parseType();
|
||||
if (!elementType ||
|
||||
parseToken(Token::greater, "expected '>' in complex type"))
|
||||
return nullptr;
|
||||
if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>())
|
||||
return emitError(elementTypeLoc, "invalid element type for complex"),
|
||||
nullptr;
|
||||
|
||||
return ComplexType::get(elementType);
|
||||
}
|
||||
|
||||
/// Parse a function type.
|
||||
///
|
||||
/// function-type ::= type-list-parens `->` function-result-type
|
||||
///
|
||||
Type Parser::parseFunctionType() {
|
||||
assert(getToken().is(Token::l_paren));
|
||||
|
||||
SmallVector<Type, 4> arguments, results;
|
||||
if (parseTypeListParens(arguments) ||
|
||||
parseToken(Token::arrow, "expected '->' in function type") ||
|
||||
parseFunctionResultTypes(results))
|
||||
return nullptr;
|
||||
|
||||
return builder.getFunctionType(arguments, results);
|
||||
}
|
||||
|
||||
/// Parse the offset and strides from a strided layout specification.
|
||||
///
|
||||
/// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list
|
||||
///
|
||||
ParseResult Parser::parseStridedLayout(int64_t &offset,
|
||||
SmallVectorImpl<int64_t> &strides) {
|
||||
// Parse offset.
|
||||
consumeToken(Token::kw_offset);
|
||||
if (!consumeIf(Token::colon))
|
||||
return emitError("expected colon after `offset` keyword");
|
||||
auto maybeOffset = getToken().getUnsignedIntegerValue();
|
||||
bool question = getToken().is(Token::question);
|
||||
if (!maybeOffset && !question)
|
||||
return emitError("invalid offset");
|
||||
offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue())
|
||||
: MemRefType::getDynamicStrideOrOffset();
|
||||
consumeToken();
|
||||
|
||||
if (!consumeIf(Token::comma))
|
||||
return emitError("expected comma after offset value");
|
||||
|
||||
// Parse stride list.
|
||||
if (!consumeIf(Token::kw_strides))
|
||||
return emitError("expected `strides` keyword after offset specification");
|
||||
if (!consumeIf(Token::colon))
|
||||
return emitError("expected colon after `strides` keyword");
|
||||
if (failed(parseStrideList(strides)))
|
||||
return emitError("invalid braces-enclosed stride list");
|
||||
if (llvm::any_of(strides, [](int64_t st) { return st == 0; }))
|
||||
return emitError("invalid memref stride");
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse a memref type.
|
||||
///
|
||||
/// memref-type ::= ranked-memref-type | unranked-memref-type
|
||||
///
|
||||
/// ranked-memref-type ::= `memref` `<` dimension-list-ranked type
|
||||
/// (`,` semi-affine-map-composition)? (`,`
|
||||
/// memory-space)? `>`
|
||||
///
|
||||
/// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>`
|
||||
///
|
||||
/// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
|
||||
/// memory-space ::= integer-literal /* | TODO: address-space-id */
|
||||
///
|
||||
Type Parser::parseMemRefType() {
|
||||
consumeToken(Token::kw_memref);
|
||||
|
||||
if (parseToken(Token::less, "expected '<' in memref type"))
|
||||
return nullptr;
|
||||
|
||||
bool isUnranked;
|
||||
SmallVector<int64_t, 4> dimensions;
|
||||
|
||||
if (consumeIf(Token::star)) {
|
||||
// This is an unranked memref type.
|
||||
isUnranked = true;
|
||||
if (parseXInDimensionList())
|
||||
return nullptr;
|
||||
|
||||
} else {
|
||||
isUnranked = false;
|
||||
if (parseDimensionListRanked(dimensions))
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Parse the element type.
|
||||
auto typeLoc = getToken().getLoc();
|
||||
auto elementType = parseType();
|
||||
if (!elementType)
|
||||
return nullptr;
|
||||
|
||||
// Check that memref is formed from allowed types.
|
||||
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>() &&
|
||||
!elementType.isa<ComplexType>())
|
||||
return emitError(typeLoc, "invalid memref element type"), nullptr;
|
||||
|
||||
// Parse semi-affine-map-composition.
|
||||
SmallVector<AffineMap, 2> affineMapComposition;
|
||||
Optional<unsigned> memorySpace;
|
||||
unsigned numDims = dimensions.size();
|
||||
|
||||
auto parseElt = [&]() -> ParseResult {
|
||||
// Check for the memory space.
|
||||
if (getToken().is(Token::integer)) {
|
||||
if (memorySpace)
|
||||
return emitError("multiple memory spaces specified in memref type");
|
||||
memorySpace = getToken().getUnsignedIntegerValue();
|
||||
if (!memorySpace.hasValue())
|
||||
return emitError("invalid memory space in memref type");
|
||||
consumeToken(Token::integer);
|
||||
return success();
|
||||
}
|
||||
if (isUnranked)
|
||||
return emitError("cannot have affine map for unranked memref type");
|
||||
if (memorySpace)
|
||||
return emitError("expected memory space to be last in memref type");
|
||||
|
||||
AffineMap map;
|
||||
llvm::SMLoc mapLoc = getToken().getLoc();
|
||||
if (getToken().is(Token::kw_offset)) {
|
||||
int64_t offset;
|
||||
SmallVector<int64_t, 4> strides;
|
||||
if (failed(parseStridedLayout(offset, strides)))
|
||||
return failure();
|
||||
// Construct strided affine map.
|
||||
map = makeStridedLinearLayoutMap(strides, offset, state.context);
|
||||
} else {
|
||||
// Parse an affine map attribute.
|
||||
auto affineMap = parseAttribute();
|
||||
if (!affineMap)
|
||||
return failure();
|
||||
auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>();
|
||||
if (!affineMapAttr)
|
||||
return emitError("expected affine map in memref type");
|
||||
map = affineMapAttr.getValue();
|
||||
}
|
||||
|
||||
if (map.getNumDims() != numDims) {
|
||||
size_t i = affineMapComposition.size();
|
||||
return emitError(mapLoc, "memref affine map dimension mismatch between ")
|
||||
<< (i == 0 ? Twine("memref rank") : "affine map " + Twine(i))
|
||||
<< " and affine map" << i + 1 << ": " << numDims
|
||||
<< " != " << map.getNumDims();
|
||||
}
|
||||
numDims = map.getNumResults();
|
||||
affineMapComposition.push_back(map);
|
||||
return success();
|
||||
};
|
||||
|
||||
// Parse a list of mappings and address space if present.
|
||||
if (!consumeIf(Token::greater)) {
|
||||
// Parse comma separated list of affine maps, followed by memory space.
|
||||
if (parseToken(Token::comma, "expected ',' or '>' in memref type") ||
|
||||
parseCommaSeparatedListUntil(Token::greater, parseElt,
|
||||
/*allowEmptyList=*/false)) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
if (isUnranked)
|
||||
return UnrankedMemRefType::get(elementType, memorySpace.getValueOr(0));
|
||||
|
||||
return MemRefType::get(dimensions, elementType, affineMapComposition,
|
||||
memorySpace.getValueOr(0));
|
||||
}
|
||||
|
||||
/// Parse any type except the function type.
|
||||
///
|
||||
/// non-function-type ::= integer-type
|
||||
/// | index-type
|
||||
/// | float-type
|
||||
/// | extended-type
|
||||
/// | vector-type
|
||||
/// | tensor-type
|
||||
/// | memref-type
|
||||
/// | complex-type
|
||||
/// | tuple-type
|
||||
/// | none-type
|
||||
///
|
||||
/// index-type ::= `index`
|
||||
/// float-type ::= `f16` | `bf16` | `f32` | `f64`
|
||||
/// none-type ::= `none`
|
||||
///
|
||||
Type Parser::parseNonFunctionType() {
|
||||
switch (getToken().getKind()) {
|
||||
default:
|
||||
return (emitError("expected non-function type"), nullptr);
|
||||
case Token::kw_memref:
|
||||
return parseMemRefType();
|
||||
case Token::kw_tensor:
|
||||
return parseTensorType();
|
||||
case Token::kw_complex:
|
||||
return parseComplexType();
|
||||
case Token::kw_tuple:
|
||||
return parseTupleType();
|
||||
case Token::kw_vector:
|
||||
return parseVectorType();
|
||||
// integer-type
|
||||
case Token::inttype: {
|
||||
auto width = getToken().getIntTypeBitwidth();
|
||||
if (!width.hasValue())
|
||||
return (emitError("invalid integer width"), nullptr);
|
||||
if (width.getValue() > IntegerType::kMaxWidth) {
|
||||
emitError(getToken().getLoc(), "integer bitwidth is limited to ")
|
||||
<< IntegerType::kMaxWidth << " bits";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
IntegerType::SignednessSemantics signSemantics = IntegerType::Signless;
|
||||
if (Optional<bool> signedness = getToken().getIntTypeSignedness())
|
||||
signSemantics = *signedness ? IntegerType::Signed : IntegerType::Unsigned;
|
||||
|
||||
auto loc = getEncodedSourceLocation(getToken().getLoc());
|
||||
consumeToken(Token::inttype);
|
||||
return IntegerType::getChecked(width.getValue(), signSemantics, loc);
|
||||
}
|
||||
|
||||
// float-type
|
||||
case Token::kw_bf16:
|
||||
consumeToken(Token::kw_bf16);
|
||||
return builder.getBF16Type();
|
||||
case Token::kw_f16:
|
||||
consumeToken(Token::kw_f16);
|
||||
return builder.getF16Type();
|
||||
case Token::kw_f32:
|
||||
consumeToken(Token::kw_f32);
|
||||
return builder.getF32Type();
|
||||
case Token::kw_f64:
|
||||
consumeToken(Token::kw_f64);
|
||||
return builder.getF64Type();
|
||||
|
||||
// index-type
|
||||
case Token::kw_index:
|
||||
consumeToken(Token::kw_index);
|
||||
return builder.getIndexType();
|
||||
|
||||
// none-type
|
||||
case Token::kw_none:
|
||||
consumeToken(Token::kw_none);
|
||||
return builder.getNoneType();
|
||||
|
||||
// extended type
|
||||
case Token::exclamation_identifier:
|
||||
return parseExtendedType();
|
||||
}
|
||||
}
|
||||
|
||||
/// Parse a tensor type.
|
||||
///
|
||||
/// tensor-type ::= `tensor` `<` dimension-list type `>`
|
||||
/// dimension-list ::= dimension-list-ranked | `*x`
|
||||
///
|
||||
Type Parser::parseTensorType() {
|
||||
consumeToken(Token::kw_tensor);
|
||||
|
||||
if (parseToken(Token::less, "expected '<' in tensor type"))
|
||||
return nullptr;
|
||||
|
||||
bool isUnranked;
|
||||
SmallVector<int64_t, 4> dimensions;
|
||||
|
||||
if (consumeIf(Token::star)) {
|
||||
// This is an unranked tensor type.
|
||||
isUnranked = true;
|
||||
|
||||
if (parseXInDimensionList())
|
||||
return nullptr;
|
||||
|
||||
} else {
|
||||
isUnranked = false;
|
||||
if (parseDimensionListRanked(dimensions))
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Parse the element type.
|
||||
auto elementTypeLoc = getToken().getLoc();
|
||||
auto elementType = parseType();
|
||||
if (!elementType || parseToken(Token::greater, "expected '>' in tensor type"))
|
||||
return nullptr;
|
||||
if (!TensorType::isValidElementType(elementType))
|
||||
return emitError(elementTypeLoc, "invalid tensor element type"), nullptr;
|
||||
|
||||
if (isUnranked)
|
||||
return UnrankedTensorType::get(elementType);
|
||||
return RankedTensorType::get(dimensions, elementType);
|
||||
}
|
||||
|
||||
/// Parse a tuple type.
|
||||
///
|
||||
/// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>`
|
||||
///
|
||||
Type Parser::parseTupleType() {
|
||||
consumeToken(Token::kw_tuple);
|
||||
|
||||
// Parse the '<'.
|
||||
if (parseToken(Token::less, "expected '<' in tuple type"))
|
||||
return nullptr;
|
||||
|
||||
// Check for an empty tuple by directly parsing '>'.
|
||||
if (consumeIf(Token::greater))
|
||||
return TupleType::get(getContext());
|
||||
|
||||
// Parse the element types and the '>'.
|
||||
SmallVector<Type, 4> types;
|
||||
if (parseTypeListNoParens(types) ||
|
||||
parseToken(Token::greater, "expected '>' in tuple type"))
|
||||
return nullptr;
|
||||
|
||||
return TupleType::get(types, getContext());
|
||||
}
|
||||
|
||||
/// Parse a vector type.
|
||||
///
|
||||
/// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>`
|
||||
/// non-empty-static-dimension-list ::= decimal-literal `x`
|
||||
/// static-dimension-list
|
||||
/// static-dimension-list ::= (decimal-literal `x`)*
|
||||
///
|
||||
VectorType Parser::parseVectorType() {
|
||||
consumeToken(Token::kw_vector);
|
||||
|
||||
if (parseToken(Token::less, "expected '<' in vector type"))
|
||||
return nullptr;
|
||||
|
||||
SmallVector<int64_t, 4> dimensions;
|
||||
if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false))
|
||||
return nullptr;
|
||||
if (dimensions.empty())
|
||||
return (emitError("expected dimension size in vector type"), nullptr);
|
||||
if (any_of(dimensions, [](int64_t i) { return i <= 0; }))
|
||||
return emitError(getToken().getLoc(),
|
||||
"vector types must have positive constant sizes"),
|
||||
nullptr;
|
||||
|
||||
// Parse the element type.
|
||||
auto typeLoc = getToken().getLoc();
|
||||
auto elementType = parseType();
|
||||
if (!elementType || parseToken(Token::greater, "expected '>' in vector type"))
|
||||
return nullptr;
|
||||
if (!VectorType::isValidElementType(elementType))
|
||||
return emitError(typeLoc, "vector elements must be int or float type"),
|
||||
nullptr;
|
||||
|
||||
return VectorType::get(dimensions, elementType);
|
||||
}
|
||||
|
||||
/// Parse a dimension list of a tensor or memref type. This populates the
|
||||
/// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and
|
||||
/// errors out on `?` otherwise.
|
||||
///
|
||||
/// dimension-list-ranked ::= (dimension `x`)*
|
||||
/// dimension ::= `?` | decimal-literal
|
||||
///
|
||||
/// When `allowDynamic` is not set, this is used to parse:
|
||||
///
|
||||
/// static-dimension-list ::= (decimal-literal `x`)*
|
||||
ParseResult
|
||||
Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
|
||||
bool allowDynamic) {
|
||||
while (getToken().isAny(Token::integer, Token::question)) {
|
||||
if (consumeIf(Token::question)) {
|
||||
if (!allowDynamic)
|
||||
return emitError("expected static shape");
|
||||
dimensions.push_back(-1);
|
||||
} else {
|
||||
// Hexadecimal integer literals (starting with `0x`) are not allowed in
|
||||
// aggregate type declarations. Therefore, `0xf32` should be processed as
|
||||
// a sequence of separate elements `0`, `x`, `f32`.
|
||||
if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') {
|
||||
// We can get here only if the token is an integer literal. Hexadecimal
|
||||
// integer literals can only start with `0x` (`1x` wouldn't lex as a
|
||||
// literal, just `1` would, at which point we don't get into this
|
||||
// branch).
|
||||
assert(getTokenSpelling()[0] == '0' && "invalid integer literal");
|
||||
dimensions.push_back(0);
|
||||
state.lex.resetPointer(getTokenSpelling().data() + 1);
|
||||
consumeToken();
|
||||
} else {
|
||||
// Make sure this integer value is in bound and valid.
|
||||
auto dimension = getToken().getUnsignedIntegerValue();
|
||||
if (!dimension.hasValue())
|
||||
return emitError("invalid dimension");
|
||||
dimensions.push_back((int64_t)dimension.getValue());
|
||||
consumeToken(Token::integer);
|
||||
}
|
||||
}
|
||||
|
||||
// Make sure we have an 'x' or something like 'xbf32'.
|
||||
if (parseXInDimensionList())
|
||||
return failure();
|
||||
}
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Parse an 'x' token in a dimension list, handling the case where the x is
|
||||
/// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next
|
||||
/// token.
|
||||
ParseResult Parser::parseXInDimensionList() {
|
||||
if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x')
|
||||
return emitError("expected 'x' in dimension list");
|
||||
|
||||
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
|
||||
if (getTokenSpelling().size() != 1)
|
||||
state.lex.resetPointer(getTokenSpelling().data() + 1);
|
||||
|
||||
// Consume the 'x'.
|
||||
consumeToken(Token::bare_identifier);
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
// Parse a comma-separated list of dimensions, possibly empty:
|
||||
// stride-list ::= `[` (dimension (`,` dimension)*)? `]`
|
||||
ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) {
|
||||
if (!consumeIf(Token::l_square))
|
||||
return failure();
|
||||
// Empty list early exit.
|
||||
if (consumeIf(Token::r_square))
|
||||
return success();
|
||||
while (true) {
|
||||
if (consumeIf(Token::question)) {
|
||||
dimensions.push_back(MemRefType::getDynamicStrideOrOffset());
|
||||
} else {
|
||||
// This must be an integer value.
|
||||
int64_t val;
|
||||
if (getToken().getSpelling().getAsInteger(10, val))
|
||||
return emitError("invalid integer value: ") << getToken().getSpelling();
|
||||
// Make sure it is not the one value for `?`.
|
||||
if (ShapedType::isDynamic(val))
|
||||
return emitError("invalid integer value: ")
|
||||
<< getToken().getSpelling()
|
||||
<< ", use `?` to specify a dynamic dimension";
|
||||
dimensions.push_back(val);
|
||||
consumeToken(Token::integer);
|
||||
}
|
||||
if (!consumeIf(Token::comma))
|
||||
break;
|
||||
}
|
||||
if (!consumeIf(Token::r_square))
|
||||
return failure();
|
||||
return success();
|
||||
}
|
Loading…
Reference in New Issue