[x86] split FMA with fast-math-flags to avoid libcall

fma reassoc A, B, C --> fadd (fmul A, B), C (when target has no FMA hardware)

C/C++ code may use explicit fma() calls (which become LLVM fma
intrinsics in IR) but then gets compiled with -ffast-math or similar.
For targets that do not have FMA hardware, we don't want to go out to
the math library for a precise but slow FMA result.

I tried this as a generic DAGCombine, but it caused infinite looping
on more than 1 other target, so there's likely some over-reaching fma
formation happening.

There's also a potential intersection of strict FP with fast-math here.
Deferring to current behavior for that case (assuming that strict-ness
overrides fast-ness).

Differential Revision: https://reviews.llvm.org/D83981
This commit is contained in:
Sanjay Patel 2020-07-19 10:03:55 -04:00
parent 2f3862eb9f
commit 50afa18772
2 changed files with 33 additions and 76 deletions

View File

@ -46131,14 +46131,23 @@ static SDValue combineFMA(SDNode *N, SelectionDAG &DAG,
if (!TLI.isTypeLegal(VT))
return SDValue();
EVT ScalarVT = VT.getScalarType();
if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA())
return SDValue();
SDValue A = N->getOperand(IsStrict ? 1 : 0);
SDValue B = N->getOperand(IsStrict ? 2 : 1);
SDValue C = N->getOperand(IsStrict ? 3 : 2);
// If the operation allows fast-math and the target does not support FMA,
// split this into mul+add to avoid libcall(s).
SDNodeFlags Flags = N->getFlags();
if (!IsStrict && Flags.hasAllowReassociation() &&
TLI.isOperationExpand(ISD::FMA, VT)) {
SDValue Fmul = DAG.getNode(ISD::FMUL, dl, VT, A, B, Flags);
return DAG.getNode(ISD::FADD, dl, VT, Fmul, C, Flags);
}
EVT ScalarVT = VT.getScalarType();
if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA())
return SDValue();
auto invertIfNegative = [&DAG, &TLI, &DCI](SDValue &V) {
bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
bool LegalOperations = !DCI.isBeforeLegalizeOps();

View File

@ -73,9 +73,15 @@ define float @test_f32_reassoc(float %a, float %b, float %c) #0 {
;
; FMACALL32-LABEL: test_f32_reassoc:
; FMACALL32: ## %bb.0:
; FMACALL32-NEXT: jmp _fmaf ## TAILCALL
; FMACALL32-NEXT: ## encoding: [0xeb,A]
; FMACALL32-NEXT: ## fixup A - offset: 1, value: _fmaf-1, kind: FK_PCRel_1
; FMACALL32-NEXT: pushl %eax ## encoding: [0x50]
; FMACALL32-NEXT: vmovss {{[0-9]+}}(%esp), %xmm0 ## encoding: [0xc5,0xfa,0x10,0x44,0x24,0x08]
; FMACALL32-NEXT: ## xmm0 = mem[0],zero,zero,zero
; FMACALL32-NEXT: vmulss {{[0-9]+}}(%esp), %xmm0, %xmm0 ## encoding: [0xc5,0xfa,0x59,0x44,0x24,0x0c]
; FMACALL32-NEXT: vaddss {{[0-9]+}}(%esp), %xmm0, %xmm0 ## encoding: [0xc5,0xfa,0x58,0x44,0x24,0x10]
; FMACALL32-NEXT: vmovss %xmm0, (%esp) ## encoding: [0xc5,0xfa,0x11,0x04,0x24]
; FMACALL32-NEXT: flds (%esp) ## encoding: [0xd9,0x04,0x24]
; FMACALL32-NEXT: popl %eax ## encoding: [0x58]
; FMACALL32-NEXT: retl ## encoding: [0xc3]
;
; FMA64-LABEL: test_f32_reassoc:
; FMA64: ## %bb.0:
@ -85,9 +91,9 @@ define float @test_f32_reassoc(float %a, float %b, float %c) #0 {
;
; FMACALL64-LABEL: test_f32_reassoc:
; FMACALL64: ## %bb.0:
; FMACALL64-NEXT: jmp _fmaf ## TAILCALL
; FMACALL64-NEXT: ## encoding: [0xeb,A]
; FMACALL64-NEXT: ## fixup A - offset: 1, value: _fmaf-1, kind: FK_PCRel_1
; FMACALL64-NEXT: mulss %xmm1, %xmm0 ## encoding: [0xf3,0x0f,0x59,0xc1]
; FMACALL64-NEXT: addss %xmm2, %xmm0 ## encoding: [0xf3,0x0f,0x58,0xc2]
; FMACALL64-NEXT: retq ## encoding: [0xc3]
;
; AVX512-LABEL: test_f32_reassoc:
; AVX512: ## %bb.0:
@ -1523,6 +1529,12 @@ define <2 x double> @test_v2f64_reassoc(<2 x double> %a, <2 x double> %b, <2 x d
; FMA32-NEXT: ## xmm0 = (xmm1 * xmm0) + xmm2
; FMA32-NEXT: retl ## encoding: [0xc3]
;
; FMACALL32-LABEL: test_v2f64_reassoc:
; FMACALL32: ## %bb.0:
; FMACALL32-NEXT: vmulpd %xmm1, %xmm0, %xmm0 ## encoding: [0xc5,0xf9,0x59,0xc1]
; FMACALL32-NEXT: vaddpd %xmm2, %xmm0, %xmm0 ## encoding: [0xc5,0xf9,0x58,0xc2]
; FMACALL32-NEXT: retl ## encoding: [0xc3]
;
; FMA64-LABEL: test_v2f64_reassoc:
; FMA64: ## %bb.0:
; FMA64-NEXT: vfmadd213pd %xmm2, %xmm1, %xmm0 ## encoding: [0xc4,0xe2,0xf1,0xa8,0xc2]
@ -1531,37 +1543,8 @@ define <2 x double> @test_v2f64_reassoc(<2 x double> %a, <2 x double> %b, <2 x d
;
; FMACALL64-LABEL: test_v2f64_reassoc:
; FMACALL64: ## %bb.0:
; FMACALL64-NEXT: subq $72, %rsp ## encoding: [0x48,0x83,0xec,0x48]
; FMACALL64-NEXT: movaps %xmm2, {{[-0-9]+}}(%r{{[sb]}}p) ## 16-byte Spill
; FMACALL64-NEXT: ## encoding: [0x0f,0x29,0x54,0x24,0x20]
; FMACALL64-NEXT: movaps %xmm1, {{[-0-9]+}}(%r{{[sb]}}p) ## 16-byte Spill
; FMACALL64-NEXT: ## encoding: [0x0f,0x29,0x4c,0x24,0x10]
; FMACALL64-NEXT: movaps %xmm0, (%rsp) ## 16-byte Spill
; FMACALL64-NEXT: ## encoding: [0x0f,0x29,0x04,0x24]
; FMACALL64-NEXT: callq _fma ## encoding: [0xe8,A,A,A,A]
; FMACALL64-NEXT: ## fixup A - offset: 1, value: _fma-4, kind: reloc_branch_4byte_pcrel
; FMACALL64-NEXT: movaps %xmm0, {{[-0-9]+}}(%r{{[sb]}}p) ## 16-byte Spill
; FMACALL64-NEXT: ## encoding: [0x0f,0x29,0x44,0x24,0x30]
; FMACALL64-NEXT: movaps (%rsp), %xmm0 ## 16-byte Reload
; FMACALL64-NEXT: ## encoding: [0x0f,0x28,0x04,0x24]
; FMACALL64-NEXT: movhlps %xmm0, %xmm0 ## encoding: [0x0f,0x12,0xc0]
; FMACALL64-NEXT: ## xmm0 = xmm0[1,1]
; FMACALL64-NEXT: movaps {{[-0-9]+}}(%r{{[sb]}}p), %xmm1 ## 16-byte Reload
; FMACALL64-NEXT: ## encoding: [0x0f,0x28,0x4c,0x24,0x10]
; FMACALL64-NEXT: movhlps %xmm1, %xmm1 ## encoding: [0x0f,0x12,0xc9]
; FMACALL64-NEXT: ## xmm1 = xmm1[1,1]
; FMACALL64-NEXT: movaps {{[-0-9]+}}(%r{{[sb]}}p), %xmm2 ## 16-byte Reload
; FMACALL64-NEXT: ## encoding: [0x0f,0x28,0x54,0x24,0x20]
; FMACALL64-NEXT: movhlps %xmm2, %xmm2 ## encoding: [0x0f,0x12,0xd2]
; FMACALL64-NEXT: ## xmm2 = xmm2[1,1]
; FMACALL64-NEXT: callq _fma ## encoding: [0xe8,A,A,A,A]
; FMACALL64-NEXT: ## fixup A - offset: 1, value: _fma-4, kind: reloc_branch_4byte_pcrel
; FMACALL64-NEXT: movaps {{[-0-9]+}}(%r{{[sb]}}p), %xmm1 ## 16-byte Reload
; FMACALL64-NEXT: ## encoding: [0x0f,0x28,0x4c,0x24,0x30]
; FMACALL64-NEXT: movlhps %xmm0, %xmm1 ## encoding: [0x0f,0x16,0xc8]
; FMACALL64-NEXT: ## xmm1 = xmm1[0],xmm0[0]
; FMACALL64-NEXT: movaps %xmm1, %xmm0 ## encoding: [0x0f,0x28,0xc1]
; FMACALL64-NEXT: addq $72, %rsp ## encoding: [0x48,0x83,0xc4,0x48]
; FMACALL64-NEXT: mulpd %xmm1, %xmm0 ## encoding: [0x66,0x0f,0x59,0xc1]
; FMACALL64-NEXT: addpd %xmm2, %xmm0 ## encoding: [0x66,0x0f,0x58,0xc2]
; FMACALL64-NEXT: retq ## encoding: [0xc3]
;
; AVX512-LABEL: test_v2f64_reassoc:
@ -1575,41 +1558,6 @@ define <2 x double> @test_v2f64_reassoc(<2 x double> %a, <2 x double> %b, <2 x d
; AVX512VL-NEXT: vfmadd213pd %xmm2, %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc4,0xe2,0xf1,0xa8,0xc2]
; AVX512VL-NEXT: ## xmm0 = (xmm1 * xmm0) + xmm2
; AVX512VL-NEXT: retq ## encoding: [0xc3]
;
; FMACALL32_BDVER2-LABEL: test_v2f64_reassoc:
; FMACALL32_BDVER2: ## %bb.0:
; FMACALL32_BDVER2-NEXT: subl $108, %esp ## encoding: [0x83,0xec,0x6c]
; FMACALL32_BDVER2-NEXT: vmovaps %xmm0, {{[-0-9]+}}(%e{{[sb]}}p) ## 16-byte Spill
; FMACALL32_BDVER2-NEXT: ## encoding: [0xc5,0xf8,0x29,0x44,0x24,0x50]
; FMACALL32_BDVER2-NEXT: vmovlhps %xmm1, %xmm0, %xmm0 ## encoding: [0xc5,0xf8,0x16,0xc1]
; FMACALL32_BDVER2-NEXT: ## xmm0 = xmm0[0],xmm1[0]
; FMACALL32_BDVER2-NEXT: vmovaps %xmm2, {{[-0-9]+}}(%e{{[sb]}}p) ## 16-byte Spill
; FMACALL32_BDVER2-NEXT: ## encoding: [0xc5,0xf8,0x29,0x54,0x24,0x30]
; FMACALL32_BDVER2-NEXT: vmovaps %xmm1, {{[-0-9]+}}(%e{{[sb]}}p) ## 16-byte Spill
; FMACALL32_BDVER2-NEXT: ## encoding: [0xc5,0xf8,0x29,0x4c,0x24,0x40]
; FMACALL32_BDVER2-NEXT: vmovlps %xmm2, {{[0-9]+}}(%esp) ## encoding: [0xc5,0xf8,0x13,0x54,0x24,0x10]
; FMACALL32_BDVER2-NEXT: vmovups %xmm0, (%esp) ## encoding: [0xc5,0xf8,0x11,0x04,0x24]
; FMACALL32_BDVER2-NEXT: calll _fma ## encoding: [0xe8,A,A,A,A]
; FMACALL32_BDVER2-NEXT: ## fixup A - offset: 1, value: _fma-4, kind: FK_PCRel_4
; FMACALL32_BDVER2-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 ## 16-byte Reload
; FMACALL32_BDVER2-NEXT: ## encoding: [0xc5,0xf8,0x28,0x44,0x24,0x30]
; FMACALL32_BDVER2-NEXT: vmovhps %xmm0, {{[0-9]+}}(%esp) ## encoding: [0xc5,0xf8,0x17,0x44,0x24,0x10]
; FMACALL32_BDVER2-NEXT: vmovaps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0 ## 16-byte Reload
; FMACALL32_BDVER2-NEXT: ## encoding: [0xc5,0xf8,0x28,0x44,0x24,0x40]
; FMACALL32_BDVER2-NEXT: vmovlps {{[-0-9]+}}(%e{{[sb]}}p), %xmm0, %xmm0 ## 16-byte Folded Reload
; FMACALL32_BDVER2-NEXT: ## encoding: [0xc5,0xf8,0x12,0x44,0x24,0x58]
; FMACALL32_BDVER2-NEXT: ## xmm0 = mem[0,1],xmm0[2,3]
; FMACALL32_BDVER2-NEXT: vmovups %xmm0, (%esp) ## encoding: [0xc5,0xf8,0x11,0x04,0x24]
; FMACALL32_BDVER2-NEXT: fstpl {{[0-9]+}}(%esp) ## encoding: [0xdd,0x5c,0x24,0x28]
; FMACALL32_BDVER2-NEXT: calll _fma ## encoding: [0xe8,A,A,A,A]
; FMACALL32_BDVER2-NEXT: ## fixup A - offset: 1, value: _fma-4, kind: FK_PCRel_4
; FMACALL32_BDVER2-NEXT: fstpl {{[0-9]+}}(%esp) ## encoding: [0xdd,0x5c,0x24,0x20]
; FMACALL32_BDVER2-NEXT: vmovsd {{[0-9]+}}(%esp), %xmm0 ## encoding: [0xc5,0xfb,0x10,0x44,0x24,0x28]
; FMACALL32_BDVER2-NEXT: ## xmm0 = mem[0],zero
; FMACALL32_BDVER2-NEXT: vmovhps {{[0-9]+}}(%esp), %xmm0, %xmm0 ## encoding: [0xc5,0xf8,0x16,0x44,0x24,0x20]
; FMACALL32_BDVER2-NEXT: ## xmm0 = xmm0[0,1],mem[0,1]
; FMACALL32_BDVER2-NEXT: addl $108, %esp ## encoding: [0x83,0xc4,0x6c]
; FMACALL32_BDVER2-NEXT: retl ## encoding: [0xc3]
%call = call reassoc <2 x double> @llvm.fma.v2f64(<2 x double> %a, <2 x double> %b, <2 x double> %c)
ret <2 x double> %call
}