[libc] Add implementations for sqrt, sqrtf, and sqrtl.

Differential Revision: https://reviews.llvm.org/D84726
This commit is contained in:
Tue Ly 2020-07-28 01:41:36 -04:00
parent 75d159f924
commit 5078825aa9
17 changed files with 721 additions and 0 deletions

View File

@ -75,6 +75,9 @@ set(TARGET_LIBM_ENTRYPOINTS
libc.src.math.roundl
libc.src.math.sincosf
libc.src.math.sinf
libc.src.math.sqrt
libc.src.math.sqrtf
libc.src.math.sqrtl
libc.src.math.trunc
libc.src.math.truncf
libc.src.math.truncl

View File

@ -204,6 +204,9 @@ def MathAPI : PublicAPI<"math.h"> {
"roundl",
"sincosf",
"sinf",
"sqrt",
"sqrtf",
"sqrtl",
"trunc",
"truncf",
"truncl",

View File

@ -108,6 +108,9 @@ set(TARGET_LIBM_ENTRYPOINTS
libc.src.math.roundl
libc.src.math.sincosf
libc.src.math.sinf
libc.src.math.sqrt
libc.src.math.sqrtf
libc.src.math.sqrtl
libc.src.math.trunc
libc.src.math.truncf
libc.src.math.truncl

View File

@ -314,6 +314,10 @@ def StdC : StandardSpec<"stdc"> {
FunctionSpec<"roundf", RetValSpec<FloatType>, [ArgSpec<FloatType>]>,
FunctionSpec<"roundl", RetValSpec<LongDoubleType>, [ArgSpec<LongDoubleType>]>,
FunctionSpec<"sqrt", RetValSpec<DoubleType>, [ArgSpec<DoubleType>]>,
FunctionSpec<"sqrtf", RetValSpec<FloatType>, [ArgSpec<FloatType>]>,
FunctionSpec<"sqrtl", RetValSpec<LongDoubleType>, [ArgSpec<LongDoubleType>]>,
FunctionSpec<"trunc", RetValSpec<DoubleType>, [ArgSpec<DoubleType>]>,
FunctionSpec<"truncf", RetValSpec<FloatType>, [ArgSpec<FloatType>]>,
FunctionSpec<"truncl", RetValSpec<LongDoubleType>, [ArgSpec<LongDoubleType>]>,

View File

@ -485,3 +485,39 @@ add_entrypoint_object(
COMPILE_OPTIONS
-O2
)
add_entrypoint_object(
sqrt
SRCS
sqrt.cpp
HDRS
sqrt.h
DEPENDS
libc.utils.FPUtil.fputil
COMPILE_OPTIONS
-O2
)
add_entrypoint_object(
sqrtf
SRCS
sqrtf.cpp
HDRS
sqrtf.h
DEPENDS
libc.utils.FPUtil.fputil
COMPILE_OPTIONS
-O2
)
add_entrypoint_object(
sqrtl
SRCS
sqrtl.cpp
HDRS
sqrtl.h
DEPENDS
libc.utils.FPUtil.fputil
COMPILE_OPTIONS
-O2
)

16
libc/src/math/sqrt.cpp Normal file
View File

@ -0,0 +1,16 @@
//===-- Implementation of sqrt function -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "utils/FPUtil/Sqrt.h"
#include "src/__support/common.h"
namespace __llvm_libc {
double LLVM_LIBC_ENTRYPOINT(sqrt)(double x) { return fputil::sqrt(x); }
} // namespace __llvm_libc

18
libc/src/math/sqrt.h Normal file
View File

@ -0,0 +1,18 @@
//===-- Implementation header for sqrt --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_MATH_SQRT_H
#define LLVM_LIBC_SRC_MATH_SQRT_H
namespace __llvm_libc {
double sqrt(double x);
} // namespace __llvm_libc
#endif // LLVM_LIBC_SRC_MATH_SQRT_H

16
libc/src/math/sqrtf.cpp Normal file
View File

@ -0,0 +1,16 @@
//===-- Implementation of sqrtf function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/__support/common.h"
#include "utils/FPUtil/Sqrt.h"
namespace __llvm_libc {
float LLVM_LIBC_ENTRYPOINT(sqrtf)(float x) { return fputil::sqrt(x); }
} // namespace __llvm_libc

18
libc/src/math/sqrtf.h Normal file
View File

@ -0,0 +1,18 @@
//===-- Implementation header for sqrtf -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_MATH_SQRTF_H
#define LLVM_LIBC_SRC_MATH_SQRTF_H
namespace __llvm_libc {
float sqrtf(float x);
} // namespace __llvm_libc
#endif // LLVM_LIBC_SRC_MATH_SQRTF_H

18
libc/src/math/sqrtl.cpp Normal file
View File

@ -0,0 +1,18 @@
//===-- Implementation of sqrtl function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/__support/common.h"
#include "utils/FPUtil/Sqrt.h"
namespace __llvm_libc {
long double LLVM_LIBC_ENTRYPOINT(sqrtl)(long double x) {
return fputil::sqrt(x);
}
} // namespace __llvm_libc

18
libc/src/math/sqrtl.h Normal file
View File

@ -0,0 +1,18 @@
//===-- Implementation header for sqrtl -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_MATH_SQRTL_H
#define LLVM_LIBC_SRC_MATH_SQRTL_H
namespace __llvm_libc {
long double sqrtl(long double x);
} // namespace __llvm_libc
#endif // LLVM_LIBC_SRC_MATH_SQRTL_H

View File

@ -513,3 +513,42 @@ add_fp_unittest(
libc.src.math.fmaxl
libc.utils.FPUtil.fputil
)
add_fp_unittest(
sqrtf_test
NEED_MPFR
SUITE
libc_math_unittests
SRCS
sqrtf_test.cpp
DEPENDS
libc.include.math
libc.src.math.sqrtf
libc.utils.FPUtil.fputil
)
add_fp_unittest(
sqrt_test
NEED_MPFR
SUITE
libc_math_unittests
SRCS
sqrt_test.cpp
DEPENDS
libc.include.math
libc.src.math.sqrt
libc.utils.FPUtil.fputil
)
add_fp_unittest(
sqrtl_test
NEED_MPFR
SUITE
libc_math_unittests
SRCS
sqrtl_test.cpp
DEPENDS
libc.include.math
libc.src.math.sqrtl
libc.utils.FPUtil.fputil
)

View File

@ -0,0 +1,67 @@
//===-- Unittests for sqrt -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
#include "include/math.h"
#include "src/math/sqrt.h"
#include "utils/FPUtil/FPBits.h"
#include "utils/FPUtil/TestHelpers.h"
#include "utils/MPFRWrapper/MPFRUtils.h"
using FPBits = __llvm_libc::fputil::FPBits<double>;
using UIntType = typename FPBits::UIntType;
namespace mpfr = __llvm_libc::testing::mpfr;
constexpr UIntType HiddenBit =
UIntType(1) << __llvm_libc::fputil::MantissaWidth<double>::value;
double nan = FPBits::buildNaN(1);
double inf = FPBits::inf();
double negInf = FPBits::negInf();
TEST(SqrtTest, SpecialValues) {
ASSERT_FP_EQ(nan, __llvm_libc::sqrt(nan));
ASSERT_FP_EQ(inf, __llvm_libc::sqrt(inf));
ASSERT_FP_EQ(nan, __llvm_libc::sqrt(negInf));
ASSERT_FP_EQ(0.0, __llvm_libc::sqrt(0.0));
ASSERT_FP_EQ(-0.0, __llvm_libc::sqrt(-0.0));
ASSERT_FP_EQ(nan, __llvm_libc::sqrt(-1.0));
ASSERT_FP_EQ(1.0, __llvm_libc::sqrt(1.0));
ASSERT_FP_EQ(2.0, __llvm_libc::sqrt(4.0));
ASSERT_FP_EQ(3.0, __llvm_libc::sqrt(9.0));
}
TEST(SqrtTest, DenormalValues) {
for (UIntType mant = 1; mant < HiddenBit; mant <<= 1) {
FPBits denormal(0.0);
denormal.mantissa = mant;
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, double(denormal),
__llvm_libc::sqrt(denormal), 0.5);
}
constexpr UIntType count = 1'000'001;
constexpr UIntType step = HiddenBit / count;
for (UIntType i = 0, v = 0; i <= count; ++i, v += step) {
double x = *reinterpret_cast<double *>(&v);
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, x, __llvm_libc::sqrt(x), 0.5);
}
}
TEST(SqrtTest, InDoubleRange) {
constexpr UIntType count = 10'000'001;
constexpr UIntType step = UIntType(-1) / count;
for (UIntType i = 0, v = 0; i <= count; ++i, v += step) {
double x = *reinterpret_cast<double *>(&v);
if (isnan(x) || (x < 0)) {
continue;
}
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, x, __llvm_libc::sqrt(x), 0.5);
}
}

View File

@ -0,0 +1,67 @@
//===-- Unittests for sqrtf -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
#include "include/math.h"
#include "src/math/sqrtf.h"
#include "utils/FPUtil/FPBits.h"
#include "utils/FPUtil/TestHelpers.h"
#include "utils/MPFRWrapper/MPFRUtils.h"
using FPBits = __llvm_libc::fputil::FPBits<float>;
using UIntType = typename FPBits::UIntType;
namespace mpfr = __llvm_libc::testing::mpfr;
constexpr UIntType HiddenBit =
UIntType(1) << __llvm_libc::fputil::MantissaWidth<float>::value;
float nan = FPBits::buildNaN(1);
float inf = FPBits::inf();
float negInf = FPBits::negInf();
TEST(SqrtfTest, SpecialValues) {
ASSERT_FP_EQ(nan, __llvm_libc::sqrtf(nan));
ASSERT_FP_EQ(inf, __llvm_libc::sqrtf(inf));
ASSERT_FP_EQ(nan, __llvm_libc::sqrtf(negInf));
ASSERT_FP_EQ(0.0f, __llvm_libc::sqrtf(0.0f));
ASSERT_FP_EQ(-0.0f, __llvm_libc::sqrtf(-0.0f));
ASSERT_FP_EQ(nan, __llvm_libc::sqrtf(-1.0f));
ASSERT_FP_EQ(1.0f, __llvm_libc::sqrtf(1.0f));
ASSERT_FP_EQ(2.0f, __llvm_libc::sqrtf(4.0f));
ASSERT_FP_EQ(3.0f, __llvm_libc::sqrtf(9.0f));
}
TEST(SqrtfTest, DenormalValues) {
for (UIntType mant = 1; mant < HiddenBit; mant <<= 1) {
FPBits denormal(0.0f);
denormal.mantissa = mant;
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, float(denormal),
__llvm_libc::sqrtf(denormal), 0.5);
}
constexpr UIntType count = 1'000'001;
constexpr UIntType step = HiddenBit / count;
for (UIntType i = 0, v = 0; i <= count; ++i, v += step) {
float x = *reinterpret_cast<float *>(&v);
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, x, __llvm_libc::sqrtf(x), 0.5);
}
}
TEST(SqrtfTest, InFloatRange) {
constexpr UIntType count = 10'000'001;
constexpr UIntType step = UIntType(-1) / count;
for (UIntType i = 0, v = 0; i <= count; ++i, v += step) {
float x = *reinterpret_cast<float *>(&v);
if (isnan(x) || (x < 0)) {
continue;
}
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, x, __llvm_libc::sqrtf(x), 0.5);
}
}

View File

@ -0,0 +1,67 @@
//===-- Unittests for sqrtl ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
#include "include/math.h"
#include "src/math/sqrtl.h"
#include "utils/FPUtil/FPBits.h"
#include "utils/FPUtil/TestHelpers.h"
#include "utils/MPFRWrapper/MPFRUtils.h"
using FPBits = __llvm_libc::fputil::FPBits<long double>;
using UIntType = typename FPBits::UIntType;
namespace mpfr = __llvm_libc::testing::mpfr;
constexpr UIntType HiddenBit =
UIntType(1) << __llvm_libc::fputil::MantissaWidth<long double>::value;
long double nan = FPBits::buildNaN(1);
long double inf = FPBits::inf();
long double negInf = FPBits::negInf();
TEST(SqrtlTest, SpecialValues) {
ASSERT_FP_EQ(nan, __llvm_libc::sqrtl(nan));
ASSERT_FP_EQ(inf, __llvm_libc::sqrtl(inf));
ASSERT_FP_EQ(nan, __llvm_libc::sqrtl(negInf));
ASSERT_FP_EQ(0.0L, __llvm_libc::sqrtl(0.0L));
ASSERT_FP_EQ(-0.0L, __llvm_libc::sqrtl(-0.0L));
ASSERT_FP_EQ(nan, __llvm_libc::sqrtl(-1.0L));
ASSERT_FP_EQ(1.0L, __llvm_libc::sqrtl(1.0L));
ASSERT_FP_EQ(2.0L, __llvm_libc::sqrtl(4.0L));
ASSERT_FP_EQ(3.0L, __llvm_libc::sqrtl(9.0L));
}
TEST(SqrtlTest, DenormalValues) {
for (UIntType mant = 1; mant < HiddenBit; mant <<= 1) {
FPBits denormal(0.0L);
denormal.mantissa = mant;
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, static_cast<long double>(denormal),
__llvm_libc::sqrtl(denormal), 0.5);
}
constexpr UIntType count = 1'000'001;
constexpr UIntType step = HiddenBit / count;
for (UIntType i = 0, v = 0; i <= count; ++i, v += step) {
long double x = *reinterpret_cast<long double *>(&v);
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, x, __llvm_libc::sqrtl(x), 0.5);
}
}
TEST(SqrtlTest, InLongDoubleRange) {
constexpr UIntType count = 10'000'001;
constexpr UIntType step = UIntType(-1) / count;
for (UIntType i = 0, v = 0; i <= count; ++i, v += step) {
long double x = *reinterpret_cast<long double *>(&v);
if (isnan(x) || (x < 0)) {
continue;
}
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, x, __llvm_libc::sqrtl(x), 0.5);
}
}

186
libc/utils/FPUtil/Sqrt.h Normal file
View File

@ -0,0 +1,186 @@
//===-- Square root of IEEE 754 floating point numbers ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_H
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_H
#include "FPBits.h"
#include "utils/CPP/TypeTraits.h"
namespace __llvm_libc {
namespace fputil {
namespace internal {
template <typename T>
static inline void normalize(int &exponent,
typename FPBits<T>::UIntType &mantissa);
template <> inline void normalize<float>(int &exponent, uint32_t &mantissa) {
// Use binary search to shift the leading 1 bit.
// With MantissaWidth<float> = 23, it will take
// ceil(log2(23)) = 5 steps checking the mantissa bits as followed:
// Step 1: 0000 0000 0000 XXXX XXXX XXXX
// Step 2: 0000 00XX XXXX XXXX XXXX XXXX
// Step 3: 000X XXXX XXXX XXXX XXXX XXXX
// Step 4: 00XX XXXX XXXX XXXX XXXX XXXX
// Step 5: 0XXX XXXX XXXX XXXX XXXX XXXX
constexpr int nsteps = 5; // = ceil(log2(MantissaWidth))
constexpr uint32_t bounds[nsteps] = {1 << 12, 1 << 18, 1 << 21, 1 << 22,
1 << 23};
constexpr int shifts[nsteps] = {12, 6, 3, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
template <> inline void normalize<double>(int &exponent, uint64_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<double> = 52, it will take
// ceil(log2(52)) = 6 steps checking the mantissa bits.
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
constexpr uint64_t bounds[nsteps] = {1ULL << 26, 1ULL << 39, 1ULL << 46,
1ULL << 49, 1ULL << 51, 1ULL << 52};
constexpr int shifts[nsteps] = {27, 14, 7, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
#if !(defined(__x86_64__) || defined(__i386__))
template <>
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<long double> = 112, it will take
// ceil(log2(112)) = 7 steps checking the mantissa bits.
constexpr int nsteps = 7; // = ceil(log2(MantissaWidth))
constexpr __uint128_t bounds[nsteps] = {
__uint128_t(1) << 56, __uint128_t(1) << 84, __uint128_t(1) << 98,
__uint128_t(1) << 105, __uint128_t(1) << 109, __uint128_t(1) << 111,
__uint128_t(1) << 112};
constexpr int shifts[nsteps] = {57, 29, 15, 8, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
#endif
} // namespace internal
// Correctly rounded IEEE 754 SQRT with round to nearest, ties to even.
// Shift-and-add algorithm.
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T sqrt(T x) {
using UIntType = typename FPBits<T>::UIntType;
constexpr UIntType One = UIntType(1) << MantissaWidth<T>::value;
FPBits<T> bits(x);
if (bits.isInfOrNaN()) {
if (bits.sign && (bits.mantissa == 0)) {
// sqrt(-Inf) = NaN
return FPBits<T>::buildNaN(One >> 1);
} else {
// sqrt(NaN) = NaN
// sqrt(+Inf) = +Inf
return x;
}
} else if (bits.isZero()) {
// sqrt(+0) = +0
// sqrt(-0) = -0
return x;
} else if (bits.sign) {
// sqrt( negative numbers ) = NaN
return FPBits<T>::buildNaN(One >> 1);
} else {
int xExp = bits.getExponent();
UIntType xMant = bits.mantissa;
// Step 1a: Normalize denormal input and append hiddent bit to the mantissa
if (bits.exponent == 0) {
++xExp; // let xExp be the correct exponent of One bit.
internal::normalize<T>(xExp, xMant);
} else {
xMant |= One;
}
// Step 1b: Make sure the exponent is even.
if (xExp & 1) {
--xExp;
xMant <<= 1;
}
// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( xMant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
UIntType y = One;
UIntType r = xMant - One;
for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}
// We compute one more iteration in order to round correctly.
bool lsb = y & 1; // Least significant bit
bool rb = false; // Round bit
r <<= 2;
UIntType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}
// Remove hidden bit and append the exponent field.
xExp = ((xExp >> 1) + FPBits<T>::exponentBias);
y = (y - One) | (static_cast<UIntType>(xExp) << MantissaWidth<T>::value);
// Round to nearest, ties to even
if (rb && (lsb || (r != 0))) {
++y;
}
return *reinterpret_cast<T *>(&y);
}
}
} // namespace fputil
} // namespace __llvm_libc
#if (defined(__x86_64__) || defined(__i386__))
#include "SqrtLongDoubleX86.h"
#endif // defined(__x86_64__) || defined(__i386__)
#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_H

View File

@ -0,0 +1,142 @@
//===-- Square root of x86 long double numbers ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
#include "FPBits.h"
#include "utils/CPP/TypeTraits.h"
namespace __llvm_libc {
namespace fputil {
#if (defined(__x86_64__) || defined(__i386__))
namespace internal {
template <>
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<long double> = 63, it will take
// ceil(log2(63)) = 6 steps checking the mantissa bits.
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
constexpr __uint128_t bounds[nsteps] = {
__uint128_t(1) << 32, __uint128_t(1) << 48, __uint128_t(1) << 56,
__uint128_t(1) << 60, __uint128_t(1) << 62, __uint128_t(1) << 63};
constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
} // namespace internal
// Correctly rounded SQRT with round to nearest, ties to even.
// Shift-and-add algorithm.
template <> inline long double sqrt<long double, 0>(long double x) {
using UIntType = typename FPBits<long double>::UIntType;
constexpr UIntType One = UIntType(1)
<< int(MantissaWidth<long double>::value);
FPBits<long double> bits(x);
if (bits.isInfOrNaN()) {
if (bits.sign && (bits.mantissa == 0)) {
// sqrt(-Inf) = NaN
return FPBits<long double>::buildNaN(One >> 1);
} else {
// sqrt(NaN) = NaN
// sqrt(+Inf) = +Inf
return x;
}
} else if (bits.isZero()) {
// sqrt(+0) = +0
// sqrt(-0) = -0
return x;
} else if (bits.sign) {
// sqrt( negative numbers ) = NaN
return FPBits<long double>::buildNaN(One >> 1);
} else {
int xExp = bits.getExponent();
UIntType xMant = bits.mantissa;
// Step 1a: Normalize denormal input
if (bits.implicitBit) {
xMant |= One;
} else if (bits.exponent == 0) {
internal::normalize<long double>(xExp, xMant);
}
// Step 1b: Make sure the exponent is even.
if (xExp & 1) {
--xExp;
xMant <<= 1;
}
// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( xMant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
UIntType y = One;
UIntType r = xMant - One;
for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}
// We compute one more iteration in order to round correctly.
bool lsb = y & 1; // Least significant bit
bool rb = false; // Round bit
r <<= 2;
UIntType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}
// Append the exponent field.
xExp = ((xExp >> 1) + FPBits<long double>::exponentBias);
y |= (static_cast<UIntType>(xExp)
<< (MantissaWidth<long double>::value + 1));
// Round to nearest, ties to even
if (rb && (lsb || (r != 0))) {
++y;
}
// Extract output
FPBits<long double> out(0.0L);
out.exponent = xExp;
out.implicitBit = 1;
out.mantissa = (y & (One - 1));
return out;
}
}
#endif // defined(__x86_64__) || defined(__i386__)
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H