[LLDB][RISCV] Make software single stepping work

Add:
- `EmulateInstructionRISCV`, which can be used for riscv32 and riscv64.
- Add unittests for EmulateInstructionRISCV.

Note: Compressed instructions set (RVC) was still not supported in this patch.

Reviewed By: DavidSpickett

Differential Revision: https://reviews.llvm.org/D131759
This commit is contained in:
Emmmer 2022-08-16 15:38:18 +08:00
parent 8ed3e75c96
commit 4fc7e9cba2
11 changed files with 674 additions and 7 deletions

View File

@ -3,3 +3,4 @@ add_subdirectory(ARM64)
add_subdirectory(MIPS)
add_subdirectory(MIPS64)
add_subdirectory(PPC64)
add_subdirectory(RISCV)

View File

@ -0,0 +1,11 @@
add_lldb_library(lldbPluginInstructionRISCV PLUGIN
EmulateInstructionRISCV.cpp
LINK_LIBS
lldbCore
lldbInterpreter
lldbSymbol
lldbPluginProcessUtility
LINK_COMPONENTS
Support
)

View File

@ -0,0 +1,356 @@
//===-- EmulateInstructionRISCV.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <cstdlib>
#include "EmulateInstructionRISCV.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_riscv64.h"
#include "Plugins/Process/Utility/lldb-riscv-register-enums.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Interpreter/OptionValueArray.h"
#include "lldb/Interpreter/OptionValueDictionary.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Stream.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE_ADV(EmulateInstructionRISCV, InstructionRISCV)
namespace lldb_private {
// Masks for detecting instructions types. According to riscv-spec Chap 26.
constexpr uint32_t I_MASK = 0b111000001111111;
constexpr uint32_t J_MASK = 0b000000001111111;
// no funct3 in the b-mask because the logic executing B<CMP> is quite similar.
constexpr uint32_t B_MASK = 0b000000001111111;
// The funct3 is the type of compare in B<CMP> instructions.
// funct3 means "3-bits function selector", which RISC-V ISA uses as minor
// opcode. It reuses the major opcode encoding space.
constexpr uint32_t BEQ = 0b000;
constexpr uint32_t BNE = 0b001;
constexpr uint32_t BLT = 0b100;
constexpr uint32_t BGE = 0b101;
constexpr uint32_t BLTU = 0b110;
constexpr uint32_t BGEU = 0b111;
constexpr uint32_t DecodeRD(uint32_t inst) { return (inst & 0xF80) >> 7; }
constexpr uint32_t DecodeRS1(uint32_t inst) { return (inst & 0xF8000) >> 15; }
constexpr uint32_t DecodeRS2(uint32_t inst) { return (inst & 0x1F00000) >> 20; }
constexpr uint32_t DecodeFunct3(uint32_t inst) { return (inst & 0x7000) >> 12; }
constexpr int32_t SignExt(uint32_t imm) { return int32_t(imm); }
constexpr uint32_t DecodeJImm(uint32_t inst) {
return (uint64_t(int64_t(int32_t(inst & 0x80000000)) >> 11)) // imm[20]
| (inst & 0xff000) // imm[19:12]
| ((inst >> 9) & 0x800) // imm[11]
| ((inst >> 20) & 0x7fe); // imm[10:1]
}
constexpr uint32_t DecodeIImm(uint32_t inst) {
return int64_t(int32_t(inst)) >> 20; // imm[11:0]
}
constexpr uint32_t DecodeBImm(uint32_t inst) {
return (uint64_t(int64_t(int32_t(inst & 0x80000000)) >> 19)) // imm[12]
| ((inst & 0x80) << 4) // imm[11]
| ((inst >> 20) & 0x7e0) // imm[10:5]
| ((inst >> 7) & 0x1e); // imm[4:1]
}
static uint32_t GPREncodingToLLDB(uint32_t reg_encode) {
if (reg_encode == 0)
return gpr_x0_riscv;
if (reg_encode >= 1 && reg_encode <= 31)
return gpr_x1_riscv + reg_encode - 1;
return LLDB_INVALID_REGNUM;
}
static bool ReadRegister(EmulateInstructionRISCV *emulator, uint32_t reg_encode,
RegisterValue &value) {
uint32_t lldb_reg = GPREncodingToLLDB(reg_encode);
return emulator->ReadRegister(eRegisterKindLLDB, lldb_reg, value);
}
static bool WriteRegister(EmulateInstructionRISCV *emulator,
uint32_t reg_encode, const RegisterValue &value) {
uint32_t lldb_reg = GPREncodingToLLDB(reg_encode);
EmulateInstruction::Context ctx;
ctx.type = EmulateInstruction::eContextRegisterStore;
ctx.SetNoArgs();
return emulator->WriteRegister(ctx, eRegisterKindLLDB, lldb_reg, value);
}
static bool ExecJAL(EmulateInstructionRISCV *emulator, uint32_t inst, bool) {
bool success = false;
int64_t offset = SignExt(DecodeJImm(inst));
int64_t pc = emulator->ReadPC(&success);
return success && emulator->WritePC(pc + offset) &&
WriteRegister(emulator, DecodeRD(inst),
RegisterValue(uint64_t(pc + 4)));
}
static bool ExecJALR(EmulateInstructionRISCV *emulator, uint32_t inst, bool) {
int64_t offset = SignExt(DecodeIImm(inst));
RegisterValue value;
if (!ReadRegister(emulator, DecodeRS1(inst), value))
return false;
bool success = false;
int64_t pc = emulator->ReadPC(&success);
int64_t rs1 = int64_t(value.GetAsUInt64());
// JALR clears the bottom bit. According to riscv-spec:
// "The JALR instruction now clears the lowest bit of the calculated target
// address, to simplify hardware and to allow auxiliary information to be
// stored in function pointers."
return emulator->WritePC((rs1 + offset) & ~1) &&
WriteRegister(emulator, DecodeRD(inst),
RegisterValue(uint64_t(pc + 4)));
}
static bool CompareB(uint64_t rs1, uint64_t rs2, uint32_t funct3) {
switch (funct3) {
case BEQ:
return rs1 == rs2;
case BNE:
return rs1 != rs2;
case BLT:
return int64_t(rs1) < int64_t(rs2);
case BGE:
return int64_t(rs1) >= int64_t(rs2);
case BLTU:
return rs1 < rs2;
case BGEU:
return rs1 >= rs2;
default:
llvm_unreachable("unexpected funct3");
}
}
static bool ExecB(EmulateInstructionRISCV *emulator, uint32_t inst,
bool ignore_cond) {
bool success = false;
uint64_t pc = emulator->ReadPC(&success);
if (!success)
return false;
uint64_t offset = SignExt(DecodeBImm(inst));
uint64_t target = pc + offset;
if (ignore_cond)
return emulator->WritePC(target);
RegisterValue value1;
RegisterValue value2;
if (!ReadRegister(emulator, DecodeRS1(inst), value1) ||
!ReadRegister(emulator, DecodeRS2(inst), value2))
return false;
uint32_t funct3 = DecodeFunct3(inst);
if (CompareB(value1.GetAsUInt64(), value2.GetAsUInt64(), funct3))
return emulator->WritePC(target);
return true;
}
struct InstrPattern {
const char *name;
/// Bit mask to check the type of a instruction (B-Type, I-Type, J-Type, etc.)
uint32_t type_mask;
/// Characteristic value after bitwise-and with type_mask.
uint32_t eigen;
bool (*exec)(EmulateInstructionRISCV *emulator, uint32_t inst,
bool ignore_cond);
};
static InstrPattern PATTERNS[] = {
{"JAL", J_MASK, 0b1101111, ExecJAL},
{"JALR", I_MASK, 0b000000001100111, ExecJALR},
{"B<CMP>", B_MASK, 0b1100011, ExecB},
// TODO: {LR/SC}.{W/D} and ECALL
};
/// This function only determines the next instruction address for software
/// sigle stepping by emulating branching instructions including:
/// - from Base Instruction Set : JAL, JALR, B<CMP>, ECALL
/// - from Atomic Instruction Set: LR -> BNE -> SC -> BNE
/// We will get rid of this tedious code when the riscv debug spec is ratified.
bool EmulateInstructionRISCV::DecodeAndExecute(uint32_t inst,
bool ignore_cond) {
Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
for (int i = 0; i < llvm::array_lengthof(PATTERNS); ++i) {
const InstrPattern &pat = PATTERNS[i];
if ((inst & pat.type_mask) == pat.eigen) {
LLDB_LOGF(log, "EmulateInstructionRISCV::%s: inst(%x) was decoded to %s",
__FUNCTION__, inst, pat.name);
return pat.exec(this, inst, ignore_cond);
}
}
LLDB_LOGF(log,
"EmulateInstructionRISCV::%s: inst(0x%x) does not branch: "
"no need to calculate the next pc address which is trivial.",
__FUNCTION__, inst);
return true;
}
bool EmulateInstructionRISCV::EvaluateInstruction(uint32_t options) {
uint32_t inst_size = m_opcode.GetByteSize();
uint32_t inst = m_opcode.GetOpcode32();
bool increase_pc = options & eEmulateInstructionOptionAutoAdvancePC;
bool ignore_cond = options & eEmulateInstructionOptionIgnoreConditions;
bool success = false;
lldb::addr_t old_pc = 0;
if (increase_pc) {
old_pc = ReadPC(&success);
if (!success)
return false;
}
if (inst_size == 2) {
// TODO: execute RVC
return false;
}
success = DecodeAndExecute(inst, ignore_cond);
if (!success)
return false;
if (increase_pc) {
lldb::addr_t new_pc = ReadPC(&success);
if (!success)
return false;
if (new_pc == old_pc) {
if (!WritePC(old_pc + inst_size))
return false;
}
}
return true;
}
bool EmulateInstructionRISCV::ReadInstruction() {
bool success = false;
m_addr = ReadPC(&success);
if (!success) {
m_addr = LLDB_INVALID_ADDRESS;
return false;
}
Context ctx;
ctx.type = eContextReadOpcode;
ctx.SetNoArgs();
uint32_t inst = (uint32_t)ReadMemoryUnsigned(ctx, m_addr, 4, 0, &success);
uint16_t try_rvc = (uint16_t)(inst & 0x0000ffff);
// check whether the compressed encode could be valid
uint16_t mask = try_rvc & 0b11;
if (try_rvc != 0 && mask != 3) {
m_opcode.SetOpcode16(try_rvc, GetByteOrder());
} else {
m_opcode.SetOpcode32(inst, GetByteOrder());
}
return true;
}
lldb::addr_t EmulateInstructionRISCV::ReadPC(bool *success) {
return ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC,
LLDB_INVALID_ADDRESS, success);
}
bool EmulateInstructionRISCV::WritePC(lldb::addr_t pc) {
EmulateInstruction::Context ctx;
ctx.type = eContextAdvancePC;
ctx.SetNoArgs();
return WriteRegisterUnsigned(ctx, eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_PC, pc);
}
bool EmulateInstructionRISCV::GetRegisterInfo(lldb::RegisterKind reg_kind,
uint32_t reg_index,
RegisterInfo &reg_info) {
if (reg_kind == eRegisterKindGeneric) {
switch (reg_index) {
case LLDB_REGNUM_GENERIC_PC:
reg_kind = eRegisterKindLLDB;
reg_index = gpr_pc_riscv;
break;
case LLDB_REGNUM_GENERIC_SP:
reg_kind = eRegisterKindLLDB;
reg_index = gpr_sp_riscv;
break;
case LLDB_REGNUM_GENERIC_FP:
reg_kind = eRegisterKindLLDB;
reg_index = gpr_fp_riscv;
break;
case LLDB_REGNUM_GENERIC_RA:
reg_kind = eRegisterKindLLDB;
reg_index = gpr_ra_riscv;
break;
// We may handle LLDB_REGNUM_GENERIC_ARGx when more instructions are
// supported.
default:
llvm_unreachable("unsupported register");
}
}
const RegisterInfo *array =
RegisterInfoPOSIX_riscv64::GetRegisterInfoPtr(m_arch);
const uint32_t length =
RegisterInfoPOSIX_riscv64::GetRegisterInfoCount(m_arch);
if (reg_index >= length || reg_kind != eRegisterKindLLDB)
return false;
reg_info = array[reg_index];
return true;
}
bool EmulateInstructionRISCV::SetTargetTriple(const ArchSpec &arch) {
return SupportsThisArch(arch);
}
bool EmulateInstructionRISCV::TestEmulation(Stream *out_stream, ArchSpec &arch,
OptionValueDictionary *test_data) {
return false;
}
void EmulateInstructionRISCV::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance);
}
void EmulateInstructionRISCV::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::EmulateInstruction *
EmulateInstructionRISCV::CreateInstance(const ArchSpec &arch,
InstructionType inst_type) {
if (EmulateInstructionRISCV::SupportsThisInstructionType(inst_type) &&
SupportsThisArch(arch)) {
return new EmulateInstructionRISCV(arch);
}
return nullptr;
}
bool EmulateInstructionRISCV::SupportsThisArch(const ArchSpec &arch) {
return arch.GetTriple().isRISCV();
}
} // namespace lldb_private

View File

@ -0,0 +1,72 @@
//===-- EmulateInstructionRISCV.h -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_SOURCE_PLUGINS_INSTRUCTION_RISCV_EMULATEINSTRUCTIONRISCV_H
#define LLDB_SOURCE_PLUGINS_INSTRUCTION_RISCV_EMULATEINSTRUCTIONRISCV_H
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Interpreter/OptionValue.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Status.h"
namespace lldb_private {
class EmulateInstructionRISCV : public EmulateInstruction {
public:
static llvm::StringRef GetPluginNameStatic() { return "riscv"; }
static llvm::StringRef GetPluginDescriptionStatic() {
return "Emulate instructions for the RISC-V architecture.";
}
static bool SupportsThisInstructionType(InstructionType inst_type) {
switch (inst_type) {
case eInstructionTypeAny:
case eInstructionTypePCModifying:
return true;
case eInstructionTypePrologueEpilogue:
case eInstructionTypeAll:
default:
return false;
}
}
static bool SupportsThisArch(const ArchSpec &arch);
static lldb_private::EmulateInstruction *
CreateInstance(const lldb_private::ArchSpec &arch, InstructionType inst_type);
static void Initialize();
static void Terminate();
public:
EmulateInstructionRISCV(const ArchSpec &arch) : EmulateInstruction(arch) {}
llvm::StringRef GetPluginName() override { return GetPluginNameStatic(); }
bool SupportsEmulatingInstructionsOfType(InstructionType inst_type) override {
return SupportsThisInstructionType(inst_type);
}
bool SetTargetTriple(const ArchSpec &arch) override;
bool ReadInstruction() override;
bool EvaluateInstruction(uint32_t options) override;
bool TestEmulation(Stream *out_stream, ArchSpec &arch,
OptionValueDictionary *test_data) override;
bool GetRegisterInfo(lldb::RegisterKind reg_kind, uint32_t reg_num,
RegisterInfo &reg_info) override;
lldb::addr_t ReadPC(bool *success);
bool WritePC(lldb::addr_t pc);
bool DecodeAndExecute(uint32_t inst, bool ignore_cond);
};
} // namespace lldb_private
#endif // LLDB_SOURCE_PLUGINS_INSTRUCTION_RISCV_EMULATEINSTRUCTIONRISCV_H

View File

@ -882,7 +882,8 @@ bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent,
}
bool NativeProcessLinux::SupportHardwareSingleStepping() const {
if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
if (m_arch.IsMIPS() || m_arch.GetMachine() == llvm::Triple::arm ||
m_arch.GetTriple().isRISCV())
return false;
return true;
}

View File

@ -167,7 +167,8 @@ Status NativeProcessSoftwareSingleStep::SetupSoftwareSingleStepping(
// Arm mode
size_hint = 4;
}
} else if (arch.IsMIPS() || arch.GetTriple().isPPC64())
} else if (arch.IsMIPS() || arch.GetTriple().isPPC64() ||
arch.GetTriple().isRISCV())
size_hint = 4;
error = process.SetBreakpoint(next_pc, size_hint, /*hardware=*/false);

View File

@ -53,6 +53,7 @@ add_lldb_tool(lldb-server
lldbPluginInstructionARM
lldbPluginInstructionMIPS
lldbPluginInstructionMIPS64
lldbPluginInstructionRISCV
${LLDB_SYSTEM_LIBS}
LINK_COMPONENTS

View File

@ -41,6 +41,11 @@ using HostObjectFile = ObjectFileELF;
#include "Plugins/Instruction/MIPS/EmulateInstructionMIPS.h"
#endif
#if defined(__riscv)
#define LLDB_TARGET_RISCV
#include "Plugins/Instruction/RISCV/EmulateInstructionRISCV.h"
#endif
using namespace lldb_private;
llvm::Error SystemInitializerLLGS::Initialize() {
@ -58,6 +63,9 @@ llvm::Error SystemInitializerLLGS::Initialize() {
#if defined(LLDB_TARGET_MIPS64)
EmulateInstructionMIPS64::Initialize();
#endif
#if defined(LLDB_TARGET_RISCV)
EmulateInstructionRISCV::Initialize();
#endif
return llvm::Error::success();
}
@ -74,6 +82,9 @@ void SystemInitializerLLGS::Terminate() {
#if defined(LLDB_TARGET_MIPS64)
EmulateInstructionMIPS64::Terminate();
#endif
#if defined(LLDB_TARGET_RISCV)
EmulateInstructionRISCV::Terminate();
#endif
SystemInitializerCommon::Terminate();
}

View File

@ -1,12 +1,29 @@
if("ARM" IN_LIST LLVM_TARGETS_TO_BUILD)
set(FILES "")
set(DEPS "")
if ("ARM" IN_LIST LLVM_TARGETS_TO_BUILD)
list(APPEND FILES ARM64/TestAArch64Emulator.cpp)
list(APPEND DEPS lldbPluginInstructionARM64)
endif ()
if ("RISCV" IN_LIST LLVM_TARGETS_TO_BUILD)
list(APPEND FILES RISCV/TestRISCVEmulator.cpp)
list(APPEND DEPS lldbPluginInstructionRISCV)
endif ()
list(LENGTH FILES LISTLEN)
if (LISTLEN GREATER 0)
add_lldb_unittest(EmulatorTests
TestAArch64Emulator.cpp
${FILES}
LINK_LIBS
lldbCore
lldbSymbol
lldbTarget
lldbPluginInstructionARM64
${DEPS}
LINK_COMPONENTS
Support
${LLVM_TARGETS_TO_BUILD})
endif()
${LLVM_TARGETS_TO_BUILD}
)
endif ()

View File

@ -0,0 +1,196 @@
//===-- TestRISCVEmulator.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/RegisterValue.h"
#include "Plugins/Instruction/RISCV/EmulateInstructionRISCV.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_riscv64.h"
#include "Plugins/Process/Utility/lldb-riscv-register-enums.h"
using namespace lldb;
using namespace lldb_private;
struct RISCVEmulatorTester : public EmulateInstructionRISCV, testing::Test {
RegisterInfoPOSIX_riscv64::GPR gpr;
RISCVEmulatorTester()
: EmulateInstructionRISCV(ArchSpec("riscv64-unknown-linux-gnu")) {
EmulateInstruction::SetReadRegCallback(ReadRegisterCallback);
EmulateInstruction::SetWriteRegCallback(WriteRegisterCallback);
}
static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
const RegisterInfo *reg_info,
RegisterValue &reg_value) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (reg == gpr_x0_riscv)
reg_value.SetUInt(0, reg_info->byte_size);
else
reg_value.SetUInt(tester->gpr.gpr[reg], reg_info->byte_size);
return true;
}
static bool WriteRegisterCallback(EmulateInstruction *instruction,
void *baton, const Context &context,
const RegisterInfo *reg_info,
const RegisterValue &reg_value) {
RISCVEmulatorTester *tester = (RISCVEmulatorTester *)instruction;
uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (reg != gpr_x0_riscv)
tester->gpr.gpr[reg] = reg_value.GetAsUInt64();
return true;
}
};
TEST_F(RISCVEmulatorTester, testJAL) {
lldb::addr_t old_pc = 0x114514;
WritePC(old_pc);
// jal x1, -6*4
uint32_t inst = 0b11111110100111111111000011101111;
ASSERT_TRUE(DecodeAndExecute(inst, false));
auto x1 = gpr.gpr[1];
bool success = false;
auto pc = ReadPC(&success);
ASSERT_TRUE(success);
ASSERT_EQ(x1, old_pc + 4);
ASSERT_EQ(pc, old_pc + (-6 * 4));
}
constexpr uint32_t EncodeIType(uint32_t opcode, uint32_t funct3, uint32_t rd,
uint32_t rs1, uint32_t imm) {
return imm << 20 | rs1 << 15 | funct3 << 12 | rd << 7 | opcode;
}
constexpr uint32_t JALR(uint32_t rd, uint32_t rs1, int32_t offset) {
return EncodeIType(0b1100111, 0, rd, rs1, uint32_t(offset));
}
TEST_F(RISCVEmulatorTester, testJALR) {
lldb::addr_t old_pc = 0x114514;
lldb::addr_t old_x2 = 0x1024;
WritePC(old_pc);
gpr.gpr[2] = old_x2;
// jalr x1, x2(-255)
uint32_t inst = JALR(1, 2, -255);
ASSERT_TRUE(DecodeAndExecute(inst, false));
auto x1 = gpr.gpr[1];
bool success = false;
auto pc = ReadPC(&success);
ASSERT_TRUE(success);
ASSERT_EQ(x1, old_pc + 4);
// JALR always zeros the bottom bit of the target address.
ASSERT_EQ(pc, (old_x2 + (-255)) & (~1));
}
constexpr uint32_t EncodeBType(uint32_t opcode, uint32_t funct3, uint32_t rs1,
uint32_t rs2, uint32_t imm) {
uint32_t bimm = (imm & (0b1 << 11)) >> 4 | (imm & (0b11110)) << 7 |
(imm & (0b111111 << 5)) << 20 | (imm & (0b1 << 12)) << 19;
return rs2 << 20 | rs1 << 15 | funct3 << 12 | opcode | bimm;
}
constexpr uint32_t BEQ(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b000, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BNE(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b001, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BLT(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b100, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BGE(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b101, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BLTU(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b110, rs1, rs2, uint32_t(offset));
}
constexpr uint32_t BGEU(uint32_t rs1, uint32_t rs2, int32_t offset) {
return EncodeBType(0b1100011, 0b111, rs1, rs2, uint32_t(offset));
}
using EncoderB = uint32_t (*)(uint32_t rs1, uint32_t rs2, int32_t offset);
void testBranch(RISCVEmulatorTester *tester, EncoderB encoder, bool branched,
uint64_t rs1, uint64_t rs2) {
// prepare test registers
lldb::addr_t old_pc = 0x114514;
tester->WritePC(old_pc);
tester->gpr.gpr[1] = rs1;
tester->gpr.gpr[2] = rs2;
// b<cmp> x1, x2, (-256)
uint32_t inst = encoder(1, 2, -256);
ASSERT_TRUE(tester->DecodeAndExecute(inst, false));
bool success = false;
auto pc = tester->ReadPC(&success);
ASSERT_TRUE(success);
ASSERT_EQ(pc, old_pc + (branched ? (-256) : 0));
}
#define GEN_BRANCH_TEST(name, rs1, rs2_branched, rs2_continued) \
TEST_F(RISCVEmulatorTester, test##name##Branched) { \
testBranch(this, name, true, rs1, rs2_branched); \
} \
TEST_F(RISCVEmulatorTester, test##name##Continued) { \
testBranch(this, name, false, rs1, rs2_continued); \
}
// GEN_BRANCH_TEST(opcode, imm1, imm2, imm3):
// It should branch for instruction `opcode imm1, imm2`
// It should do nothing for instruction `opcode imm1, imm3`
GEN_BRANCH_TEST(BEQ, 1, 1, 0)
GEN_BRANCH_TEST(BNE, 1, 0, 1)
GEN_BRANCH_TEST(BLT, -2, 1, -3)
GEN_BRANCH_TEST(BGE, -2, -3, 1)
GEN_BRANCH_TEST(BLTU, -2, -1, 1)
GEN_BRANCH_TEST(BGEU, -2, 1, -1)
void testNothing(RISCVEmulatorTester *tester, uint32_t inst) {
lldb::addr_t old_pc = 0x114514;
tester->WritePC(old_pc);
tester->SetInstruction(Opcode(inst, tester->GetByteOrder()),
LLDB_INVALID_ADDRESS, nullptr);
ASSERT_TRUE(tester->EvaluateInstruction(0));
bool success = false;
auto pc = tester->ReadPC(&success);
ASSERT_TRUE(success);
ASSERT_EQ(pc, old_pc);
ASSERT_TRUE(
tester->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC));
pc = tester->ReadPC(&success);
ASSERT_TRUE(success);
ASSERT_EQ(pc, old_pc + 4);
}
#define GEN_NOTHING_TEST(name, inst) \
TEST_F(RISCVEmulatorTester, testDoNothing_##name) { testNothing(this, inst); }
// GEN_NOTHING_TEST(name, inst):
// It should do nothing (except increasing pc) for instruction `inst`
GEN_NOTHING_TEST(mv, 0x01813083) // mv a0, a5
GEN_NOTHING_TEST(li, 0x00078513) // li a5, 0
GEN_NOTHING_TEST(sd, 0x02010413) // sd s0, sp(16)
GEN_NOTHING_TEST(lw, 0x0007879b) // lw a5, s0(-20)
GEN_NOTHING_TEST(addi, 0x00113423) // addi sp, sp, -16