Vectorizer: Add support for loop reductions.

For example:

  for (i=0; i<n; i++)
   sum += A[i] +  B[i] + i;

llvm-svn: 166351
This commit is contained in:
Nadav Rotem 2012-10-19 23:05:40 +00:00
parent 1479fcdef1
commit 4f7f72702b
4 changed files with 518 additions and 114 deletions

View File

@ -10,6 +10,8 @@
// This is a simple loop vectorizer. We currently only support single block
// loops. We have a very simple and restrictive legality check: we need to read
// and write from disjoint memory locations. We still don't have a cost model.
// We do support integer reductions.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A helper class that checks for the legality
@ -54,9 +56,11 @@ static cl::opt<unsigned>
DefaultVectorizationFactor("default-loop-vectorize-width",
cl::init(4), cl::Hidden,
cl::desc("Set the default loop vectorization width"));
namespace {
// Forward declaration.
class LoopVectorizationLegality;
/// Vectorize a simple loop. This class performs the widening of simple single
/// basic block loops into vectors. It does not perform any
/// vectorization-legality checks, and just does it. It widens the vectors
@ -67,23 +71,28 @@ public:
SingleBlockLoopVectorizer(Loop *OrigLoop, ScalarEvolution *Se, LoopInfo *Li,
LPPassManager *Lpm, unsigned VecWidth):
Orig(OrigLoop), SE(Se), LI(Li), LPM(Lpm), VF(VecWidth),
Builder(Se->getContext()), Induction(0), OldInduction(0) { }
Builder(0), Induction(0), OldInduction(0) { }
~SingleBlockLoopVectorizer() {
delete Builder;
}
// Perform the actual loop widening (vectorization).
void vectorize() {
void vectorize(LoopVectorizationLegality *Legal) {
///Create a new empty loop. Unlink the old loop and connect the new one.
createEmptyLoop();
/// Widen each instruction in the old loop to a new one in the new loop.
vectorizeLoop();
/// Use the Legality module to find the induction and reduction variables.
vectorizeLoop(Legal);
// register the new loop.
cleanup();
}
}
private:
/// Create an empty loop, based on the loop ranges of the old loop.
void createEmptyLoop();
/// Copy and widen the instructions from the old loop.
void vectorizeLoop();
void vectorizeLoop(LoopVectorizationLegality *Legal);
/// Insert the new loop to the loop hierarchy and pass manager.
void cleanup();
@ -113,6 +122,10 @@ private:
/// broadcast them into a vector.
Value *getVectorValue(Value *V);
/// Get a uniform vector of constant integers. We use this to get
/// vectors of ones and zeros for the reduction code.
Constant* getUniformVector(unsigned Val, Type* ScalarTy);
typedef DenseMap<Value*, Value*> ValueMap;
/// The original loop.
@ -127,10 +140,21 @@ private:
unsigned VF;
// The builder that we use
IRBuilder<> Builder;
IRBuilder<> *Builder;
// --- Vectorization state ---
/// Middle Block between the vector and the scalar.
BasicBlock *LoopMiddleBlock;
///The ExitBlock of the scalar loop.
BasicBlock *LoopExitBlock;
///The vector loop body.
BasicBlock *LoopVectorBody;
///The scalar loop body.
BasicBlock *LoopScalarBody;
///The first bypass block.
BasicBlock *LoopBypassBlock;
/// The new Induction variable which was added to the new block.
PHINode *Induction;
/// The induction variable of the old basic block.
@ -146,7 +170,23 @@ private:
class LoopVectorizationLegality {
public:
LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
TheLoop(Lp), SE(Se), DL(Dl) { }
TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }
/// This represents the kinds of reductions that we support.
enum ReductionKind {
IntegerAdd, /// Sum of numbers.
IntegerMult, /// Product of numbers.
NoReduction /// Not a reduction.
};
// Holds a pairing of reduction instruction and the reduction kind.
typedef std::pair<Instruction*, ReductionKind> ReductionPair;
/// ReductionList contains the reduction variables
/// as well as a single EXIT (from the block) value and the kind of
/// reduction variable..
/// Notice that the EXIT instruction can also be the PHI itself.
typedef DenseMap<PHINode*, ReductionPair> ReductionList;
/// Returns the maximum vectorization factor that we *can* use to vectorize
/// this loop. This does not mean that it is profitable to vectorize this
@ -154,6 +194,12 @@ public:
/// can vectorize to any SIMD width below this number.
unsigned getLoopMaxVF();
/// Returns the Induction variable.
PHINode *getInduction() {return Induction;}
/// Returns the reduction variables found in the loop.
ReductionList *getReductionVars() { return &Reductions; }
private:
/// Check if a single basic block loop is vectorizable.
/// At this point we know that this is a loop with a constant trip count
@ -164,12 +210,32 @@ private:
// Example: Alloca, Global, NoAlias.
bool isIdentifiedSafeObject(Value* Val);
/// Returns True, if 'Phi' is the kind of reduction variable for type
/// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
/// Checks if a constant matches the reduction kind.
/// Sums starts with zero. Products start at one.
bool isReductionConstant(Value *V, ReductionKind Kind);
/// Returns true if the instruction I can be a reduction variable of type
/// 'Kind'.
bool isReductionInstr(Instruction *I, ReductionKind Kind);
/// The loop that we evaluate.
Loop *TheLoop;
/// Scev analysis.
ScalarEvolution *SE;
/// DataLayout analysis.
DataLayout *DL;
// --- vectorization state --- //
/// Holds the induction variable.
PHINode *Induction;
/// Holds the reduction variables.
ReductionList Reductions;
/// Allowed outside users. This holds the reduction
/// vars which can be accessed from outside the loop.
SmallPtrSet<Value*, 4> AllowedExit;
};
struct LoopVectorize : public LoopPass {
@ -184,6 +250,7 @@ struct LoopVectorize : public LoopPass {
LoopInfo *LI;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
// Only vectorize innermost loops.
if (!L->empty())
return false;
@ -209,7 +276,7 @@ struct LoopVectorize : public LoopPass {
// If we decided that is is *legal* to vectorizer the loop. Do it.
SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, DefaultVectorizationFactor);
LB.vectorize();
LB.vectorize(&LVL);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
return true;
@ -218,6 +285,7 @@ struct LoopVectorize : public LoopPass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
LoopPass::getAnalysisUsage(AU);
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
}
@ -237,10 +305,10 @@ Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
Value *UndefVal = UndefValue::get(VTy);
// Insert the value into a new vector.
Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
Value *SingleElem = Builder->CreateInsertElement(UndefVal, V, Zero);
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
"broadcast");
Value *Shuf = Builder->CreateShuffleVector(SingleElem, UndefVal, Zeros,
"broadcast");
// We are accessing the induction variable. Make sure to promote the
// index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
if (V == Induction)
@ -265,7 +333,7 @@ Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
return Builder.CreateAdd(Val, Cv, "induction");
return Builder->CreateAdd(Val, Cv, "induction");
}
@ -297,10 +365,11 @@ bool SingleBlockLoopVectorizer::isConsecutiveGep(GetElementPtrInst *Gep) {
}
Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
assert(!V->getType()->isVectorTy() && "Can't widen a vector");
// If we saved a vectorized copy of V, use it.
ValueMap::iterator it = WidenMap.find(V);
if (it != WidenMap.end())
return it->second;
return it->second;
// Broadcast V and save the value for future uses.
Value *B = getBroadcastInstrs(V);
@ -308,6 +377,17 @@ Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
return B;
}
Constant*
SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
SmallVector<Constant*, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
for (unsigned i = 0; i < VF; ++i)
Indices.push_back(ConstantInt::get(ScalarTy, Val));
// Add the consecutive indices to the vector value.
return ConstantVector::get(Indices);
}
void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// Holds vector parameters or scalars, in case of uniform vals.
@ -360,18 +440,18 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
Value *Op = Params[op];
// Param is a vector. Need to extract the right lane.
if (Op->getType()->isVectorTy())
Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
Op = Builder->CreateExtractElement(Op, Builder->getInt32(i));
Cloned->setOperand(op, Op);
}
// Place the cloned scalar in the new loop.
Builder.Insert(Cloned);
Builder->Insert(Cloned);
// If the original scalar returns a value we need to place it in a vector
// so that future users will be able to use it.
if (!IsVoidRetTy)
VecResults = Builder.CreateInsertElement(VecResults, Cloned,
Builder.getInt32(i));
VecResults = Builder->CreateInsertElement(VecResults, Cloned,
Builder->getInt32(i));
}
if (!IsVoidRetTy)
@ -417,16 +497,15 @@ void SingleBlockLoopVectorizer::createEmptyLoop() {
assert(BypassBlock && "Invalid loop structure");
BasicBlock *VectorPH =
BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(),
"vector.body");
"vector.body");
BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(),
"middle.block");
"middle.block");
BasicBlock *ScalarPH =
MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
"scalar.preheader");
MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
"scalar.preheader");
// Find the induction variable.
BasicBlock *OldBasicBlock = Orig->getHeader();
OldInduction = dyn_cast<PHINode>(OldBasicBlock->begin());
@ -435,10 +514,11 @@ void SingleBlockLoopVectorizer::createEmptyLoop() {
// Use this IR builder to create the loop instructions (Phi, Br, Cmp)
// inside the loop.
Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
Builder = new IRBuilder<>(VecBody);
Builder->SetInsertPoint(VecBody->getFirstInsertionPt());
// Generate the induction variable.
Induction = Builder.CreatePHI(IdxTy, 2, "index");
Induction = Builder->CreatePHI(IdxTy, 2, "index");
Constant *Zero = ConstantInt::get(IdxTy, 0);
Constant *Step = ConstantInt::get(IdxTy, VF);
@ -489,12 +569,12 @@ void SingleBlockLoopVectorizer::createEmptyLoop() {
MiddleBlock->getTerminator()->eraseFromParent();
// Create i+1 and fill the PHINode.
Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
Value *NextIdx = Builder->CreateAdd(Induction, Step, "index.next");
Induction->addIncoming(Zero, VectorPH);
Induction->addIncoming(NextIdx, VecBody);
// Create the compare.
Value *ICmp = Builder.CreateICmpEQ(NextIdx, CountRoundDown);
Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
Value *ICmp = Builder->CreateICmpEQ(NextIdx, CountRoundDown);
Builder->CreateCondBr(ICmp, MiddleBlock, VecBody);
// Now we have two terminators. Remove the old one from the block.
VecBody->getTerminator()->eraseFromParent();
@ -504,7 +584,7 @@ void SingleBlockLoopVectorizer::createEmptyLoop() {
OldInduction->setIncomingValue(BlockIdx, CountRoundDown);
// Get ready to start creating new instructions into the vectorized body.
Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
Builder->SetInsertPoint(VecBody->getFirstInsertionPt());
// Register the new loop.
Loop* Lp = new Loop();
@ -518,22 +598,52 @@ void SingleBlockLoopVectorizer::createEmptyLoop() {
ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
}
// Save the state.
LoopMiddleBlock = MiddleBlock;
LoopExitBlock = ExitBlock;
LoopVectorBody = VecBody;
LoopScalarBody = OldBasicBlock;
LoopBypassBlock = BypassBlock;
}
void SingleBlockLoopVectorizer::vectorizeLoop() {
void
SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
typedef SmallVector<PHINode*, 4> PhiVector;
BasicBlock &BB = *Orig->getHeader();
// In order to support reduction variables we need to be able to vectorize
// Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
// steages. First, we create a new vector PHI node with no incoming edges.
// We use this value when we vectorize all of the instructions that use the
// PHI. Next, after all of the instructions in the block are complete we
// add the new incoming edges to the PHI. At this point all of the
// instructions in the basic block are vectorized, so we can use them to
// construct the PHI.
PhiVector PHIsToFix;
// For each instruction in the old loop.
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
Instruction *Inst = it;
switch (Inst->getOpcode()) {
case Instruction::PHI:
case Instruction::Br:
// Nothing to do for PHIs and BR, since we already took care of the
// loop control flow instructions.
continue;
case Instruction::PHI:{
PHINode* P = cast<PHINode>(Inst);
// Special handling for the induction var.
if (OldInduction == Inst)
continue;
// This is phase I of vectorizing PHIs.
// This has to be a reduction variable.
assert(Legal->getReductionVars()->count(P) && "Not a Reduction");
Type *VecTy = VectorType::get(Inst->getType(), VF);
WidenMap[Inst] = Builder->CreatePHI(VecTy, 2, "vec.phi");
PHIsToFix.push_back(P);
continue;
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
@ -557,15 +667,17 @@ void SingleBlockLoopVectorizer::vectorizeLoop() {
Value *A = getVectorValue(Inst->getOperand(0));
Value *B = getVectorValue(Inst->getOperand(1));
// Use this vector value for all users of the original instruction.
WidenMap[Inst] = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
WidenMap[Inst] = Builder->CreateBinOp(BinOp->getOpcode(), A, B);
break;
}
case Instruction::Select: {
// Widen selects.
// TODO: If the selector is loop invariant we can issue a select
// instruction with a scalar condition.
Value *A = getVectorValue(Inst->getOperand(0));
Value *B = getVectorValue(Inst->getOperand(1));
Value *C = getVectorValue(Inst->getOperand(2));
WidenMap[Inst] = Builder.CreateSelect(A, B, C);
WidenMap[Inst] = Builder->CreateSelect(A, B, C);
break;
}
@ -577,9 +689,9 @@ void SingleBlockLoopVectorizer::vectorizeLoop() {
Value *A = getVectorValue(Inst->getOperand(0));
Value *B = getVectorValue(Inst->getOperand(1));
if (FCmp)
WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
WidenMap[Inst] = Builder->CreateFCmp(Cmp->getPredicate(), A, B);
else
WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
WidenMap[Inst] = Builder->CreateICmp(Cmp->getPredicate(), A, B);
break;
}
@ -600,10 +712,10 @@ void SingleBlockLoopVectorizer::vectorizeLoop() {
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
unsigned NumOperands = Gep->getNumOperands();
Gep2->setOperand(NumOperands - 1, Induction);
Ptr = Builder.Insert(Gep2);
Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
Ptr = Builder->Insert(Gep2);
Ptr = Builder->CreateBitCast(Ptr, StTy->getPointerTo());
Value *Val = getVectorValue(SI->getValueOperand());
Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
Builder->CreateStore(Val, Ptr)->setAlignment(Alignment);
break;
}
case Instruction::Load: {
@ -624,9 +736,9 @@ void SingleBlockLoopVectorizer::vectorizeLoop() {
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
unsigned NumOperands = Gep->getNumOperands();
Gep2->setOperand(NumOperands - 1, Induction);
Ptr = Builder.Insert(Gep2);
Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
LI = Builder.CreateLoad(Ptr);
Ptr = Builder->Insert(Gep2);
Ptr = Builder->CreateBitCast(Ptr, RetTy->getPointerTo());
LI = Builder->CreateLoad(Ptr);
LI->setAlignment(Alignment);
// Use this vector value for all users of the load.
WidenMap[Inst] = LI;
@ -648,7 +760,7 @@ void SingleBlockLoopVectorizer::vectorizeLoop() {
CastInst *CI = dyn_cast<CastInst>(Inst);
Value *A = getVectorValue(Inst->getOperand(0));
Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
WidenMap[Inst] = Builder->CreateCast(CI->getOpcode(), A, DestTy);
break;
}
@ -658,6 +770,102 @@ void SingleBlockLoopVectorizer::vectorizeLoop() {
break;
}// end of switch.
}// end of for_each instr.
// At this point every instruction in the original loop is widended to
// a vector form. We are almost done. Now, we need to fix the PHI nodes
// that we vectorized. The PHI nodes are currently empty because we did
// not want to introduce cycles. Notice that the remaining PHI nodes
// that we need to fix are reduction variables.
// Create the 'reduced' values for each of the induction vars.
// The reduced values are the vector values that we scalarize and combine
// after the loop is finished.
for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end();
it != e; ++it) {
PHINode *RdxPhi = *it;
PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
assert(RdxPhi && "Unable to recover vectorized PHI");
// Find the reduction variable.
assert(Legal->getReductionVars()->count(RdxPhi) &&
"Unable to find the reduction variable");
LoopVectorizationLegality::ReductionPair ReductionVar =
(*Legal->getReductionVars())[RdxPhi];
// This is the vector-clone of the value that leaves the loop.
Value *VectorExit = getVectorValue(ReductionVar.first);
Type *VecTy = VectorExit->getType();
// This is the kind of reduction.
LoopVectorizationLegality::ReductionKind RdxKind = ReductionVar.second;
// Find the reduction identity variable.
// Zero for addition. One for Multiplication.
unsigned IdentitySclr =
(RdxKind == LoopVectorizationLegality::IntegerAdd ? 0 : 1);
Constant *Identity = getUniformVector(IdentitySclr, VecTy->getScalarType());
// Fix the vector-loop phi.
// We created the induction variable so we know that the
// preheader is the first entry.
BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
VecRdxPhi->addIncoming(Identity, VecPreheader);
unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx));
VecRdxPhi->addIncoming(Val, LoopVectorBody);
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
// This allows us to write both PHINodes and the extractelement
// instructions.
Builder->SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
// This PHINode contains the vectorized reduction variable, or
// the identity vector, if we bypass the vector loop.
PHINode *NewPhi = Builder->CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
NewPhi->addIncoming(Identity, LoopBypassBlock);
NewPhi->addIncoming(getVectorValue(ReductionVar.first), LoopVectorBody);
// Extract the first scalar.
Value *Scalar0 =
Builder->CreateExtractElement(NewPhi, Builder->getInt32(0));
// Extract and sum the remaining vector elements.
for (unsigned i=1; i < VF; ++i) {
Value *Scalar1 =
Builder->CreateExtractElement(NewPhi, Builder->getInt32(i));
if (RdxKind == LoopVectorizationLegality::IntegerAdd) {
Scalar0 = Builder->CreateAdd(Scalar0, Scalar1);
} else {
Scalar0 = Builder->CreateMul(Scalar0, Scalar1);
}
}
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the
// PHI nodes in the exit blocks.
for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
if (!LCSSAPhi) continue;
// All PHINodes need to have a single entry edge, or two if we already fixed them.
assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
// We found our reduction value exit-PHI. Update it with the incoming bypass edge.
if (LCSSAPhi->getIncomingValue(0) == ReductionVar.first) {
// Add an edge coming from the bypass.
LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
break;
}
}// end of the LCSSA phi scan.
// Fix the scalar loop reduction variable with the incoming reduction sum
// from the vector body and from the backedge value.
int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block.
(RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
(RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, ReductionVar.first);
}// end of for each redux variable.
}
void SingleBlockLoopVectorizer::cleanup() {
@ -710,31 +918,35 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
ValueVector Reads;
ValueVector Writes;
SmallPtrSet<Value*, 16> AnalyzedPtrs;
unsigned NumPhis = 0;
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
Instruction *I = it;
PHINode *Phi = dyn_cast<PHINode>(I);
if (Phi) {
NumPhis++;
// We only look at integer phi nodes.
if (!Phi->getType()->isIntegerTy()) {
DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
return false;
}
// If we found an induction variable.
if (NumPhis > 1) {
DEBUG(dbgs() << "LV: Found more than one PHI.\n");
return false;
}
// This should not happen because the loop should be normalized.
if (Phi->getNumIncomingValues() != 2) {
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
return false;
}
// We only look at integer phi nodes.
if (!Phi->getType()->isIntegerTy()) {
DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
return false;
}
if (AddReductionVar(Phi, IntegerAdd)) {
DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, IntegerMult)) {
DEBUG(dbgs() << "LV: Found an Mult reduction PHI."<< *Phi <<"\n");
continue;
}
if (Induction) {
DEBUG(dbgs() << "LV: Found too many PHIs.\n");
return false;
}
// Found the induction variable.
Induction = Phi;
// Check that the PHI is consecutive and starts at zero.
const SCEV *PhiScev = SE->getSCEV(Phi);
@ -751,7 +963,7 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n");
return false;
}
}
}// end of PHI handling
// If this is a load, record its pointer. If it is not a load, abort.
// Notice that we don't handle function calls that read or write.
@ -764,8 +976,7 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
}
Value* Ptr = Ld->getPointerOperand();
if (AnalyzedPtrs.insert(Ptr))
GetUnderlyingObjects(Ptr, Reads, DL);
GetUnderlyingObjects(Ptr, Reads, DL);
}
// Record store pointers. Abort on all other instructions that write to
@ -779,8 +990,7 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
}
Value* Ptr = St->getPointerOperand();
if (AnalyzedPtrs.insert(Ptr))
GetUnderlyingObjects(St->getPointerOperand(), Writes, DL);
GetUnderlyingObjects(Ptr, Writes, DL);
}
// We still don't handle functions.
@ -797,21 +1007,26 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
return false;
}
//Check that all of the users of the loop are inside the BB.
for (Value::use_iterator it = I->use_begin(), e = I->use_end();
it != e; ++it) {
Instruction *U = cast<Instruction>(*it);
BasicBlock *Parent = U->getParent();
if (Parent != &BB) {
DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
return false;
}
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
if (!AllowedExit.count(I))
//Check that all of the users of the loop are inside the BB.
for (Value::use_iterator it = I->use_begin(), e = I->use_end();
it != e; ++it) {
Instruction *U = cast<Instruction>(*it);
// This user may be a reduction exit value.
BasicBlock *Parent = U->getParent();
if (Parent != &BB) {
DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
return false;
}
}
} // next instr.
if (NumPhis != 1) {
DEBUG(dbgs() << "LV: Did not find a Phi node.\n");
return false;
if (!Induction) {
DEBUG(dbgs() << "LV: Did not find an induction var.\n");
return false;
}
// Check that the underlying objects of the reads and writes are either
@ -866,6 +1081,110 @@ bool LoopVectorizationLegality::isIdentifiedSafeObject(Value* Val) {
return A->hasNoAliasAttr();
}
bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
ReductionKind Kind) {
if (Phi->getNumIncomingValues() != 2)
return false;
// Find the possible incoming reduction variable.
BasicBlock *BB = Phi->getParent();
int SelfEdgeIdx = Phi->getBasicBlockIndex(BB);
int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry.
Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx);
// We must have a constant that starts the reduction.
if (!isReductionConstant(RdxStart, Kind))
return false;
// ExitInstruction is the single value which is used outside the loop.
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = 0;
// Iter is our iterator. We start with the PHI node and scan for all of the
// users of this instruction. All users must be instructions which can be
// used as reduction variables (such as ADD). We may have a single
// out-of-block user. They cycle must end with the original PHI.
// Also, we can't have multiple block-local users.
Instruction *Iter = Phi;
while (true) {
// Any reduction instr must be of one of the allowed kinds.
if (!isReductionInstr(Iter, Kind))
return false;
// Did we found a user inside this block ?
bool FoundInBlockUser = false;
// Did we reach the initial PHI node ?
bool FoundStartPHI = false;
// For each of the *users* of iter.
for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
it != e; ++it) {
Instruction *U = cast<Instruction>(*it);
// We already know that the PHI is a user.
if (U == Phi) {
FoundStartPHI = true;
continue;
}
// Check if we found the exit user.
BasicBlock *Parent = U->getParent();
if (Parent != BB) {
// We must have a single exit instruction.
if (ExitInstruction != 0)
return false;
ExitInstruction = Iter;
}
// We can't have multiple inside users.
if (FoundInBlockUser)
return false;
FoundInBlockUser = true;
Iter = U;
}
// We found a reduction var if we have reached the original
// phi node and we only have a single instruction with out-of-loop
// users.
if (FoundStartPHI && ExitInstruction) {
// This instruction is allowed to have out-of-loop users.
AllowedExit.insert(ExitInstruction);
// Mark this as a reduction var.
Reductions[Phi] = std::make_pair(ExitInstruction, Kind);
return true;
}
}
}
bool
LoopVectorizationLegality::isReductionConstant(Value *V, ReductionKind Kind) {
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (!CI)
return false;
if (Kind == IntegerMult && CI->isOne())
return true;
if (Kind == IntegerAdd && CI->isZero())
return true;
return false;
}
bool
LoopVectorizationLegality::isReductionInstr(Instruction *I,
ReductionKind Kind) {
switch (I->getOpcode()) {
default:
return false;
case Instruction::PHI:
// possibly.
return true;
case Instruction::Add:
case Instruction::Sub:
return Kind == IntegerAdd;
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
return Kind == IntegerMult;
}
}
} // namespace
char LoopVectorize::ID = 0;
@ -880,6 +1199,5 @@ namespace llvm {
Pass *createLoopVectorizePass() {
return new LoopVectorize();
}
}

View File

@ -202,9 +202,8 @@ define void @example8(i32 %x) nounwind uwtable ssp {
ret void
}
; We can't vectorize because it has a reduction variable.
;CHECK: @example9
;CHECK-NOT: <4 x i32>
;CHECK: phi <4 x i32>
;CHECK: ret i32
define i32 @example9() nounwind uwtable readonly ssp {
br label %1

View File

@ -1,35 +0,0 @@
; RUN: opt < %s -loop-vectorize -dce -instcombine -licm -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.8.0"
@a = common global [2048 x i32] zeroinitializer, align 16
; This is the loop.
; for (i=0; i<n; i++){
; a[i] += i;
; }
;CHECK: @inc
;CHECK: load <4 x i32>
;CHECK: add <4 x i32>
;CHECK: store <4 x i32>
;CHECK: ret void
define void @inc(i32 %n) nounwind uwtable noinline ssp {
%1 = icmp sgt i32 %n, 0
br i1 %1, label %.lr.ph, label %._crit_edge
.lr.ph: ; preds = %0, %.lr.ph
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 0, %0 ]
%2 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv
%3 = load i32* %2, align 4
%4 = trunc i64 %indvars.iv to i32
%5 = add nsw i32 %3, %4
store i32 %5, i32* %2, align 4
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %n
br i1 %exitcond, label %._crit_edge, label %.lr.ph
._crit_edge: ; preds = %.lr.ph, %0
ret void
}

View File

@ -0,0 +1,122 @@
; RUN: opt < %s -loop-vectorize -dce -instcombine -licm -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.8.0"
;CHECK: @reduction_sum
;CHECK: phi <4 x i32>
;CHECK: load <4 x i32>
;CHECK: add <4 x i32>
;CHECK: ret i32
define i32 @reduction_sum(i32 %n, i32* noalias nocapture %A, i32* noalias nocapture %B) nounwind uwtable readonly noinline ssp {
%1 = icmp sgt i32 %n, 0
br i1 %1, label %.lr.ph, label %._crit_edge
.lr.ph: ; preds = %0, %.lr.ph
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 0, %0 ]
%sum.02 = phi i32 [ %9, %.lr.ph ], [ 0, %0 ]
%2 = getelementptr inbounds i32* %A, i64 %indvars.iv
%3 = load i32* %2, align 4
%4 = getelementptr inbounds i32* %B, i64 %indvars.iv
%5 = load i32* %4, align 4
%6 = trunc i64 %indvars.iv to i32
%7 = add i32 %sum.02, %6
%8 = add i32 %7, %3
%9 = add i32 %8, %5
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %n
br i1 %exitcond, label %._crit_edge, label %.lr.ph
._crit_edge: ; preds = %.lr.ph, %0
%sum.0.lcssa = phi i32 [ 0, %0 ], [ %9, %.lr.ph ]
ret i32 %sum.0.lcssa
}
;CHECK: @reduction_prod
;CHECK: phi <4 x i32>
;CHECK: load <4 x i32>
;CHECK: mul <4 x i32>
;CHECK: ret i32
define i32 @reduction_prod(i32 %n, i32* noalias nocapture %A, i32* noalias nocapture %B) nounwind uwtable readonly noinline ssp {
%1 = icmp sgt i32 %n, 0
br i1 %1, label %.lr.ph, label %._crit_edge
.lr.ph: ; preds = %0, %.lr.ph
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 0, %0 ]
%prod.02 = phi i32 [ %9, %.lr.ph ], [ 1, %0 ]
%2 = getelementptr inbounds i32* %A, i64 %indvars.iv
%3 = load i32* %2, align 4
%4 = getelementptr inbounds i32* %B, i64 %indvars.iv
%5 = load i32* %4, align 4
%6 = trunc i64 %indvars.iv to i32
%7 = mul i32 %prod.02, %6
%8 = mul i32 %7, %3
%9 = mul i32 %8, %5
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %n
br i1 %exitcond, label %._crit_edge, label %.lr.ph
._crit_edge: ; preds = %.lr.ph, %0
%prod.0.lcssa = phi i32 [ 1, %0 ], [ %9, %.lr.ph ]
ret i32 %prod.0.lcssa
}
;CHECK: @reduction_mix
;CHECK: phi <4 x i32>
;CHECK: load <4 x i32>
;CHECK: mul <4 x i32>
;CHECK: ret i32
define i32 @reduction_mix(i32 %n, i32* noalias nocapture %A, i32* noalias nocapture %B) nounwind uwtable readonly noinline ssp {
%1 = icmp sgt i32 %n, 0
br i1 %1, label %.lr.ph, label %._crit_edge
.lr.ph: ; preds = %0, %.lr.ph
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 0, %0 ]
%sum.02 = phi i32 [ %9, %.lr.ph ], [ 0, %0 ]
%2 = getelementptr inbounds i32* %A, i64 %indvars.iv
%3 = load i32* %2, align 4
%4 = getelementptr inbounds i32* %B, i64 %indvars.iv
%5 = load i32* %4, align 4
%6 = mul nsw i32 %5, %3
%7 = trunc i64 %indvars.iv to i32
%8 = add i32 %sum.02, %7
%9 = add i32 %8, %6
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %n
br i1 %exitcond, label %._crit_edge, label %.lr.ph
._crit_edge: ; preds = %.lr.ph, %0
%sum.0.lcssa = phi i32 [ 0, %0 ], [ %9, %.lr.ph ]
ret i32 %sum.0.lcssa
}
;CHECK: @reduction_bad
;CHECK-NOT: <4 x i32>
;CHECK: ret i32
define i32 @reduction_bad(i32 %n, i32* noalias nocapture %A, i32* noalias nocapture %B) nounwind uwtable readonly noinline ssp {
%1 = icmp sgt i32 %n, 0
br i1 %1, label %.lr.ph, label %._crit_edge
.lr.ph: ; preds = %0, %.lr.ph
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 0, %0 ]
%sum.02 = phi i32 [ %9, %.lr.ph ], [ 0, %0 ]
%2 = getelementptr inbounds i32* %A, i64 %indvars.iv
%3 = load i32* %2, align 4
%4 = getelementptr inbounds i32* %B, i64 %indvars.iv
%5 = load i32* %4, align 4
%6 = trunc i64 %indvars.iv to i32
%7 = add i32 %3, %6
%8 = add i32 %7, %5
%9 = mul i32 %8, %sum.02
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %n
br i1 %exitcond, label %._crit_edge, label %.lr.ph
._crit_edge: ; preds = %.lr.ph, %0
%sum.0.lcssa = phi i32 [ 0, %0 ], [ %9, %.lr.ph ]
ret i32 %sum.0.lcssa
}