Revert to C-style callbacks for iteration over allocator chunks.

Also clean up LSan code, fix some comments and replace void* with uptr
to bring down the number of reinterpret_casts.

llvm-svn: 184700
This commit is contained in:
Sergey Matveev 2013-06-24 08:34:50 +00:00
parent 20bbbd30d2
commit 4e0215a71c
8 changed files with 129 additions and 206 deletions

View File

@ -718,26 +718,25 @@ void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
*end = *begin + sizeof(__asan::allocator);
}
void *PointsIntoChunk(void* p) {
uptr PointsIntoChunk(void* p) {
uptr addr = reinterpret_cast<uptr>(p);
__asan::AsanChunk *m = __asan::GetAsanChunkByAddrFastLocked(addr);
if (!m) return 0;
uptr chunk = m->Beg();
if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr))
return reinterpret_cast<void *>(chunk);
return chunk;
return 0;
}
void *GetUserBegin(void *p) {
uptr GetUserBegin(uptr chunk) {
__asan::AsanChunk *m =
__asan::GetAsanChunkByAddrFastLocked(reinterpret_cast<uptr>(p));
__asan::GetAsanChunkByAddrFastLocked(chunk);
CHECK(m);
return reinterpret_cast<void *>(m->Beg());
return m->Beg();
}
LsanMetadata::LsanMetadata(void *chunk) {
uptr addr = reinterpret_cast<uptr>(chunk);
metadata_ = reinterpret_cast<void *>(addr - __asan::kChunkHeaderSize);
LsanMetadata::LsanMetadata(uptr chunk) {
metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
}
bool LsanMetadata::allocated() const {
@ -765,19 +764,9 @@ u32 LsanMetadata::stack_trace_id() const {
return m->alloc_context_id;
}
template <typename Callable> void ForEachChunk(Callable const &callback) {
__asan::allocator.ForEachChunk(callback);
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
__asan::allocator.ForEachChunk(callback, arg);
}
#if CAN_SANITIZE_LEAKS
template void ForEachChunk<ProcessPlatformSpecificAllocationsCb>(
ProcessPlatformSpecificAllocationsCb const &callback);
template void ForEachChunk<PrintLeakedCb>(PrintLeakedCb const &callback);
template void ForEachChunk<CollectLeaksCb>(CollectLeaksCb const &callback);
template void ForEachChunk<MarkIndirectlyLeakedCb>(
MarkIndirectlyLeakedCb const &callback);
template void ForEachChunk<CollectIgnoredCb>(
CollectIgnoredCb const &callback);
#endif // CAN_SANITIZE_LEAKS
IgnoreObjectResult IgnoreObjectLocked(const void *p) {
uptr addr = reinterpret_cast<uptr>(p);

View File

@ -12,7 +12,7 @@
pthread_key_t key;
void key_destructor(void *) {
void key_destructor(void *arg) {
__lsan::ScopedDisabler d;
void *p = malloc(1337);
// Break optimization.

View File

@ -52,7 +52,7 @@ void AllocatorThreadFinish() {
}
static ChunkMetadata *Metadata(void *p) {
return (ChunkMetadata *)allocator.GetMetaData(p);
return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p));
}
static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
@ -62,14 +62,14 @@ static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked;
m->stack_trace_id = StackDepotPut(stack.trace, stack.size);
m->requested_size = size;
atomic_store((atomic_uint8_t*)m, 1, memory_order_relaxed);
atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed);
}
static void RegisterDeallocation(void *p) {
if (!p) return;
ChunkMetadata *m = Metadata(p);
CHECK(m);
atomic_store((atomic_uint8_t*)m, 0, memory_order_relaxed);
atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed);
}
void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
@ -129,25 +129,26 @@ void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
*end = *begin + sizeof(allocator);
}
void *PointsIntoChunk(void* p) {
void *chunk = allocator.GetBlockBeginFastLocked(p);
uptr PointsIntoChunk(void* p) {
uptr addr = reinterpret_cast<uptr>(p);
uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p));
if (!chunk) return 0;
// LargeMmapAllocator considers pointers to the meta-region of a chunk to be
// valid, but we don't want that.
if (p < chunk) return 0;
ChunkMetadata *m = Metadata(chunk);
if (addr < chunk) return 0;
ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk));
CHECK(m);
if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size)
if (m->allocated && addr < chunk + m->requested_size)
return chunk;
return 0;
}
void *GetUserBegin(void *p) {
return p;
uptr GetUserBegin(uptr chunk) {
return chunk;
}
LsanMetadata::LsanMetadata(void *chunk) {
metadata_ = Metadata(chunk);
LsanMetadata::LsanMetadata(uptr chunk) {
metadata_ = Metadata(reinterpret_cast<void *>(chunk));
CHECK(metadata_);
}
@ -171,20 +172,10 @@ u32 LsanMetadata::stack_trace_id() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id;
}
template<typename Callable>
void ForEachChunk(Callable const &callback) {
allocator.ForEachChunk(callback);
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
allocator.ForEachChunk(callback, arg);
}
template void ForEachChunk<ProcessPlatformSpecificAllocationsCb>(
ProcessPlatformSpecificAllocationsCb const &callback);
template void ForEachChunk<PrintLeakedCb>(PrintLeakedCb const &callback);
template void ForEachChunk<CollectLeaksCb>(CollectLeaksCb const &callback);
template void ForEachChunk<MarkIndirectlyLeakedCb>(
MarkIndirectlyLeakedCb const &callback);
template void ForEachChunk<CollectIgnoredCb>(
CollectIgnoredCb const &callback);
IgnoreObjectResult IgnoreObjectLocked(const void *p) {
void *chunk = allocator.GetBlockBegin(p);
if (!chunk || p < chunk) return kIgnoreObjectInvalid;

View File

@ -23,7 +23,7 @@
#if CAN_SANITIZE_LEAKS
namespace __lsan {
// This mutex is used to prevent races between DoLeakCheck and SuppressObject.
// This mutex is used to prevent races between DoLeakCheck and IgnoreObject.
BlockingMutex global_mutex(LINKER_INITIALIZED);
THREADLOCAL int disable_counter;
@ -84,12 +84,12 @@ static inline bool CanBeAHeapPointer(uptr p) {
#endif
}
// Scan the memory range, looking for byte patterns that point into allocator
// chunks. Mark those chunks with tag and add them to the frontier.
// There are two usage modes for this function: finding reachable or ignored
// chunks (tag = kReachable or kIgnored) and finding indirectly leaked chunks
// (tag = kIndirectlyLeaked). In the second case, there's no flood fill,
// so frontier = 0.
// Scans the memory range, looking for byte patterns that point into allocator
// chunks. Marks those chunks with |tag| and adds them to |frontier|.
// There are two usage modes for this function: finding reachable or ignored
// chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
// so |frontier| = 0.
void ScanRangeForPointers(uptr begin, uptr end,
Frontier *frontier,
const char *region_type, ChunkTag tag) {
@ -99,10 +99,10 @@ void ScanRangeForPointers(uptr begin, uptr end,
uptr pp = begin;
if (pp % alignment)
pp = pp + alignment - pp % alignment;
for (; pp + sizeof(void *) <= end; pp += alignment) {
for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT
void *p = *reinterpret_cast<void**>(pp);
if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
void *chunk = PointsIntoChunk(p);
uptr chunk = PointsIntoChunk(p);
if (!chunk) continue;
LsanMetadata m(chunk);
// Reachable beats ignored beats leaked.
@ -111,14 +111,13 @@ void ScanRangeForPointers(uptr begin, uptr end,
m.set_tag(tag);
if (flags()->log_pointers)
Report("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
chunk, reinterpret_cast<uptr>(chunk) + m.requested_size(),
m.requested_size());
chunk, chunk + m.requested_size(), m.requested_size());
if (frontier)
frontier->push_back(reinterpret_cast<uptr>(chunk));
frontier->push_back(chunk);
}
}
// Scan thread data (stacks and TLS) for heap pointers.
// Scans thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
Frontier *frontier) {
InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
@ -191,31 +190,34 @@ static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
while (frontier->size()) {
uptr next_chunk = frontier->back();
frontier->pop_back();
LsanMetadata m(reinterpret_cast<void *>(next_chunk));
LsanMetadata m(next_chunk);
ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
"HEAP", tag);
}
}
// Mark leaked chunks which are reachable from other leaked chunks.
void MarkIndirectlyLeakedCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
// which are reachable from it as indirectly leaked.
static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (m.allocated() && m.tag() != kReachable) {
ScanRangeForPointers(reinterpret_cast<uptr>(p),
reinterpret_cast<uptr>(p) + m.requested_size(),
ScanRangeForPointers(chunk, chunk + m.requested_size(),
/* frontier */ 0, "HEAP", kIndirectlyLeaked);
}
}
void CollectIgnoredCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
// ForEachChunk callback. If chunk is marked as ignored, adds its address to
// frontier.
static void CollectIgnoredCb(uptr chunk, void *arg) {
CHECK(arg);
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (m.allocated() && m.tag() == kIgnored)
frontier_->push_back(reinterpret_cast<uptr>(p));
reinterpret_cast<Frontier *>(arg)->push_back(chunk);
}
// Set the appropriate tag on each chunk.
// Sets the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
// Holds the flood fill frontier.
Frontier frontier(GetPageSizeCached());
@ -233,14 +235,14 @@ static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
if (flags()->log_pointers)
Report("Scanning ignored chunks.\n");
CHECK_EQ(0, frontier.size());
ForEachChunk(CollectIgnoredCb(&frontier));
ForEachChunk(CollectIgnoredCb, &frontier);
FloodFillTag(&frontier, kIgnored);
// Iterate over leaked chunks and mark those that are reachable from other
// leaked chunks.
if (flags()->log_pointers)
Report("Scanning leaked chunks.\n");
ForEachChunk(MarkIndirectlyLeakedCb());
ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
}
static void PrintStackTraceById(u32 stack_trace_id) {
@ -251,9 +253,12 @@ static void PrintStackTraceById(u32 stack_trace_id) {
common_flags()->strip_path_prefix, 0);
}
void CollectLeaksCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
// ForEachChunk callback. Aggregates unreachable chunks into a LeakReport.
static void CollectLeaksCb(uptr chunk, void *arg) {
CHECK(arg);
LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (!m.allocated()) return;
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
uptr resolution = flags()->resolution;
@ -261,33 +266,29 @@ void CollectLeaksCb::operator()(void *p) const {
uptr size = 0;
const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
size = Min(size, resolution);
leak_report_->Add(StackDepotPut(trace, size), m.requested_size(),
m.tag());
leak_report->Add(StackDepotPut(trace, size), m.requested_size(), m.tag());
} else {
leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag());
leak_report->Add(m.stack_trace_id(), m.requested_size(), m.tag());
}
}
}
static void CollectLeaks(LeakReport *leak_report) {
ForEachChunk(CollectLeaksCb(leak_report));
}
void PrintLeakedCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
// ForEachChunkCallback. Prints addresses of unreachable chunks.
static void PrintLeakedCb(uptr chunk, void *arg) {
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (!m.allocated()) return;
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
Printf("%s leaked %zu byte object at %p.\n",
m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
m.requested_size(), p);
m.requested_size(), chunk);
}
}
static void PrintLeaked() {
Printf("\n");
Printf("Reporting individual objects:\n");
ForEachChunk(PrintLeakedCb());
ForEachChunk(PrintLeakedCb, 0 /* arg */);
}
struct DoLeakCheckParam {
@ -302,7 +303,7 @@ static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
CHECK(!param->success);
CHECK(param->leak_report.IsEmpty());
ClassifyAllChunks(suspended_threads);
CollectLeaks(&param->leak_report);
ForEachChunk(CollectLeaksCb, &param->leak_report);
if (!param->leak_report.IsEmpty() && flags()->report_objects)
PrintLeaked();
param->success = true;

View File

@ -15,6 +15,7 @@
#ifndef LSAN_COMMON_H
#define LSAN_COMMON_H
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_platform.h"
@ -105,55 +106,6 @@ void ScanRangeForPointers(uptr begin, uptr end,
Frontier *frontier,
const char *region_type, ChunkTag tag);
// Callables for iterating over chunks. Those classes are used as template
// parameters in ForEachChunk, so we must expose them here to allow for explicit
// template instantiation.
// Identifies unreachable chunks which must be treated as reachable. Marks them
// as reachable and adds them to the frontier.
class ProcessPlatformSpecificAllocationsCb {
public:
explicit ProcessPlatformSpecificAllocationsCb(
Frontier *frontier)
: frontier_(frontier) {}
void operator()(void *p) const;
private:
Frontier *frontier_;
};
// Prints addresses of unreachable chunks.
class PrintLeakedCb {
public:
void operator()(void *p) const;
};
// Aggregates unreachable chunks into a LeakReport.
class CollectLeaksCb {
public:
explicit CollectLeaksCb(LeakReport *leak_report)
: leak_report_(leak_report) {}
void operator()(void *p) const;
private:
LeakReport *leak_report_;
};
// Scans each leaked chunk for pointers to other leaked chunks, and marks each
// of them as indirectly leaked.
class MarkIndirectlyLeakedCb {
public:
void operator()(void *p) const;
};
// Finds all chunk marked as kIgnored and adds their addresses to frontier.
class CollectIgnoredCb {
public:
explicit CollectIgnoredCb(Frontier *frontier)
: frontier_(frontier) {}
void operator()(void *p) const;
private:
Frontier *frontier_;
};
enum IgnoreObjectResult {
kIgnoreObjectSuccess,
kIgnoreObjectAlreadyIgnored,
@ -167,8 +119,8 @@ bool DisabledInThisThread();
// The following must be implemented in the parent tool.
template<typename Callable> void ForEachChunk(Callable const &callback);
// The address range occupied by the global allocator object.
void ForEachChunk(ForEachChunkCallback callback, void *arg);
// Returns the address range occupied by the global allocator object.
void GetAllocatorGlobalRange(uptr *begin, uptr *end);
// Wrappers for allocator's ForceLock()/ForceUnlock().
void LockAllocator();
@ -179,18 +131,18 @@ void UnlockThreadRegistry();
bool GetThreadRangesLocked(uptr os_id, uptr *stack_begin, uptr *stack_end,
uptr *tls_begin, uptr *tls_end,
uptr *cache_begin, uptr *cache_end);
// If p points into a chunk that has been allocated to the user, return its
// user-visible address. Otherwise, return 0.
void *PointsIntoChunk(void *p);
// Return address of user-visible chunk contained in this allocator chunk.
void *GetUserBegin(void *p);
// If p points into a chunk that has been allocated to the user, returns its
// user-visible address. Otherwise, returns 0.
uptr PointsIntoChunk(void *p);
// Returns address of user-visible chunk contained in this allocator chunk.
uptr GetUserBegin(uptr chunk);
// Helper for __lsan_ignore_object().
IgnoreObjectResult IgnoreObjectLocked(const void *p);
// Wrapper for chunk metadata operations.
class LsanMetadata {
public:
// Constructor accepts pointer to user-visible chunk.
explicit LsanMetadata(void *chunk);
// Constructor accepts address of user-visible chunk.
explicit LsanMetadata(uptr chunk);
bool allocated() const;
ChunkTag tag() const;
void set_tag(ChunkTag value);

View File

@ -53,8 +53,7 @@ void InitializePlatformSpecificModules() {
static int ProcessGlobalRegionsCallback(struct dl_phdr_info *info, size_t size,
void *data) {
Frontier *frontier =
reinterpret_cast<Frontier *>(data);
Frontier *frontier = reinterpret_cast<Frontier *>(data);
for (uptr j = 0; j < info->dlpi_phnum; j++) {
const ElfW(Phdr) *phdr = &(info->dlpi_phdr[j]);
// We're looking for .data and .bss sections, which reside in writeable,
@ -82,7 +81,7 @@ static int ProcessGlobalRegionsCallback(struct dl_phdr_info *info, size_t size,
return 0;
}
// Scan global variables for heap pointers.
// Scans global variables for heap pointers.
void ProcessGlobalRegions(Frontier *frontier) {
// FIXME: dl_iterate_phdr acquires a linker lock, so we run a risk of
// deadlocking by running this under StopTheWorld. However, the lock is
@ -101,23 +100,26 @@ static uptr GetCallerPC(u32 stack_id) {
return 0;
}
void ProcessPlatformSpecificAllocationsCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
// ForEachChunk callback. Identifies unreachable chunks which must be treated as
// reachable. Marks them as reachable and adds them to the frontier.
static void ProcessPlatformSpecificAllocationsCb(uptr chunk, void *arg) {
CHECK(arg);
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (m.allocated() && m.tag() != kReachable) {
if (linker->containsAddress(GetCallerPC(m.stack_trace_id()))) {
m.set_tag(kReachable);
frontier_->push_back(reinterpret_cast<uptr>(p));
reinterpret_cast<Frontier *>(arg)->push_back(chunk);
}
}
}
// Handle dynamically allocated TLS blocks by treating all chunks allocated from
// ld-linux.so as reachable.
// Handles dynamically allocated TLS blocks by treating all chunks allocated
// from ld-linux.so as reachable.
void ProcessPlatformSpecificAllocations(Frontier *frontier) {
if (!flags()->use_tls) return;
if (!linker) return;
ForEachChunk(ProcessPlatformSpecificAllocationsCb(frontier));
ForEachChunk(ProcessPlatformSpecificAllocationsCb, frontier);
}
} // namespace __lsan

View File

@ -279,6 +279,9 @@ struct NoOpMapUnmapCallback {
void OnUnmap(uptr p, uptr size) const { }
};
// Callback type for iterating over chunks.
typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
// SizeClassAllocator64 -- allocator for 64-bit address space.
//
// Space: a portion of address space of kSpaceSize bytes starting at
@ -433,20 +436,18 @@ class SizeClassAllocator64 {
}
}
// Iterate over existing chunks. May include chunks that are not currently
// allocated to the user (e.g. freed).
// The caller is expected to call ForceLock() before calling this function.
template<typename Callable>
void ForEachChunk(const Callable &callback) {
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
RegionInfo *region = GetRegionInfo(class_id);
uptr chunk_size = SizeClassMap::Size(class_id);
uptr region_beg = kSpaceBeg + class_id * kRegionSize;
for (uptr p = region_beg;
p < region_beg + region->allocated_user;
p += chunk_size) {
// Too slow: CHECK_EQ((void *)p, GetBlockBegin((void *)p));
callback((void *)p);
for (uptr chunk = region_beg;
chunk < region_beg + region->allocated_user;
chunk += chunk_size) {
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
callback(chunk, arg);
}
}
}
@ -726,21 +727,19 @@ class SizeClassAllocator32 {
}
}
// Iterate over existing chunks. May include chunks that are not currently
// allocated to the user (e.g. freed).
// The caller is expected to call ForceLock() before calling this function.
template<typename Callable>
void ForEachChunk(const Callable &callback) {
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
for (uptr region = 0; region < kNumPossibleRegions; region++)
if (possible_regions[region]) {
uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
uptr region_beg = region * kRegionSize;
for (uptr p = region_beg;
p < region_beg + max_chunks_in_region * chunk_size;
p += chunk_size) {
// Too slow: CHECK_EQ((void *)p, GetBlockBegin((void *)p));
callback((void *)p);
for (uptr chunk = region_beg;
chunk < region_beg + max_chunks_in_region * chunk_size;
chunk += chunk_size) {
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
callback(chunk, arg);
}
}
}
@ -1108,13 +1107,11 @@ class LargeMmapAllocator {
mutex_.Unlock();
}
// Iterate over existing chunks. May include chunks that are not currently
// allocated to the user (e.g. freed).
// The caller is expected to call ForceLock() before calling this function.
template<typename Callable>
void ForEachChunk(const Callable &callback) {
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
for (uptr i = 0; i < n_chunks_; i++)
callback(GetUser(chunks_[i]));
callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
}
private:
@ -1290,13 +1287,11 @@ class CombinedAllocator {
primary_.ForceUnlock();
}
// Iterate over existing chunks. May include chunks that are not currently
// allocated to the user (e.g. freed).
// The caller is expected to call ForceLock() before calling this function.
template<typename Callable>
void ForEachChunk(const Callable &callback) {
primary_.ForEachChunk(callback);
secondary_.ForEachChunk(callback);
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
primary_.ForEachChunk(callback, arg);
secondary_.ForEachChunk(callback, arg);
}
private:

View File

@ -635,15 +635,8 @@ TEST(Allocator, ScopedBuffer) {
}
}
class IterationTestCallback {
public:
explicit IterationTestCallback(std::set<void *> *chunks)
: chunks_(chunks) {}
void operator()(void *chunk) const {
chunks_->insert(chunk);
}
private:
std::set<void *> *chunks_;
void IterationTestCallback(uptr chunk, void *arg) {
reinterpret_cast<std::set<uptr> *>(arg)->insert(chunk);
};
template <class Allocator>
@ -673,15 +666,15 @@ void TestSizeClassAllocatorIteration() {
}
}
std::set<void *> reported_chunks;
IterationTestCallback callback(&reported_chunks);
std::set<uptr> reported_chunks;
a->ForceLock();
a->ForEachChunk(callback);
a->ForEachChunk(IterationTestCallback, &reported_chunks);
a->ForceUnlock();
for (uptr i = 0; i < allocated.size(); i++) {
// Don't use EXPECT_NE. Reporting the first mismatch is enough.
ASSERT_NE(reported_chunks.find(allocated[i]), reported_chunks.end());
ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])),
reported_chunks.end());
}
a->TestOnlyUnmap();
@ -711,15 +704,15 @@ TEST(SanitizerCommon, LargeMmapAllocatorIteration) {
for (uptr i = 0; i < kNumAllocs; i++)
allocated[i] = (char *)a.Allocate(&stats, size, 1);
std::set<void *> reported_chunks;
IterationTestCallback callback(&reported_chunks);
std::set<uptr> reported_chunks;
a.ForceLock();
a.ForEachChunk(callback);
a.ForEachChunk(IterationTestCallback, &reported_chunks);
a.ForceUnlock();
for (uptr i = 0; i < kNumAllocs; i++) {
// Don't use EXPECT_NE. Reporting the first mismatch is enough.
ASSERT_NE(reported_chunks.find(allocated[i]), reported_chunks.end());
ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])),
reported_chunks.end());
}
for (uptr i = 0; i < kNumAllocs; i++)
a.Deallocate(&stats, allocated[i]);