[X86][AMX] Hoist ldtilecfg

The previous code calculated the first ldtilecfg by dominating all AMX registers' def. This may result in the ldtilecfg being inserted into a loop.

This patch try to calculate the nearest point where all shapes of AMX registers are reachable.

Reviewed By: LuoYuanke

Differential Revision: https://reviews.llvm.org/D99010
This commit is contained in:
Wang, Pengfei 2021-04-12 22:08:27 +08:00
parent 6c0a1ed3a9
commit 4cbaaf4a24
5 changed files with 554 additions and 321 deletions

View File

@ -6,31 +6,20 @@
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to pre-config the shape of AMX register
/// AMX register need to be configured before use. The shape of AMX register
/// is encoded in the 1st and 2nd machine operand of AMX pseudo instructions.
/// The pldtilecfg is to config tile registers. It should dominator all AMX
/// instructions. The pldtilecfg produce a virtual cfg register and the cfg
/// register is used by all AMX instructions.
/// This pass is to find the common dominator of all AMX instructions and
/// insert the pldtilecfg instruction. Besides the cfg register that pldtilecfg
/// produces is inserted as the last operand of each AMX instruction. We use
/// this scheme to model the def-use relationship between AMX config instruction
/// and other AMX instructions. Below is an example.
/// \file Pass to pre-config the shapes of AMX registers
/// AMX register needs to be configured before use. The shapes of AMX register
/// are encoded in the 1st and 2nd machine operand of AMX pseudo instructions.
///
/// ----B1----
/// / \
/// / \
/// B2 B3
/// %1:tile = PTILELOADDV %2:tile = PTILELOADDV
/// The instruction ldtilecfg is used to config the shapes. It must be reachable
/// for all variable shapes. ldtilecfg will be inserted more than once if we
/// cannot find a dominating point for all AMX instructions.
///
/// is transformed to
/// The configure register is caller saved according to ABI. We need to insert
/// ldtilecfg again after the call instruction if callee clobbers any AMX
/// registers.
///
/// B1
/// %25:tilecfg = PLDTILECFG
/// / \
/// / \
/// %1:tile = PTILELOADDV %25 %2:tile = PTILELOADDV %25
/// This pass calculates all points that ldtilecfg need to be inserted to and
/// insert them. It reports error if the reachability conditions aren't met.
//
//===----------------------------------------------------------------------===//
@ -38,32 +27,107 @@
#include "X86InstrBuilder.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TileShapeInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "tile-pre-config"
#define ASSERT_VALID_COMPARE \
assert((!MBB || !RHS.MBB || MBB == RHS.MBB) && \
"Cannot compare between different BBs");
#define REPORT_CONFIG_FAIL \
report_fatal_error( \
MF.getName() + \
": Failed to config tile register, please define the shape earlier");
namespace {
class X86PreTileConfig : public MachineFunctionPass {
// context
MachineFunction *MF = nullptr;
const X86Subtarget *ST = nullptr;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
MachineDominatorTree *DomTree = nullptr;
MachineRegisterInfo *MRI = nullptr;
struct MIRef {
MachineInstr *MI = nullptr;
MachineBasicBlock *MBB = nullptr;
// A virtual position for instruction that will be inserted after MI.
size_t Pos = 0;
MIRef() = default;
MIRef(MachineBasicBlock *MBB) : MBB(MBB) {
for (auto I = MBB->begin(), E = MBB->end(); I != E && I->isPHI();
++I, ++Pos)
MI = &*I;
}
MIRef(MachineInstr *MI, MachineBasicBlock *MBB)
: MI(MI), MBB(MBB),
Pos(std::distance(MBB->instr_begin(), ++MI->getIterator())) {}
MIRef(MachineInstr *MI, MachineBasicBlock *MBB, size_t Pos)
: MI(MI), MBB(MBB), Pos(Pos) {}
operator bool() const { return MBB != nullptr; }
bool operator==(const MIRef &RHS) const {
return MI == RHS.MI && MBB == RHS.MBB;
}
bool operator<(const MIRef &RHS) const {
ASSERT_VALID_COMPARE;
return Pos < RHS.Pos;
}
bool operator>(const MIRef &RHS) const {
ASSERT_VALID_COMPARE;
return Pos > RHS.Pos;
}
};
MachineInstr *getTileConfigPoint();
struct BBInfo {
MIRef FirstAMX;
MIRef LastCall;
MIRef LastShape;
bool NeedTileCfgLiveIn = false;
unsigned ShapeReachedCount = 0;
};
class X86PreTileConfig : public MachineFunctionPass {
MachineRegisterInfo *MRI;
const MachineLoopInfo *MLI;
SmallSet<MachineInstr *, 8> DefVisited;
SmallSet<MachineBasicBlock *, 8> ShapeBBs;
DenseMap<MachineBasicBlock *, BBInfo> BBVisitedInfo;
/// Check if the callee will clobber AMX registers.
bool isDestructiveCall(MachineInstr &MI, BitVector UsableRegs) {
auto Iter = llvm::find_if(
MI.operands(), [](MachineOperand &MO) { return MO.isRegMask(); });
if (Iter == MI.operands_end())
return false;
UsableRegs.clearBitsInMask(Iter->getRegMask());
return !UsableRegs.none();
}
/// Check if MI is AMX pseudo instruction.
bool isAMXInstruction(MachineInstr &MI) {
if (MI.isPHI() || MI.isDebugInstr() || MI.getNumOperands() < 3)
return false;
MachineOperand &MO = MI.getOperand(0);
// We can simply check if it is AMX instruction by its def.
// But we should exclude old API which uses physical registers.
if (MO.isReg() && MO.getReg().isVirtual() &&
MRI->getRegClass(MO.getReg())->getID() == X86::TILERegClassID) {
collectShapeInfo(MI);
return true;
}
// PTILESTOREDV is the only exception that doesn't def a AMX register.
return MI.getOpcode() == X86::PTILESTOREDV;
}
/// Check if it is an edge from loop bottom to loop head.
bool isLoopBackEdge(MachineBasicBlock *Header, MachineBasicBlock *Bottom) {
return MLI->isLoopHeader(Header) &&
MLI->getLoopFor(Header)->getBottomBlock() == Bottom;
}
/// Collect the shape def information for later use.
void collectShapeInfo(MachineInstr &MI);
public:
X86PreTileConfig() : MachineFunctionPass(ID) {}
@ -74,10 +138,21 @@ public:
}
/// X86PreTileConfig analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
/// Clear MF related structures.
void releaseMemory() override {
ShapeBBs.clear();
DefVisited.clear();
BBVisitedInfo.clear();
}
/// Perform ldtilecfg instructions inserting.
bool runOnMachineFunction(MachineFunction &MF) override;
static char ID;
};
@ -88,284 +163,199 @@ char X86PreTileConfig::ID = 0;
INITIALIZE_PASS_BEGIN(X86PreTileConfig, "tilepreconfig",
"Tile Register Pre-configure", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(X86PreTileConfig, "tilepreconfig",
"Tile Register Pre-configure", false, false)
void X86PreTileConfig::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void X86PreTileConfig::collectShapeInfo(MachineInstr &MI) {
auto RecordShape = [&](MachineInstr *MI, MachineBasicBlock *MBB) {
MIRef MIR(MI, MBB);
if (BBVisitedInfo[MBB].LastShape < MIR)
BBVisitedInfo[MBB].LastShape = MIR;
ShapeBBs.insert(MBB);
};
static void buildConfigMI(MachineBasicBlock::iterator MI, int FrameIdx,
const TargetInstrInfo *TII, MachineRegisterInfo *MRI,
const X86Subtarget *ST) {
auto *MBB = MI->getParent();
// Zero stack slot.
if (ST->hasAVX512()) {
Register Zmm = MRI->createVirtualRegister(&X86::VR512RegClass);
BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::VPXORDZrr), Zmm)
.addReg(Zmm, RegState::Undef)
.addReg(Zmm, RegState::Undef);
addFrameReference(BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::VMOVUPSZmr)),
FrameIdx)
.addReg(Zmm);
} else if (ST->hasAVX2()) {
Register Ymm = MRI->createVirtualRegister(&X86::VR256RegClass);
BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::VPXORYrr), Ymm)
.addReg(Ymm, RegState::Undef)
.addReg(Ymm, RegState::Undef);
addFrameReference(BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::VMOVUPSYmr)),
FrameIdx)
.addReg(Ymm);
addFrameReference(BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::VMOVUPSYmr)),
FrameIdx, 32)
.addReg(Ymm);
} else {
assert(ST->hasSSE2() && "AMX should assume SSE2 enabled");
Register Xmm = MRI->createVirtualRegister(&X86::VR128RegClass);
BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::PXORrr), Xmm)
.addReg(Xmm, RegState::Undef)
.addReg(Xmm, RegState::Undef);
addFrameReference(BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::MOVUPSmr)),
FrameIdx)
.addReg(Xmm);
addFrameReference(BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::MOVUPSmr)),
FrameIdx, 16)
.addReg(Xmm);
addFrameReference(BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::MOVUPSmr)),
FrameIdx, 32)
.addReg(Xmm);
addFrameReference(BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::MOVUPSmr)),
FrameIdx, 48)
.addReg(Xmm);
}
// build psuedo ldtilecfg
addFrameReference(BuildMI(*MBB, MI, DebugLoc(), TII->get(X86::LDTILECFG)),
FrameIdx);
}
static ShapeT getShape(const MachineInstr &MI, MachineRegisterInfo *MRI) {
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
default:
llvm_unreachable("Unexpected machine instruction on tile");
case X86::PTILELOADDV:
case X86::PTDPBSSDV:
case X86::PTDPBSUDV:
case X86::PTDPBUSDV:
case X86::PTDPBUUDV:
case X86::PTILEZEROV:
case X86::PTDPBF16PSV:
MachineOperand &MO1 = const_cast<MachineOperand &>(MI.getOperand(1));
MachineOperand &MO2 = const_cast<MachineOperand &>(MI.getOperand(2));
ShapeT Shape(&MO1, &MO2, MRI);
return Shape;
SmallVector<Register, 8> WorkList(
{MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
while (!WorkList.empty()) {
Register R = WorkList.pop_back_val();
MachineInstr *DefMI = MRI->getVRegDef(R);
MachineBasicBlock *DefMBB = DefMI->getParent();
if (!DefMI || DefMI->isMoveImmediate() || !DefVisited.insert(DefMI).second)
continue;
if (DefMI->isPHI()) {
for (unsigned I = 1; I < DefMI->getNumOperands(); I += 2)
if (isLoopBackEdge(DefMBB, DefMI->getOperand(I + 1).getMBB()))
RecordShape(DefMI, DefMBB); // In this case, PHI is also a shape def.
else
WorkList.push_back(DefMI->getOperand(I).getReg());
} else {
RecordShape(DefMI, DefMBB);
}
}
}
MachineInstr *X86PreTileConfig::getTileConfigPoint() {
DenseMap<Register, ShapeT> PhysShapeInfo;
MachineBasicBlock *MBB = nullptr;
DenseSet<const MachineInstr *> MIs;
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
Register VirtReg = Register::index2VirtReg(i);
if (MRI->reg_nodbg_empty(VirtReg))
continue;
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
if (RC.getID() != X86::TILERegClassID)
continue;
bool X86PreTileConfig::runOnMachineFunction(MachineFunction &MF) {
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
const TargetInstrInfo *TII = ST.getInstrInfo();
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID);
// Find the common dominator for all MI that define tile register.
for (const MachineOperand &MO : MRI->def_operands(VirtReg)) {
if (MO.isUndef())
continue;
const auto *MI = MO.getParent();
// PHI or IMPLICIT_DEF instructiion.
// There must be a input tile before PHI instruction.
if (MI->isTransient())
continue;
if (!MBB)
MBB = const_cast<MachineBasicBlock *>(MI->getParent());
MBB = DomTree->findNearestCommonDominator(
MBB, const_cast<MachineBasicBlock *>(MI->getParent()));
BitVector AMXRegs(TRI->getNumRegs());
for (unsigned I = 0; I < RC->getNumRegs(); I++)
AMXRegs.set(X86::TMM0 + I);
// Collect the instructions that define shape.
ShapeT Shape = getShape(*MI, MRI);
std::array<MachineOperand *, 2> ShapeMOs = {Shape.getRow(),
Shape.getCol()};
for (auto *ShapeMO : ShapeMOs) {
Register ShapeReg = ShapeMO->getReg();
for (const MachineOperand &MO : MRI->def_operands(ShapeReg)) {
const auto *ShapeMI = MO.getParent();
MIs.insert(ShapeMI);
// Iterate MF to collect information.
MRI = &MF.getRegInfo();
MLI = &getAnalysis<MachineLoopInfo>();
SmallSet<MIRef, 8> CfgNeedInsert;
SmallVector<MachineBasicBlock *, 8> CfgLiveInBBs;
for (auto &MBB : MF) {
size_t Pos = 0;
for (auto &MI : MBB) {
++Pos;
if (isAMXInstruction(MI)) {
// If there's call before the AMX, we need to reload tile config.
if (BBVisitedInfo[&MBB].LastCall)
CfgNeedInsert.insert(BBVisitedInfo[&MBB].LastCall);
else // Otherwise, we need tile config to live in this BB.
BBVisitedInfo[&MBB].NeedTileCfgLiveIn = true;
// Always record the first AMX in case there's shape def after it.
if (!BBVisitedInfo[&MBB].FirstAMX)
BBVisitedInfo[&MBB].FirstAMX = MIRef(&MI, &MBB, Pos);
} else if (MI.isCall() && isDestructiveCall(MI, AMXRegs)) {
// Record the call only if the callee clobbers all AMX registers.
BBVisitedInfo[&MBB].LastCall = MIRef(&MI, &MBB, Pos);
}
}
if (BBVisitedInfo[&MBB].NeedTileCfgLiveIn) {
if (&MBB == &MF.front())
CfgNeedInsert.insert(MIRef(&MBB));
else
CfgLiveInBBs.push_back(&MBB);
}
}
// Update NeedTileCfgLiveIn for predecessors.
while (!CfgLiveInBBs.empty()) {
MachineBasicBlock *MBB = CfgLiveInBBs.pop_back_val();
for (auto *Pred : MBB->predecessors()) {
if (BBVisitedInfo[Pred].LastCall) {
CfgNeedInsert.insert(BBVisitedInfo[Pred].LastCall);
} else if (!BBVisitedInfo[Pred].NeedTileCfgLiveIn) {
BBVisitedInfo[Pred].NeedTileCfgLiveIn = true;
if (Pred == &MF.front())
CfgNeedInsert.insert(MIRef(Pred));
else
CfgLiveInBBs.push_back(Pred);
}
}
}
// There's no AMX instruction if we didn't find a tile config live in point.
if (CfgNeedInsert.empty())
return false;
// Calculate how many times the ShapeBB can reach to this BB.
unsigned ShapeBBNum = 0;
for (auto *MBB : ShapeBBs) {
SmallSet<MachineBasicBlock *, 8> VistedBB;
SmallVector<MachineBasicBlock *, 8> WorkList({MBB});
while (!WorkList.empty()) {
MachineBasicBlock *MBB = WorkList.pop_back_val();
++BBVisitedInfo[MBB].ShapeReachedCount;
for (auto *Succ : MBB->successors())
if (VistedBB.insert(Succ).second && !isLoopBackEdge(Succ, MBB))
WorkList.push_back(Succ);
}
++ShapeBBNum;
}
DebugLoc DL;
SmallSet<MIRef, 8> VisitedOrInserted;
int SS = MF.getFrameInfo().CreateStackObject(
ST.getTileConfigSize(), ST.getTileConfigAlignment(), false);
// Try to insert for the tile config live in points.
for (auto I : CfgNeedInsert) {
SmallSet<MIRef, 8> InsertPoints;
SmallVector<MIRef, 8> WorkList({I});
while (!WorkList.empty()) {
MIRef I = WorkList.pop_back_val();
if (!VisitedOrInserted.count(I)) {
if (BBVisitedInfo[I.MBB].ShapeReachedCount == ShapeBBNum) {
// If the BB is all shapes reachable, stop sink and try to insert.
InsertPoints.insert(I);
} else {
// Avoid the BB to be multi visited.
VisitedOrInserted.insert(I);
// We cannot sink it across any AMX instruction.
if (BBVisitedInfo[I.MBB].FirstAMX)
REPORT_CONFIG_FAIL;
// Sink the inserting point along the chain with NeedTileCfgLiveIn =
// true when MBB isn't all shapes reachable.
for (auto *Succ : I.MBB->successors())
if (BBVisitedInfo[Succ].NeedTileCfgLiveIn)
WorkList.push_back(MIRef(Succ));
}
}
}
}
if (!MBB)
return nullptr;
// This pass is before the pass of eliminating PHI node, so it
// is in SSA form.
assert(MRI->isSSA() && "Not SSA form in pre-tile config");
// Shape def should dominate tile config MBB.
// def s s1 s2
// / \ \ /
// / \ \ /
// conf s3=phi(s1,s2)
// |
// c
//
for (const auto *MI : MIs) {
const MachineBasicBlock *ShapeMBB = MI->getParent();
if (DomTree->dominates(ShapeMBB, MBB))
continue;
if (MI->isMoveImmediate())
continue;
report_fatal_error(MF->getName() + ": Failed to config tile register, "
"please define the shape earlier");
}
// ldtilecfg should be inserted after the MI that define the shape.
MachineBasicBlock::reverse_instr_iterator I, E;
for (I = MBB->instr_rbegin(), E = MBB->instr_rend(); I != E; ++I) {
auto *MI = &*I;
if (MIs.count(MI) && (!MI->isMoveImmediate()))
break;
}
MachineBasicBlock::iterator MII;
if (I == E)
MII = MBB->getFirstNonPHI();
else {
MII = MachineBasicBlock::iterator(&*I);
MII++;
}
return &*MII;
}
static bool isAMXInstruction(MachineBasicBlock::iterator MII) {
switch (MII->getOpcode()) {
default:
return false;
case X86::PTILELOADDV:
case X86::PTILESTOREDV:
case X86::PTDPBSSDV:
case X86::PTDPBSUDV:
case X86::PTDPBUSDV:
case X86::PTDPBUUDV:
case X86::PTILEZEROV:
case X86::PTDPBF16PSV:
return true;
}
}
struct BBInfo {
bool HasAMX = false;
bool HasCallBeforeAMX = false;
bool HasAMXBeforeCallInSuccs = false;
MachineInstr *LastCall = nullptr;
BBInfo() = default;
BBInfo(SmallSet<MachineInstr *, 8> &CfgNeedInsert, MachineBasicBlock *MBB,
MachineInstr *MI = nullptr) {
MachineBasicBlock::iterator MII = MI ? MI->getIterator() : MBB->begin();
for (auto E = MBB->end(); MII != E; ++MII) {
if (isAMXInstruction(MII)) {
HasAMX = true;
if (LastCall)
CfgNeedInsert.insert(LastCall);
} else if (MII->isCall()) {
LastCall = &*MII;
if (!HasAMX)
HasCallBeforeAMX = true;
}
}
}
};
static void reloadTileConfig(MachineInstr *MI, int FI,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) {
SmallSet<MachineInstr *, 8> CfgNeedInsert;
SmallVector<MachineBasicBlock *, 8> WorkList;
DenseMap<MachineBasicBlock *, BBInfo> BBVisitedInfo;
MachineBasicBlock *MBB = MI->getParent();
BBVisitedInfo[MBB] = BBInfo(CfgNeedInsert, MBB, MI);
// The entry BB is special, since it always has a ldtilecfg before AMX
// instruction. We don't need to check if its predecessor BBs have call.
// FIXME: This case happens only when the entry BB is in a loop. We need to
// hoist the first tile config point out of the loop in future.
BBVisitedInfo[MBB].HasCallBeforeAMX = true;
WorkList.push_back(MBB);
while (!WorkList.empty()) {
MBB = WorkList.pop_back_val();
for (auto I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
if (!BBVisitedInfo.count(*I)) {
BBVisitedInfo[*I] = BBInfo(CfgNeedInsert, *I);
WorkList.push_back(*I);
// A given point might be forked due to shape conditions are not met.
for (MIRef I : InsertPoints) {
// Even MBB is all shapes reachable, we still need to check if there's
// AMX that intersects with shapes in the same MBB.
if (BBVisitedInfo[I.MBB].FirstAMX &&
BBVisitedInfo[I.MBB].FirstAMX < BBVisitedInfo[I.MBB].LastShape)
REPORT_CONFIG_FAIL;
// Make sure we insert ldtilecfg after the last shape def in MBB.
if (I < BBVisitedInfo[I.MBB].LastShape)
I = BBVisitedInfo[I.MBB].LastShape;
// There're chances the MBB is sunk more than once. Record it to avoid
// multi insert.
if (VisitedOrInserted.insert(I).second) {
auto II = I.MI ? I.MI->getIterator() : I.MBB->instr_begin();
addFrameReference(BuildMI(*I.MBB, ++II, DL, TII->get(X86::LDTILECFG)),
SS);
}
}
}
WorkList.clear();
for (auto I : BBVisitedInfo) {
WorkList.push_back(I.first);
while (!WorkList.empty()) {
MBB = WorkList.pop_back_val();
if (BBVisitedInfo[MBB].HasCallBeforeAMX ||
(!BBVisitedInfo[MBB].HasAMX &&
!BBVisitedInfo[MBB].HasAMXBeforeCallInSuccs))
continue;
for (auto I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
if (!BBVisitedInfo.count(*I) ||
BBVisitedInfo[*I].HasAMXBeforeCallInSuccs)
continue;
if (BBVisitedInfo[*I].LastCall)
CfgNeedInsert.insert(BBVisitedInfo[*I].LastCall);
BBVisitedInfo[*I].HasAMXBeforeCallInSuccs = true;
WorkList.push_back(*I);
}
}
// Zero stack slot.
MachineBasicBlock &MBB = MF.front();
MachineInstr *MI = &*MBB.begin();
if (ST.hasAVX512()) {
Register Zmm = MRI->createVirtualRegister(&X86::VR512RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::VPXORDZrr), Zmm)
.addReg(Zmm, RegState::Undef)
.addReg(Zmm, RegState::Undef);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSZmr)), SS)
.addReg(Zmm);
} else if (ST.hasAVX2()) {
Register Ymm = MRI->createVirtualRegister(&X86::VR256RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::VPXORYrr), Ymm)
.addReg(Ymm, RegState::Undef)
.addReg(Ymm, RegState::Undef);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSYmr)), SS)
.addReg(Ymm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSYmr)), SS, 32)
.addReg(Ymm);
} else {
assert(ST.hasSSE2() && "AMX should assume SSE2 enabled");
Register Xmm = MRI->createVirtualRegister(&X86::VR128RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::PXORrr), Xmm)
.addReg(Xmm, RegState::Undef)
.addReg(Xmm, RegState::Undef);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOVUPSmr)), SS)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOVUPSmr)), SS, 16)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOVUPSmr)), SS, 32)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOVUPSmr)), SS, 48)
.addReg(Xmm);
}
for (auto *I : CfgNeedInsert) {
BitVector UsableRegs(TRI->getNumRegs());
const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID);
for (unsigned J = 0; J < RC->getNumRegs(); J++)
UsableRegs.set(X86::TMM0 + J);
for (MachineOperand &CallMO : I->operands()) {
if (CallMO.isRegMask())
UsableRegs.clearBitsInMask(CallMO.getRegMask());
}
if (!UsableRegs.none())
addFrameReference(BuildMI(*I->getParent(), ++I->getIterator(), DebugLoc(),
TII->get(X86::LDTILECFG)),
FI);
}
}
bool X86PreTileConfig::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
MRI = &mf.getRegInfo();
ST = &mf.getSubtarget<X86Subtarget>();
TRI = ST->getRegisterInfo();
TII = mf.getSubtarget().getInstrInfo();
DomTree = &getAnalysis<MachineDominatorTree>();
MachineInstr *MI = getTileConfigPoint();
if (!MI)
return false;
unsigned Size = ST->getTileConfigSize();
Align Alignment = ST->getTileConfigAlignment();
int SS = mf.getFrameInfo().CreateStackObject(Size, Alignment, false);
buildConfigMI(MI, SS, TII, MRI, ST);
reloadTileConfig(MI, SS, TII, TRI);
return true;
}

View File

@ -113,9 +113,10 @@ define dso_local i32 @test_loop(i32 %0) nounwind {
; CHECK-NEXT: pushq %rbx
; CHECK-NEXT: subq $3016, %rsp # imm = 0xBC8
; CHECK-NEXT: movl %edi, %r14d
; CHECK-NEXT: callq foo
; CHECK-NEXT: vpxord %zmm0, %zmm0, %zmm0
; CHECK-NEXT: vmovdqu64 %zmm0, {{[0-9]+}}(%rsp)
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: callq foo
; CHECK-NEXT: movb $1, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movb $8, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movw $8, {{[0-9]+}}(%rsp)
@ -133,7 +134,6 @@ define dso_local i32 @test_loop(i32 %0) nounwind {
; CHECK-NEXT: tileloadd (%r15,%r12), %tmm0
; CHECK-NEXT: movabsq $64, %rax
; CHECK-NEXT: tilestored %tmm0, 1024(%rsp,%rax) # 1024-byte Folded Spill
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: callq foo
; CHECK-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; CHECK-NEXT: movabsq $64, %rax
@ -154,7 +154,6 @@ define dso_local i32 @test_loop(i32 %0) nounwind {
; CHECK-NEXT: incl %r14d
; CHECK-NEXT: jmp .LBB2_8
; CHECK-NEXT: .LBB2_4:
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: callq foo
; CHECK-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; CHECK-NEXT: movl $32, %eax
@ -180,13 +179,13 @@ define dso_local i32 @test_loop(i32 %0) nounwind {
; IPRA: # %bb.0:
; IPRA-NEXT: subq $72, %rsp
; IPRA-NEXT: movl %edi, %eax
; IPRA-NEXT: callq foo
; IPRA-NEXT: vpxord %zmm0, %zmm0, %zmm0
; IPRA-NEXT: vmovdqu64 %zmm0, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movb $1, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movb $8, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movw $8, {{[0-9]+}}(%rsp)
; IPRA-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; IPRA-NEXT: callq foo
; IPRA-NEXT: testl %edi, %edi
; IPRA-NEXT: jg .LBB2_4
; IPRA-NEXT: # %bb.1: # %.preheader
@ -273,26 +272,26 @@ define dso_local void @test_loop2(i32 %0) nounwind {
; CHECK-NEXT: pushq %rbx
; CHECK-NEXT: subq $3024, %rsp # imm = 0xBD0
; CHECK-NEXT: movl %edi, %ebx
; CHECK-NEXT: vpxord %zmm0, %zmm0, %zmm0
; CHECK-NEXT: vmovdqu64 %zmm0, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movl $buf, %r14d
; CHECK-NEXT: movl $32, %r15d
; CHECK-NEXT: movw $8, %bp
; CHECK-NEXT: movl $buf+2048, %r12d
; CHECK-NEXT: .p2align 4, 0x90
; CHECK-NEXT: .LBB3_1: # =>This Inner Loop Header: Depth=1
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: callq foo
; CHECK-NEXT: testl %ebx, %ebx
; CHECK-NEXT: jle .LBB3_3
; CHECK-NEXT: # %bb.2: # in Loop: Header=BB3_1 Depth=1
; CHECK-NEXT: vpxord %zmm0, %zmm0, %zmm0
; CHECK-NEXT: vmovdqu64 %zmm0, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movb $1, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movb $8, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movw $8, {{[0-9]+}}(%rsp)
; CHECK-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; CHECK-NEXT: testl %ebx, %ebx
; CHECK-NEXT: jle .LBB3_3
; CHECK-NEXT: # %bb.2: # in Loop: Header=BB3_1 Depth=1
; CHECK-NEXT: tileloadd (%r14,%r15), %tmm0
; CHECK-NEXT: movabsq $64, %rax
; CHECK-NEXT: tilestored %tmm0, 1024(%rsp,%rax) # 1024-byte Folded Spill
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: callq foo
; CHECK-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; CHECK-NEXT: movabsq $64, %rax
@ -313,6 +312,12 @@ define dso_local void @test_loop2(i32 %0) nounwind {
; IPRA-LABEL: test_loop2:
; IPRA: # %bb.0:
; IPRA-NEXT: subq $72, %rsp
; IPRA-NEXT: vpxord %zmm0, %zmm0, %zmm0
; IPRA-NEXT: vmovdqu64 %zmm0, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movb $1, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movb $8, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movw $8, {{[0-9]+}}(%rsp)
; IPRA-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; IPRA-NEXT: movl $buf, %eax
; IPRA-NEXT: movl $32, %ecx
; IPRA-NEXT: movw $8, %dx
@ -323,12 +328,6 @@ define dso_local void @test_loop2(i32 %0) nounwind {
; IPRA-NEXT: testl %edi, %edi
; IPRA-NEXT: jle .LBB3_3
; IPRA-NEXT: # %bb.2: # in Loop: Header=BB3_1 Depth=1
; IPRA-NEXT: vpxord %zmm0, %zmm0, %zmm0
; IPRA-NEXT: vmovdqu64 %zmm0, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movb $1, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movb $8, {{[0-9]+}}(%rsp)
; IPRA-NEXT: movw $8, {{[0-9]+}}(%rsp)
; IPRA-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; IPRA-NEXT: tileloadd (%rax,%rcx), %tmm0
; IPRA-NEXT: callq foo
; IPRA-NEXT: tilestored %tmm0, (%rsi,%rcx)

View File

@ -10,10 +10,10 @@
define dso_local void @test_api(i32 %0, i16 signext %1, i16 signext %2) {
; AVX512-LABEL: test_api:
; AVX512: # %bb.0:
; AVX512-NEXT: testl %edi, %edi
; AVX512-NEXT: movsbl %sil, %eax
; AVX512-NEXT: vpxord %zmm0, %zmm0, %zmm0
; AVX512-NEXT: vmovdqu64 %zmm0, -{{[0-9]+}}(%rsp)
; AVX512-NEXT: testl %edi, %edi
; AVX512-NEXT: movsbl %sil, %eax
; AVX512-NEXT: movb $1, -{{[0-9]+}}(%rsp)
; AVX512-NEXT: movb %al, -{{[0-9]+}}(%rsp)
; AVX512-NEXT: movw %si, -{{[0-9]+}}(%rsp)
@ -43,11 +43,11 @@ define dso_local void @test_api(i32 %0, i16 signext %1, i16 signext %2) {
;
; AVX2-LABEL: test_api:
; AVX2: # %bb.0:
; AVX2-NEXT: testl %edi, %edi
; AVX2-NEXT: movsbl %sil, %eax
; AVX2-NEXT: vxorps %ymm0, %ymm0, %ymm0
; AVX2-NEXT: vmovups %ymm0, -{{[0-9]+}}(%rsp)
; AVX2-NEXT: vmovups %ymm0, -{{[0-9]+}}(%rsp)
; AVX2-NEXT: testl %edi, %edi
; AVX2-NEXT: movsbl %sil, %eax
; AVX2-NEXT: movb $1, -{{[0-9]+}}(%rsp)
; AVX2-NEXT: movb %al, -{{[0-9]+}}(%rsp)
; AVX2-NEXT: movw %si, -{{[0-9]+}}(%rsp)
@ -77,13 +77,13 @@ define dso_local void @test_api(i32 %0, i16 signext %1, i16 signext %2) {
;
; SSE2-LABEL: test_api:
; SSE2: # %bb.0:
; SSE2-NEXT: testl %edi, %edi
; SSE2-NEXT: movsbl %sil, %eax
; SSE2-NEXT: xorps %xmm0, %xmm0
; SSE2-NEXT: movups %xmm0, -{{[0-9]+}}(%rsp)
; SSE2-NEXT: movups %xmm0, -{{[0-9]+}}(%rsp)
; SSE2-NEXT: movups %xmm0, -{{[0-9]+}}(%rsp)
; SSE2-NEXT: movups %xmm0, -{{[0-9]+}}(%rsp)
; SSE2-NEXT: testl %edi, %edi
; SSE2-NEXT: movsbl %sil, %eax
; SSE2-NEXT: movb $1, -{{[0-9]+}}(%rsp)
; SSE2-NEXT: movb %al, -{{[0-9]+}}(%rsp)
; SSE2-NEXT: movw %si, -{{[0-9]+}}(%rsp)

View File

@ -32,6 +32,7 @@ define dso_local void @test1(i16 signext %0, i16 signext %1) nounwind {
%4 = tail call x86_amx @llvm.x86.tileloadd64.internal(i16 8, i16 %1, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 1024), i64 32)
%5 = tail call x86_amx @llvm.x86.tileloadd64.internal(i16 %0, i16 %1, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 2048), i64 32)
%6 = tail call x86_amx @llvm.x86.tdpbssd.internal(i16 %0, i16 %1, i16 8, x86_amx %5, x86_amx %3, x86_amx %4)
call void @llvm.dbg.value(metadata x86_amx %6, metadata !DILocalVariable(name: "1", scope: !2), metadata !DIExpression()), !dbg !3
tail call void @llvm.x86.tilestored64.internal(i16 %0, i16 %1, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 2048), i64 32, x86_amx %6)
tail call void @foo()
ret void
@ -47,6 +48,8 @@ define dso_local void @test2(i16 signext %0, i16 signext %1) nounwind {
; CHECK-NEXT: movl %edi, %ebp
; CHECK-NEXT: vpxord %zmm0, %zmm0, %zmm0
; CHECK-NEXT: vmovdqu64 %zmm0, {{[0-9]+}}(%rsp)
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: callq foo
; CHECK-NEXT: movb $1, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movb $8, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movw %bx, {{[0-9]+}}(%rsp)
@ -59,9 +62,6 @@ define dso_local void @test2(i16 signext %0, i16 signext %1) nounwind {
; CHECK-NEXT: movb %bpl, {{[0-9]+}}(%rsp)
; CHECK-NEXT: movw $8, {{[0-9]+}}(%rsp)
; CHECK-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: callq foo
; CHECK-NEXT: ldtilecfg {{[0-9]+}}(%rsp)
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: testb %al, %al
; CHECK-NEXT: jne .LBB1_3
@ -116,8 +116,252 @@ exit:
ret void
}
define dso_local void @test3(i16 signext %0, i16 signext %1) nounwind {
; CHECK-LABEL: test3:
; CHECK: # %bb.0:
; CHECK-NEXT: vpxord %zmm0, %zmm0, %zmm0
; CHECK-NEXT: vmovdqu64 %zmm0, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: testb %al, %al
; CHECK-NEXT: jne .LBB2_2
; CHECK-NEXT: # %bb.1: # %if.true
; CHECK-NEXT: incl %edi
; CHECK-NEXT: jmp .LBB2_3
; CHECK-NEXT: .LBB2_2: # %if.false
; CHECK-NEXT: decl %edi
; CHECK-NEXT: .LBB2_3: # %exit
; CHECK-NEXT: movb $1, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movb %dil, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movw %si, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: ldtilecfg -{{[0-9]+}}(%rsp)
; CHECK-NEXT: tilezero %tmm0
; CHECK-NEXT: movl $buf, %eax
; CHECK-NEXT: movl $32, %ecx
; CHECK-NEXT: tilestored %tmm0, (%rax,%rcx)
; CHECK-NEXT: tilerelease
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: retq
br i1 undef, label %if.true, label %if.false
if.true:
%3 = add i16 %0, 1
br label %exit
if.false:
%4 = sub i16 %0, 1
br label %exit
exit:
%5 = phi i16 [ %3, %if.true ], [ %4, %if.false ]
%6 = tail call x86_amx @llvm.x86.tilezero.internal(i16 %5, i16 %1)
tail call void @llvm.x86.tilestored64.internal(i16 %5, i16 %1, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 0), i64 32, x86_amx %6)
ret void
}
; TODO: There's PRA Tile Register Configure bug needs to fix later.
define dso_local void @test4(i16 signext %0, i16 signext %1) nounwind {
; CHECK-LABEL: test4:
; CHECK: # %bb.0:
; CHECK-NEXT: vpxord %zmm0, %zmm0, %zmm0
; CHECK-NEXT: vmovdqu64 %zmm0, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: testb %al, %al
; CHECK-NEXT: jne .LBB3_3
; CHECK-NEXT: # %bb.1: # %if.true
; CHECK-NEXT: incl %edi
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: testb %al, %al
; CHECK-NEXT: jne .LBB3_4
; CHECK-NEXT: .LBB3_2: # %amx2
; CHECK-NEXT: movb $1, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movb %dil, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movw %si, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: ldtilecfg -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movl $32, %eax
; CHECK-NEXT: movl $buf+1024, %ecx
; CHECK-NEXT: tileloadd (%rcx,%rax), %tmm0
; CHECK-NEXT: movl $buf, %ecx
; CHECK-NEXT: tilestored %tmm0, (%rcx,%rax)
; CHECK-NEXT: tilerelease
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: retq
; CHECK-NEXT: .LBB3_3: # %if.false
; CHECK-NEXT: decl %edi
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: testb %al, %al
; CHECK-NEXT: jne .LBB3_2
; CHECK-NEXT: .LBB3_4: # %amx1
; CHECK-NEXT: ldtilecfg -{{[0-9]+}}(%rsp)
; CHECK-NEXT: tilezero %tmm0
; CHECK-NEXT: movl $buf, %eax
; CHECK-NEXT: movl $32, %ecx
; CHECK-NEXT: tilestored %tmm0, (%rax,%rcx)
; CHECK-NEXT: tilerelease
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: retq
br i1 undef, label %if.true, label %if.false
if.true:
%3 = add i16 %0, 1
br i1 undef, label %amx1, label %amx2
if.false:
%4 = sub i16 %0, 1
br i1 undef, label %amx2, label %amx1
amx1:
%5 = phi i16 [ %3, %if.true ], [ %4, %if.false ]
%6 = tail call x86_amx @llvm.x86.tilezero.internal(i16 %5, i16 %1)
tail call void @llvm.x86.tilestored64.internal(i16 %5, i16 %1, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 0), i64 32, x86_amx %6)
br label %exit
amx2:
%7 = phi i16 [ %3, %if.true ], [ %4, %if.false ]
%8 = tail call x86_amx @llvm.x86.tileloadd64.internal(i16 %7, i16 %1, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 1024), i64 32)
tail call void @llvm.x86.tilestored64.internal(i16 %7, i16 %1, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 0), i64 32, x86_amx %8)
br label %exit
exit:
ret void
}
define dso_local void @test5(i16 signext %0, i16 signext %1) nounwind {
; CHECK-LABEL: test5:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: # kill: def $esi killed $esi def $rsi
; CHECK-NEXT: vpxord %zmm0, %zmm0, %zmm0
; CHECK-NEXT: vmovdqu64 %zmm0, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: movl $buf, %r8d
; CHECK-NEXT: movl $32, %edx
; CHECK-NEXT: leal -1(%rsi), %ecx
; CHECK-NEXT: jmp .LBB4_1
; CHECK-NEXT: .p2align 4, 0x90
; CHECK-NEXT: .LBB4_3: # %if.false
; CHECK-NEXT: # in Loop: Header=BB4_1 Depth=1
; CHECK-NEXT: movl %ecx, %esi
; CHECK-NEXT: cmpw $7, %si
; CHECK-NEXT: jne .LBB4_5
; CHECK-NEXT: .LBB4_1: # %loop.bb1
; CHECK-NEXT: # =>This Inner Loop Header: Depth=1
; CHECK-NEXT: movb $1, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movb %dil, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movw %si, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: ldtilecfg -{{[0-9]+}}(%rsp)
; CHECK-NEXT: testb %al, %al
; CHECK-NEXT: jne .LBB4_3
; CHECK-NEXT: # %bb.2: # %if.true
; CHECK-NEXT: # in Loop: Header=BB4_1 Depth=1
; CHECK-NEXT: tilezero %tmm0
; CHECK-NEXT: tilestored %tmm0, (%r8,%rdx)
; CHECK-NEXT: cmpw $7, %si
; CHECK-NEXT: je .LBB4_1
; CHECK-NEXT: .LBB4_5: # %exit
; CHECK-NEXT: tilerelease
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: retq
entry:
br label %loop.bb1
loop.bb1:
%2 = phi i16 [ %1, %entry ], [ %5, %loop.bb2 ]
br i1 undef, label %if.true, label %if.false
if.true:
%3 = tail call x86_amx @llvm.x86.tilezero.internal(i16 %0, i16 %2)
tail call void @llvm.x86.tilestored64.internal(i16 %0, i16 %2, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 0), i64 32, x86_amx %3)
br label %loop.bb2
if.false:
%4 = sub i16 %1, 1
br label %loop.bb2
loop.bb2:
%5 = phi i16 [ %2, %if.true ], [ %4, %if.false ]
%6 = icmp eq i16 %5, 7
br i1 %6, label %loop.bb1, label %exit
exit:
ret void
}
define dso_local void @test6(i16 signext %0) nounwind {
; CHECK-LABEL: test6:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: # kill: def $edi killed $edi def $rdi
; CHECK-NEXT: vpxord %zmm0, %zmm0, %zmm0
; CHECK-NEXT: vmovdqu64 %zmm0, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: xorl %r8d, %r8d
; CHECK-NEXT: movl $buf, %ecx
; CHECK-NEXT: movl $32, %edx
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: jmp .LBB5_1
; CHECK-NEXT: .p2align 4, 0x90
; CHECK-NEXT: .LBB5_3: # %if.false
; CHECK-NEXT: # in Loop: Header=BB5_1 Depth=1
; CHECK-NEXT: decl %esi
; CHECK-NEXT: .LBB5_4: # %loop.bb2
; CHECK-NEXT: # in Loop: Header=BB5_1 Depth=1
; CHECK-NEXT: leal (%rdi,%rsi), %eax
; CHECK-NEXT: cmpw $7, %si
; CHECK-NEXT: movb $1, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movb %dil, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: movw %ax, -{{[0-9]+}}(%rsp)
; CHECK-NEXT: ldtilecfg -{{[0-9]+}}(%rsp)
; CHECK-NEXT: tilezero %tmm0
; CHECK-NEXT: tilestored %tmm0, (%rcx,%rdx)
; CHECK-NEXT: jne .LBB5_5
; CHECK-NEXT: .LBB5_1: # %loop.bb1
; CHECK-NEXT: # =>This Inner Loop Header: Depth=1
; CHECK-NEXT: testb %r8b, %r8b
; CHECK-NEXT: jne .LBB5_3
; CHECK-NEXT: # %bb.2: # %if.true
; CHECK-NEXT: # in Loop: Header=BB5_1 Depth=1
; CHECK-NEXT: incl %esi
; CHECK-NEXT: jmp .LBB5_4
; CHECK-NEXT: .LBB5_5: # %exit
; CHECK-NEXT: tilerelease
; CHECK-NEXT: vzeroupper
; CHECK-NEXT: retq
entry:
br label %loop.bb1
loop.bb1:
%1 = phi i16 [ 0, %entry ], [ %4, %loop.bb2 ]
br i1 undef, label %if.true, label %if.false
if.true:
%2 = add i16 %1, 1
br label %loop.bb2
if.false:
%3 = sub i16 %1, 1
br label %loop.bb2
loop.bb2:
%4 = phi i16 [ %2, %if.true ], [ %3, %if.false ]
%5 = icmp eq i16 %4, 7
%6 = add i16 %0, %4
%7 = tail call x86_amx @llvm.x86.tilezero.internal(i16 %0, i16 %6)
tail call void @llvm.x86.tilestored64.internal(i16 %0, i16 %6, i8* getelementptr inbounds ([3072 x i8], [3072 x i8]* @buf, i64 0, i64 0), i64 32, x86_amx %7)
br i1 %5, label %loop.bb1, label %exit
exit:
ret void
}
declare dso_local void @foo() nounwind
declare void @llvm.dbg.value(metadata, metadata, metadata)
declare x86_amx @llvm.x86.tilezero.internal(i16, i16)
declare x86_amx @llvm.x86.tileloadd64.internal(i16, i16, i8*, i64)
declare x86_amx @llvm.x86.tdpbssd.internal(i16, i16, i16, x86_amx, x86_amx, x86_amx)
declare void @llvm.x86.tilestored64.internal(i16, i16, i8*, i64, x86_amx)
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!1}
!0 = distinct !DICompileUnit(language: DW_LANG_C, file: !DIFile(filename: "1", directory: "1"))
!1 = !{i32 2, !"Debug Info Version", i32 3}
!2 = distinct !DISubprogram(unit: !0)
!3 = !DILocation(line: 1, column: 1, scope: !2)

View File

@ -117,12 +117,12 @@
; CHECK-NEXT: X86 EFLAGS copy lowering
; CHECK-NEXT: X86 WinAlloca Expander
; CHECK-NEXT: MachineDominator Tree Construction
; CHECK-NEXT: Machine Natural Loop Construction
; CHECK-NEXT: Tile Register Pre-configure
; CHECK-NEXT: Detect Dead Lanes
; CHECK-NEXT: Process Implicit Definitions
; CHECK-NEXT: Remove unreachable machine basic blocks
; CHECK-NEXT: Live Variable Analysis
; CHECK-NEXT: Machine Natural Loop Construction
; CHECK-NEXT: Eliminate PHI nodes for register allocation
; CHECK-NEXT: Two-Address instruction pass
; CHECK-NEXT: Slot index numbering