forked from OSchip/llvm-project
Add some things needed by the llvm-gcc version supporting bit accurate integer
types: 1. Functions to compute div/rem at the same time. 2. Further assurance that an APInt with 0 bitwidth cannot be constructed. 3. Left and right rotate operations. 4. An exactLogBase2 function which requires an exact power of two or it returns -1. llvm-svn: 37025
This commit is contained in:
parent
79c2c38ed5
commit
4c50b52f63
|
@ -567,6 +567,12 @@ public:
|
|||
/// @brief Left-shift function.
|
||||
APInt shl(uint32_t shiftAmt) const;
|
||||
|
||||
/// @brief Rotate left by rotateAmt.
|
||||
APInt rotl(uint32_t rotateAmt) const;
|
||||
|
||||
/// @brief Rotate right by rotateAmt.
|
||||
APInt rotr(uint32_t rotateAmt) const;
|
||||
|
||||
/// Perform an unsigned divide operation on this APInt by RHS. Both this and
|
||||
/// RHS are treated as unsigned quantities for purposes of this division.
|
||||
/// @returns a new APInt value containing the division result
|
||||
|
@ -608,6 +614,31 @@ public:
|
|||
return this->urem(RHS);
|
||||
}
|
||||
|
||||
/// Sometimes it is convenient to divide two APInt values and obtain both
|
||||
/// the quotient and remainder. This function does both operations in the
|
||||
/// same computation making it a little more efficient.
|
||||
/// @brief Dual division/remainder interface.
|
||||
static void udivrem(const APInt &LHS, const APInt &RHS,
|
||||
APInt &Quotient, APInt &Remainder);
|
||||
|
||||
static void sdivrem(const APInt &LHS, const APInt &RHS,
|
||||
APInt &Quotient, APInt &Remainder)
|
||||
{
|
||||
if (LHS.isNegative()) {
|
||||
if (RHS.isNegative())
|
||||
APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
|
||||
else
|
||||
APInt::udivrem(-LHS, RHS, Quotient, Remainder);
|
||||
Quotient = -Quotient;
|
||||
Remainder = -Remainder;
|
||||
} else if (RHS.isNegative()) {
|
||||
APInt::udivrem(LHS, -RHS, Quotient, Remainder);
|
||||
Quotient = -Quotient;
|
||||
} else {
|
||||
APInt::udivrem(LHS, RHS, Quotient, Remainder);
|
||||
}
|
||||
}
|
||||
|
||||
/// @returns the bit value at bitPosition
|
||||
/// @brief Array-indexing support.
|
||||
bool operator[](uint32_t bitPosition) const;
|
||||
|
@ -988,6 +1019,14 @@ public:
|
|||
return BitWidth - 1 - countLeadingZeros();
|
||||
}
|
||||
|
||||
/// @returns the log base 2 of this APInt if its an exact power of two, -1
|
||||
/// otherwise
|
||||
inline int32_t exactLogBase2() const {
|
||||
if (!isPowerOf2())
|
||||
return -1;
|
||||
return logBase2();
|
||||
}
|
||||
|
||||
/// @brief Compute the square root
|
||||
APInt sqrt() const;
|
||||
|
||||
|
|
|
@ -82,17 +82,23 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
|
|||
APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
|
||||
uint8_t radix)
|
||||
: BitWidth(numbits), VAL(0) {
|
||||
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
|
||||
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
|
||||
fromString(numbits, StrStart, slen, radix);
|
||||
}
|
||||
|
||||
APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
|
||||
: BitWidth(numbits), VAL(0) {
|
||||
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
|
||||
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
|
||||
assert(!Val.empty() && "String empty?");
|
||||
fromString(numbits, Val.c_str(), Val.size(), radix);
|
||||
}
|
||||
|
||||
APInt::APInt(const APInt& that)
|
||||
: BitWidth(that.BitWidth), VAL(0) {
|
||||
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
|
||||
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
|
||||
if (isSingleWord())
|
||||
VAL = that.VAL;
|
||||
else {
|
||||
|
@ -1242,6 +1248,23 @@ APInt APInt::shl(uint32_t shiftAmt) const {
|
|||
return APInt(val, BitWidth).clearUnusedBits();
|
||||
}
|
||||
|
||||
APInt APInt::rotl(uint32_t rotateAmt) const {
|
||||
// Don't get too fancy, just use existing shift/or facilities
|
||||
APInt hi(*this);
|
||||
APInt lo(*this);
|
||||
hi.shl(rotateAmt);
|
||||
lo.lshr(BitWidth - rotateAmt);
|
||||
return hi | lo;
|
||||
}
|
||||
|
||||
APInt APInt::rotr(uint32_t rotateAmt) const {
|
||||
// Don't get too fancy, just use existing shift/or facilities
|
||||
APInt hi(*this);
|
||||
APInt lo(*this);
|
||||
lo.lshr(rotateAmt);
|
||||
hi.shl(BitWidth - rotateAmt);
|
||||
return hi | lo;
|
||||
}
|
||||
|
||||
// Square Root - this method computes and returns the square root of "this".
|
||||
// Three mechanisms are used for computation. For small values (<= 5 bits),
|
||||
|
@ -1754,12 +1777,55 @@ APInt APInt::urem(const APInt& RHS) const {
|
|||
return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
|
||||
}
|
||||
|
||||
// We have to compute it the hard way. Invoke the Knute divide algorithm.
|
||||
// We have to compute it the hard way. Invoke the Knuth divide algorithm.
|
||||
APInt Remainder(1,0);
|
||||
divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
|
||||
return Remainder;
|
||||
}
|
||||
|
||||
void APInt::udivrem(const APInt &LHS, const APInt &RHS,
|
||||
APInt &Quotient, APInt &Remainder) {
|
||||
// Get some size facts about the dividend and divisor
|
||||
uint32_t lhsBits = LHS.getActiveBits();
|
||||
uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
|
||||
uint32_t rhsBits = RHS.getActiveBits();
|
||||
uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
|
||||
|
||||
// Check the degenerate cases
|
||||
if (lhsWords == 0) {
|
||||
Quotient = 0; // 0 / Y ===> 0
|
||||
Remainder = 0; // 0 % Y ===> 0
|
||||
return;
|
||||
}
|
||||
|
||||
if (lhsWords < rhsWords || LHS.ult(RHS)) {
|
||||
Quotient = 0; // X / Y ===> 0, iff X < Y
|
||||
Remainder = LHS; // X % Y ===> X, iff X < Y
|
||||
return;
|
||||
}
|
||||
|
||||
if (LHS == RHS) {
|
||||
Quotient = 1; // X / X ===> 1
|
||||
Remainder = 0; // X % X ===> 0;
|
||||
return;
|
||||
}
|
||||
|
||||
if (lhsWords == 1 && rhsWords == 1) {
|
||||
// There is only one word to consider so use the native versions.
|
||||
if (LHS.isSingleWord()) {
|
||||
Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
|
||||
Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
|
||||
} else {
|
||||
Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
|
||||
Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Okay, lets do it the long way
|
||||
divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
|
||||
}
|
||||
|
||||
void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
|
||||
uint8_t radix) {
|
||||
// Check our assumptions here
|
||||
|
|
Loading…
Reference in New Issue