forked from OSchip/llvm-project
Add factoring of multiplications, e.g. turning A*A+A*B into A*(A+B).
Testcase here: Transforms/Reassociate/mulfactor.ll llvm-svn: 26524
This commit is contained in:
parent
c9a318d8fa
commit
4c065091d8
|
@ -41,6 +41,7 @@ namespace {
|
|||
Statistic<> NumChanged("reassociate","Number of insts reassociated");
|
||||
Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
|
||||
Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
|
||||
Statistic<> NumFactor ("reassociate","Number of multiplies factored");
|
||||
|
||||
struct ValueEntry {
|
||||
unsigned Rank;
|
||||
|
@ -50,7 +51,20 @@ namespace {
|
|||
inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
|
||||
return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
|
||||
}
|
||||
}
|
||||
|
||||
/// PrintOps - Print out the expression identified in the Ops list.
|
||||
///
|
||||
static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
|
||||
Module *M = I->getParent()->getParent()->getParent();
|
||||
std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
|
||||
<< *Ops[0].Op->getType();
|
||||
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
||||
WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
|
||||
<< "," << Ops[i].Rank;
|
||||
}
|
||||
|
||||
namespace {
|
||||
class Reassociate : public FunctionPass {
|
||||
std::map<BasicBlock*, unsigned> RankMap;
|
||||
std::map<Value*, unsigned> ValueRankMap;
|
||||
|
@ -66,10 +80,13 @@ namespace {
|
|||
unsigned getRank(Value *V);
|
||||
void RewriteExprTree(BinaryOperator *I, unsigned Idx,
|
||||
std::vector<ValueEntry> &Ops);
|
||||
void OptimizeExpression(unsigned Opcode, std::vector<ValueEntry> &Ops);
|
||||
Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
|
||||
void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
|
||||
void LinearizeExpr(BinaryOperator *I);
|
||||
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
|
||||
void ReassociateBB(BasicBlock *BB);
|
||||
|
||||
void RemoveDeadBinaryOp(Value *V);
|
||||
};
|
||||
|
||||
RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
|
||||
|
@ -78,6 +95,15 @@ namespace {
|
|||
// Public interface to the Reassociate pass
|
||||
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
|
||||
|
||||
void Reassociate::RemoveDeadBinaryOp(Value *V) {
|
||||
BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
|
||||
if (!BOp || !BOp->use_empty()) return;
|
||||
|
||||
Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
|
||||
RemoveDeadBinaryOp(LHS);
|
||||
RemoveDeadBinaryOp(RHS);
|
||||
}
|
||||
|
||||
|
||||
static bool isUnmovableInstruction(Instruction *I) {
|
||||
if (I->getOpcode() == Instruction::PHI ||
|
||||
|
@ -207,9 +233,6 @@ void Reassociate::LinearizeExpr(BinaryOperator *I) {
|
|||
/// form of the the expression (((a+b)+c)+d), and collects information about the
|
||||
/// rank of the non-tree operands.
|
||||
///
|
||||
/// This returns the rank of the RHS operand, which is known to be the highest
|
||||
/// rank value in the expression tree.
|
||||
///
|
||||
void Reassociate::LinearizeExprTree(BinaryOperator *I,
|
||||
std::vector<ValueEntry> &Ops) {
|
||||
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
||||
|
@ -279,12 +302,17 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
|
|||
if (i+2 == Ops.size()) {
|
||||
if (I->getOperand(0) != Ops[i].Op ||
|
||||
I->getOperand(1) != Ops[i+1].Op) {
|
||||
Value *OldLHS = I->getOperand(0);
|
||||
DEBUG(std::cerr << "RA: " << *I);
|
||||
I->setOperand(0, Ops[i].Op);
|
||||
I->setOperand(1, Ops[i+1].Op);
|
||||
DEBUG(std::cerr << "TO: " << *I);
|
||||
MadeChange = true;
|
||||
++NumChanged;
|
||||
|
||||
// If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
|
||||
// delete the extra, now dead, nodes.
|
||||
RemoveDeadBinaryOp(OldLHS);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -297,7 +325,15 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
|
|||
MadeChange = true;
|
||||
++NumChanged;
|
||||
}
|
||||
RewriteExprTree(cast<BinaryOperator>(I->getOperand(0)), i+1, Ops);
|
||||
|
||||
BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
|
||||
assert(LHS->getOpcode() == I->getOpcode() &&
|
||||
"Improper expression tree!");
|
||||
|
||||
// Compactify the tree instructions together with each other to guarantee
|
||||
// that the expression tree is dominated by all of Ops.
|
||||
LHS->moveBefore(I);
|
||||
RewriteExprTree(LHS, i+1, Ops);
|
||||
}
|
||||
|
||||
|
||||
|
@ -405,19 +441,57 @@ static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
|
|||
return i;
|
||||
}
|
||||
|
||||
void Reassociate::OptimizeExpression(unsigned Opcode,
|
||||
std::vector<ValueEntry> &Ops) {
|
||||
/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
|
||||
/// and returning the result. Insert the tree before I.
|
||||
static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
|
||||
if (Ops.size() == 1) return Ops.back();
|
||||
|
||||
Value *V1 = Ops.back();
|
||||
Ops.pop_back();
|
||||
Value *V2 = EmitAddTreeOfValues(I, Ops);
|
||||
return BinaryOperator::createAdd(V2, V1, "tmp", I);
|
||||
}
|
||||
|
||||
/// RemoveFactorFromExpression - If V is an expression tree that is a
|
||||
/// multiplication sequence, and if this sequence contains a multiply by Factor,
|
||||
/// remove Factor from the tree and return the new tree.
|
||||
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
|
||||
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
|
||||
if (!BO) return 0;
|
||||
|
||||
std::vector<ValueEntry> Factors;
|
||||
LinearizeExprTree(BO, Factors);
|
||||
|
||||
bool FoundFactor = false;
|
||||
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
|
||||
if (Factors[i].Op == Factor) {
|
||||
FoundFactor = true;
|
||||
Factors.erase(Factors.begin()+i);
|
||||
break;
|
||||
}
|
||||
if (!FoundFactor) return 0;
|
||||
|
||||
if (Factors.size() == 1) return Factors[0].Op;
|
||||
|
||||
RewriteExprTree(BO, 0, Factors);
|
||||
return BO;
|
||||
}
|
||||
|
||||
|
||||
Value *Reassociate::OptimizeExpression(BinaryOperator *I,
|
||||
std::vector<ValueEntry> &Ops) {
|
||||
// Now that we have the linearized expression tree, try to optimize it.
|
||||
// Start by folding any constants that we found.
|
||||
bool IterateOptimization = false;
|
||||
if (Ops.size() == 1) return;
|
||||
if (Ops.size() == 1) return Ops[0].Op;
|
||||
|
||||
unsigned Opcode = I->getOpcode();
|
||||
|
||||
if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
|
||||
if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
|
||||
Ops.pop_back();
|
||||
Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
|
||||
OptimizeExpression(Opcode, Ops);
|
||||
return;
|
||||
return OptimizeExpression(I, Ops);
|
||||
}
|
||||
|
||||
// Check for destructive annihilation due to a constant being used.
|
||||
|
@ -426,30 +500,24 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
|
|||
default: break;
|
||||
case Instruction::And:
|
||||
if (CstVal->isNullValue()) { // ... & 0 -> 0
|
||||
Ops[0].Op = CstVal;
|
||||
Ops.erase(Ops.begin()+1, Ops.end());
|
||||
++NumAnnihil;
|
||||
return;
|
||||
return CstVal;
|
||||
} else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
|
||||
Ops.pop_back();
|
||||
}
|
||||
break;
|
||||
case Instruction::Mul:
|
||||
if (CstVal->isNullValue()) { // ... * 0 -> 0
|
||||
Ops[0].Op = CstVal;
|
||||
Ops.erase(Ops.begin()+1, Ops.end());
|
||||
++NumAnnihil;
|
||||
return;
|
||||
return CstVal;
|
||||
} else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
|
||||
Ops.pop_back(); // ... * 1 -> ...
|
||||
}
|
||||
break;
|
||||
case Instruction::Or:
|
||||
if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
|
||||
Ops[0].Op = CstVal;
|
||||
Ops.erase(Ops.begin()+1, Ops.end());
|
||||
++NumAnnihil;
|
||||
return;
|
||||
return CstVal;
|
||||
}
|
||||
// FALLTHROUGH!
|
||||
case Instruction::Add:
|
||||
|
@ -458,7 +526,7 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
|
|||
Ops.pop_back();
|
||||
break;
|
||||
}
|
||||
if (Ops.size() == 1) return;
|
||||
if (Ops.size() == 1) return Ops[0].Op;
|
||||
|
||||
// Handle destructive annihilation do to identities between elements in the
|
||||
// argument list here.
|
||||
|
@ -477,15 +545,11 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
|
|||
unsigned FoundX = FindInOperandList(Ops, i, X);
|
||||
if (FoundX != i) {
|
||||
if (Opcode == Instruction::And) { // ...&X&~X = 0
|
||||
Ops[0].Op = Constant::getNullValue(X->getType());
|
||||
Ops.erase(Ops.begin()+1, Ops.end());
|
||||
++NumAnnihil;
|
||||
return;
|
||||
return Constant::getNullValue(X->getType());
|
||||
} else if (Opcode == Instruction::Or) { // ...|X|~X = -1
|
||||
Ops[0].Op = ConstantIntegral::getAllOnesValue(X->getType());
|
||||
Ops.erase(Ops.begin()+1, Ops.end());
|
||||
++NumAnnihil;
|
||||
return;
|
||||
return ConstantIntegral::getAllOnesValue(X->getType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -503,10 +567,8 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
|
|||
} else {
|
||||
assert(Opcode == Instruction::Xor);
|
||||
if (e == 2) {
|
||||
Ops[0].Op = Constant::getNullValue(Ops[0].Op->getType());
|
||||
Ops.erase(Ops.begin()+1, Ops.end());
|
||||
++NumAnnihil;
|
||||
return;
|
||||
return Constant::getNullValue(Ops[0].Op->getType());
|
||||
}
|
||||
// ... X^X -> ...
|
||||
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
|
||||
|
@ -520,7 +582,7 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
|
|||
|
||||
case Instruction::Add:
|
||||
// Scan the operand lists looking for X and -X pairs. If we find any, we
|
||||
// can simplify the expression. X+-X == 0
|
||||
// can simplify the expression. X+-X == 0.
|
||||
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
||||
assert(i < Ops.size());
|
||||
// Check for X and -X in the operand list.
|
||||
|
@ -530,10 +592,8 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
|
|||
if (FoundX != i) {
|
||||
// Remove X and -X from the operand list.
|
||||
if (Ops.size() == 2) {
|
||||
Ops[0].Op = Constant::getNullValue(X->getType());
|
||||
Ops.pop_back();
|
||||
++NumAnnihil;
|
||||
return;
|
||||
return Constant::getNullValue(X->getType());
|
||||
} else {
|
||||
Ops.erase(Ops.begin()+i);
|
||||
if (i < FoundX)
|
||||
|
@ -549,30 +609,99 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Scan the operand list, checking to see if there are any common factors
|
||||
// between operands. Consider something like A*A+A*B*C+D. We would like to
|
||||
// reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
|
||||
// To efficiently find this, we count the number of times a factor occurs
|
||||
// for any ADD operands that are MULs.
|
||||
std::map<Value*, unsigned> FactorOccurrences;
|
||||
unsigned MaxOcc = 0;
|
||||
Value *MaxOccVal = 0;
|
||||
if (!I->getType()->isFloatingPoint()) {
|
||||
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
||||
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
|
||||
if (BOp->getOpcode() == Instruction::Mul && BOp->hasOneUse()) {
|
||||
// Compute all of the factors of this added value.
|
||||
std::vector<ValueEntry> Factors;
|
||||
LinearizeExprTree(BOp, Factors);
|
||||
assert(Factors.size() > 1 && "Bad linearize!");
|
||||
|
||||
// Add one to FactorOccurrences for each unique factor in this op.
|
||||
if (Factors.size() == 2) {
|
||||
unsigned Occ = ++FactorOccurrences[Factors[0].Op];
|
||||
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0].Op; }
|
||||
if (Factors[0].Op != Factors[1].Op) { // Don't double count A*A.
|
||||
Occ = ++FactorOccurrences[Factors[1].Op];
|
||||
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1].Op; }
|
||||
}
|
||||
} else {
|
||||
std::set<Value*> Duplicates;
|
||||
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
|
||||
if (Duplicates.insert(Factors[i].Op).second) {
|
||||
unsigned Occ = ++FactorOccurrences[Factors[i].Op];
|
||||
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i].Op; }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If any factor occurred more than one time, we can pull it out.
|
||||
if (MaxOcc > 1) {
|
||||
DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
|
||||
<< *MaxOccVal << "\n");
|
||||
|
||||
// Create a new instruction that uses the MaxOccVal twice. If we don't do
|
||||
// this, we could otherwise run into situations where removing a factor
|
||||
// from an expression will drop a use of maxocc, and this can cause
|
||||
// RemoveFactorFromExpression on successive values to behave differently.
|
||||
Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
|
||||
std::vector<Value*> NewMulOps;
|
||||
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
||||
if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
|
||||
NewMulOps.push_back(V);
|
||||
Ops.erase(Ops.begin()+i);
|
||||
--i; --e;
|
||||
}
|
||||
}
|
||||
|
||||
// No need for extra uses anymore.
|
||||
delete DummyInst;
|
||||
|
||||
Value *V = EmitAddTreeOfValues(I, NewMulOps);
|
||||
// FIXME: Must optimize V now, to handle this case:
|
||||
// A*A*B + A*A*C -> A*(A*B+A*C) -> A*(A*(B+C))
|
||||
V = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
|
||||
|
||||
++NumFactor;
|
||||
|
||||
if (Ops.size() == 0)
|
||||
return V;
|
||||
|
||||
// Add the new value to the list of things being added.
|
||||
Ops.insert(Ops.begin(), ValueEntry(getRank(V), V));
|
||||
|
||||
// Rewrite the tree so that there is now a use of V.
|
||||
RewriteExprTree(I, 0, Ops);
|
||||
return OptimizeExpression(I, Ops);
|
||||
}
|
||||
break;
|
||||
//case Instruction::Mul:
|
||||
}
|
||||
|
||||
if (IterateOptimization)
|
||||
OptimizeExpression(Opcode, Ops);
|
||||
return OptimizeExpression(I, Ops);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// PrintOps - Print out the expression identified in the Ops list.
|
||||
///
|
||||
static void PrintOps(unsigned Opcode, const std::vector<ValueEntry> &Ops,
|
||||
BasicBlock *BB) {
|
||||
Module *M = BB->getParent()->getParent();
|
||||
std::cerr << Instruction::getOpcodeName(Opcode) << " "
|
||||
<< *Ops[0].Op->getType();
|
||||
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
||||
WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
|
||||
<< "," << Ops[i].Rank;
|
||||
}
|
||||
|
||||
/// ReassociateBB - Inspect all of the instructions in this basic block,
|
||||
/// reassociating them as we go.
|
||||
void Reassociate::ReassociateBB(BasicBlock *BB) {
|
||||
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
|
||||
for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
|
||||
Instruction *BI = BBI++;
|
||||
if (BI->getOpcode() == Instruction::Shl &&
|
||||
isa<ConstantInt>(BI->getOperand(1)))
|
||||
if (Instruction *NI = ConvertShiftToMul(BI)) {
|
||||
|
@ -623,7 +752,7 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
|
|||
std::vector<ValueEntry> Ops;
|
||||
LinearizeExprTree(I, Ops);
|
||||
|
||||
DEBUG(std::cerr << "RAIn:\t"; PrintOps(I->getOpcode(), Ops, BB);
|
||||
DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
|
||||
std::cerr << "\n");
|
||||
|
||||
// Now that we have linearized the tree to a list and have gathered all of
|
||||
|
@ -636,7 +765,14 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
|
|||
|
||||
// OptimizeExpression - Now that we have the expression tree in a convenient
|
||||
// sorted form, optimize it globally if possible.
|
||||
OptimizeExpression(I->getOpcode(), Ops);
|
||||
if (Value *V = OptimizeExpression(I, Ops)) {
|
||||
// This expression tree simplified to something that isn't a tree,
|
||||
// eliminate it.
|
||||
DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
|
||||
I->replaceAllUsesWith(V);
|
||||
RemoveDeadBinaryOp(I);
|
||||
continue;
|
||||
}
|
||||
|
||||
// We want to sink immediates as deeply as possible except in the case where
|
||||
// this is a multiply tree used only by an add, and the immediate is a -1.
|
||||
|
@ -650,13 +786,14 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
|
|||
Ops.pop_back();
|
||||
}
|
||||
|
||||
DEBUG(std::cerr << "RAOut:\t"; PrintOps(I->getOpcode(), Ops, BB);
|
||||
DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
|
||||
std::cerr << "\n");
|
||||
|
||||
if (Ops.size() == 1) {
|
||||
// This expression tree simplified to something that isn't a tree,
|
||||
// eliminate it.
|
||||
I->replaceAllUsesWith(Ops[0].Op);
|
||||
RemoveDeadBinaryOp(I);
|
||||
} else {
|
||||
// Now that we ordered and optimized the expressions, splat them back into
|
||||
// the expression tree, removing any unneeded nodes.
|
||||
|
|
Loading…
Reference in New Issue