Add factoring of multiplications, e.g. turning A*A+A*B into A*(A+B).

Testcase here: Transforms/Reassociate/mulfactor.ll

llvm-svn: 26524
This commit is contained in:
Chris Lattner 2006-03-04 09:31:13 +00:00
parent c9a318d8fa
commit 4c065091d8
1 changed files with 186 additions and 49 deletions

View File

@ -41,6 +41,7 @@ namespace {
Statistic<> NumChanged("reassociate","Number of insts reassociated");
Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
Statistic<> NumFactor ("reassociate","Number of multiplies factored");
struct ValueEntry {
unsigned Rank;
@ -50,7 +51,20 @@ namespace {
inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
}
}
/// PrintOps - Print out the expression identified in the Ops list.
///
static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
Module *M = I->getParent()->getParent()->getParent();
std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
<< *Ops[0].Op->getType();
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
<< "," << Ops[i].Rank;
}
namespace {
class Reassociate : public FunctionPass {
std::map<BasicBlock*, unsigned> RankMap;
std::map<Value*, unsigned> ValueRankMap;
@ -66,10 +80,13 @@ namespace {
unsigned getRank(Value *V);
void RewriteExprTree(BinaryOperator *I, unsigned Idx,
std::vector<ValueEntry> &Ops);
void OptimizeExpression(unsigned Opcode, std::vector<ValueEntry> &Ops);
Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
void LinearizeExpr(BinaryOperator *I);
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
void ReassociateBB(BasicBlock *BB);
void RemoveDeadBinaryOp(Value *V);
};
RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
@ -78,6 +95,15 @@ namespace {
// Public interface to the Reassociate pass
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
void Reassociate::RemoveDeadBinaryOp(Value *V) {
BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
if (!BOp || !BOp->use_empty()) return;
Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
RemoveDeadBinaryOp(LHS);
RemoveDeadBinaryOp(RHS);
}
static bool isUnmovableInstruction(Instruction *I) {
if (I->getOpcode() == Instruction::PHI ||
@ -207,9 +233,6 @@ void Reassociate::LinearizeExpr(BinaryOperator *I) {
/// form of the the expression (((a+b)+c)+d), and collects information about the
/// rank of the non-tree operands.
///
/// This returns the rank of the RHS operand, which is known to be the highest
/// rank value in the expression tree.
///
void Reassociate::LinearizeExprTree(BinaryOperator *I,
std::vector<ValueEntry> &Ops) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
@ -279,12 +302,17 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
if (i+2 == Ops.size()) {
if (I->getOperand(0) != Ops[i].Op ||
I->getOperand(1) != Ops[i+1].Op) {
Value *OldLHS = I->getOperand(0);
DEBUG(std::cerr << "RA: " << *I);
I->setOperand(0, Ops[i].Op);
I->setOperand(1, Ops[i+1].Op);
DEBUG(std::cerr << "TO: " << *I);
MadeChange = true;
++NumChanged;
// If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
// delete the extra, now dead, nodes.
RemoveDeadBinaryOp(OldLHS);
}
return;
}
@ -297,7 +325,15 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
MadeChange = true;
++NumChanged;
}
RewriteExprTree(cast<BinaryOperator>(I->getOperand(0)), i+1, Ops);
BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
assert(LHS->getOpcode() == I->getOpcode() &&
"Improper expression tree!");
// Compactify the tree instructions together with each other to guarantee
// that the expression tree is dominated by all of Ops.
LHS->moveBefore(I);
RewriteExprTree(LHS, i+1, Ops);
}
@ -405,19 +441,57 @@ static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
return i;
}
void Reassociate::OptimizeExpression(unsigned Opcode,
std::vector<ValueEntry> &Ops) {
/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
/// and returning the result. Insert the tree before I.
static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
if (Ops.size() == 1) return Ops.back();
Value *V1 = Ops.back();
Ops.pop_back();
Value *V2 = EmitAddTreeOfValues(I, Ops);
return BinaryOperator::createAdd(V2, V1, "tmp", I);
}
/// RemoveFactorFromExpression - If V is an expression tree that is a
/// multiplication sequence, and if this sequence contains a multiply by Factor,
/// remove Factor from the tree and return the new tree.
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
if (!BO) return 0;
std::vector<ValueEntry> Factors;
LinearizeExprTree(BO, Factors);
bool FoundFactor = false;
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
if (Factors[i].Op == Factor) {
FoundFactor = true;
Factors.erase(Factors.begin()+i);
break;
}
if (!FoundFactor) return 0;
if (Factors.size() == 1) return Factors[0].Op;
RewriteExprTree(BO, 0, Factors);
return BO;
}
Value *Reassociate::OptimizeExpression(BinaryOperator *I,
std::vector<ValueEntry> &Ops) {
// Now that we have the linearized expression tree, try to optimize it.
// Start by folding any constants that we found.
bool IterateOptimization = false;
if (Ops.size() == 1) return;
if (Ops.size() == 1) return Ops[0].Op;
unsigned Opcode = I->getOpcode();
if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
Ops.pop_back();
Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
OptimizeExpression(Opcode, Ops);
return;
return OptimizeExpression(I, Ops);
}
// Check for destructive annihilation due to a constant being used.
@ -426,30 +500,24 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
default: break;
case Instruction::And:
if (CstVal->isNullValue()) { // ... & 0 -> 0
Ops[0].Op = CstVal;
Ops.erase(Ops.begin()+1, Ops.end());
++NumAnnihil;
return;
return CstVal;
} else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
Ops.pop_back();
}
break;
case Instruction::Mul:
if (CstVal->isNullValue()) { // ... * 0 -> 0
Ops[0].Op = CstVal;
Ops.erase(Ops.begin()+1, Ops.end());
++NumAnnihil;
return;
return CstVal;
} else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
Ops.pop_back(); // ... * 1 -> ...
}
break;
case Instruction::Or:
if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Ops[0].Op = CstVal;
Ops.erase(Ops.begin()+1, Ops.end());
++NumAnnihil;
return;
return CstVal;
}
// FALLTHROUGH!
case Instruction::Add:
@ -458,7 +526,7 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
Ops.pop_back();
break;
}
if (Ops.size() == 1) return;
if (Ops.size() == 1) return Ops[0].Op;
// Handle destructive annihilation do to identities between elements in the
// argument list here.
@ -477,15 +545,11 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
unsigned FoundX = FindInOperandList(Ops, i, X);
if (FoundX != i) {
if (Opcode == Instruction::And) { // ...&X&~X = 0
Ops[0].Op = Constant::getNullValue(X->getType());
Ops.erase(Ops.begin()+1, Ops.end());
++NumAnnihil;
return;
return Constant::getNullValue(X->getType());
} else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Ops[0].Op = ConstantIntegral::getAllOnesValue(X->getType());
Ops.erase(Ops.begin()+1, Ops.end());
++NumAnnihil;
return;
return ConstantIntegral::getAllOnesValue(X->getType());
}
}
}
@ -503,10 +567,8 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
} else {
assert(Opcode == Instruction::Xor);
if (e == 2) {
Ops[0].Op = Constant::getNullValue(Ops[0].Op->getType());
Ops.erase(Ops.begin()+1, Ops.end());
++NumAnnihil;
return;
return Constant::getNullValue(Ops[0].Op->getType());
}
// ... X^X -> ...
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
@ -520,7 +582,7 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
case Instruction::Add:
// Scan the operand lists looking for X and -X pairs. If we find any, we
// can simplify the expression. X+-X == 0
// can simplify the expression. X+-X == 0.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
assert(i < Ops.size());
// Check for X and -X in the operand list.
@ -530,10 +592,8 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
if (FoundX != i) {
// Remove X and -X from the operand list.
if (Ops.size() == 2) {
Ops[0].Op = Constant::getNullValue(X->getType());
Ops.pop_back();
++NumAnnihil;
return;
return Constant::getNullValue(X->getType());
} else {
Ops.erase(Ops.begin()+i);
if (i < FoundX)
@ -549,30 +609,99 @@ void Reassociate::OptimizeExpression(unsigned Opcode,
}
}
}
// Scan the operand list, checking to see if there are any common factors
// between operands. Consider something like A*A+A*B*C+D. We would like to
// reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
// To efficiently find this, we count the number of times a factor occurs
// for any ADD operands that are MULs.
std::map<Value*, unsigned> FactorOccurrences;
unsigned MaxOcc = 0;
Value *MaxOccVal = 0;
if (!I->getType()->isFloatingPoint()) {
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
if (BOp->getOpcode() == Instruction::Mul && BOp->hasOneUse()) {
// Compute all of the factors of this added value.
std::vector<ValueEntry> Factors;
LinearizeExprTree(BOp, Factors);
assert(Factors.size() > 1 && "Bad linearize!");
// Add one to FactorOccurrences for each unique factor in this op.
if (Factors.size() == 2) {
unsigned Occ = ++FactorOccurrences[Factors[0].Op];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0].Op; }
if (Factors[0].Op != Factors[1].Op) { // Don't double count A*A.
Occ = ++FactorOccurrences[Factors[1].Op];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1].Op; }
}
} else {
std::set<Value*> Duplicates;
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
if (Duplicates.insert(Factors[i].Op).second) {
unsigned Occ = ++FactorOccurrences[Factors[i].Op];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i].Op; }
}
}
}
}
}
// If any factor occurred more than one time, we can pull it out.
if (MaxOcc > 1) {
DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
<< *MaxOccVal << "\n");
// Create a new instruction that uses the MaxOccVal twice. If we don't do
// this, we could otherwise run into situations where removing a factor
// from an expression will drop a use of maxocc, and this can cause
// RemoveFactorFromExpression on successive values to behave differently.
Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
std::vector<Value*> NewMulOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
NewMulOps.push_back(V);
Ops.erase(Ops.begin()+i);
--i; --e;
}
}
// No need for extra uses anymore.
delete DummyInst;
Value *V = EmitAddTreeOfValues(I, NewMulOps);
// FIXME: Must optimize V now, to handle this case:
// A*A*B + A*A*C -> A*(A*B+A*C) -> A*(A*(B+C))
V = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
++NumFactor;
if (Ops.size() == 0)
return V;
// Add the new value to the list of things being added.
Ops.insert(Ops.begin(), ValueEntry(getRank(V), V));
// Rewrite the tree so that there is now a use of V.
RewriteExprTree(I, 0, Ops);
return OptimizeExpression(I, Ops);
}
break;
//case Instruction::Mul:
}
if (IterateOptimization)
OptimizeExpression(Opcode, Ops);
return OptimizeExpression(I, Ops);
return 0;
}
/// PrintOps - Print out the expression identified in the Ops list.
///
static void PrintOps(unsigned Opcode, const std::vector<ValueEntry> &Ops,
BasicBlock *BB) {
Module *M = BB->getParent()->getParent();
std::cerr << Instruction::getOpcodeName(Opcode) << " "
<< *Ops[0].Op->getType();
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
<< "," << Ops[i].Rank;
}
/// ReassociateBB - Inspect all of the instructions in this basic block,
/// reassociating them as we go.
void Reassociate::ReassociateBB(BasicBlock *BB) {
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
Instruction *BI = BBI++;
if (BI->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(BI->getOperand(1)))
if (Instruction *NI = ConvertShiftToMul(BI)) {
@ -623,7 +752,7 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
std::vector<ValueEntry> Ops;
LinearizeExprTree(I, Ops);
DEBUG(std::cerr << "RAIn:\t"; PrintOps(I->getOpcode(), Ops, BB);
DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
std::cerr << "\n");
// Now that we have linearized the tree to a list and have gathered all of
@ -636,7 +765,14 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
// OptimizeExpression - Now that we have the expression tree in a convenient
// sorted form, optimize it globally if possible.
OptimizeExpression(I->getOpcode(), Ops);
if (Value *V = OptimizeExpression(I, Ops)) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
I->replaceAllUsesWith(V);
RemoveDeadBinaryOp(I);
continue;
}
// We want to sink immediates as deeply as possible except in the case where
// this is a multiply tree used only by an add, and the immediate is a -1.
@ -650,13 +786,14 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
Ops.pop_back();
}
DEBUG(std::cerr << "RAOut:\t"; PrintOps(I->getOpcode(), Ops, BB);
DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
std::cerr << "\n");
if (Ops.size() == 1) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
I->replaceAllUsesWith(Ops[0].Op);
RemoveDeadBinaryOp(I);
} else {
// Now that we ordered and optimized the expressions, splat them back into
// the expression tree, removing any unneeded nodes.