Reapply "AMDGPU: Fix handling of alignment padding in DAG argument lowering"

Reverts r337079 with fix for msan error.

llvm-svn: 337535
This commit is contained in:
Matt Arsenault 2018-07-20 09:05:08 +00:00
parent 33f588acb9
commit 4bec7d4261
17 changed files with 424 additions and 220 deletions

View File

@ -198,8 +198,11 @@ void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
return;
const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
amd_kernel_code_t KernelCode;
if (STM.isAmdCodeObjectV2(MF->getFunction())) {
const Function &F = MF->getFunction();
if (STM.isAmdCodeObjectV2(F) &&
(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL)) {
amd_kernel_code_t KernelCode;
getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF);
getTargetStreamer()->EmitAMDKernelCodeT(KernelCode);
}
@ -1128,6 +1131,10 @@ static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
const SIProgramInfo &CurrentProgramInfo,
const MachineFunction &MF) const {
const Function &F = MF.getFunction();
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL);
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
@ -1174,9 +1181,8 @@ void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
if (STM.isXNACKEnabled())
Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
// FIXME: Should use getKernArgSize
Out.kernarg_segment_byte_size =
STM.getKernArgSegmentSize(MF.getFunction(), MFI->getExplicitKernArgSize());
unsigned MaxKernArgAlign;
Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign);
Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR;
Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR;
Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize;
@ -1185,7 +1191,7 @@ void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
// These alignment values are specified in powers of two, so alignment =
// 2^n. The minimum alignment is 2^4 = 16.
Out.kernarg_segment_alignment = std::max((size_t)4,
countTrailingZeros(MFI->getMaxKernArgAlign()));
countTrailingZeros(MaxKernArgAlign));
if (STM.debuggerEmitPrologue()) {
Out.debug_wavefront_private_segment_offset_sgpr =

View File

@ -208,16 +208,15 @@ Kernel::CodeProps::Metadata MetadataStreamer::getHSACodeProps(
HSAMD::Kernel::CodeProps::Metadata HSACodeProps;
const Function &F = MF.getFunction();
// Avoid asserting on erroneous cases.
if (F.getCallingConv() != CallingConv::AMDGPU_KERNEL)
return HSACodeProps;
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL);
HSACodeProps.mKernargSegmentSize =
STM.getKernArgSegmentSize(F, MFI.getExplicitKernArgSize());
unsigned MaxKernArgAlign;
HSACodeProps.mKernargSegmentSize = STM.getKernArgSegmentSize(F,
MaxKernArgAlign);
HSACodeProps.mGroupSegmentFixedSize = ProgramInfo.LDSSize;
HSACodeProps.mPrivateSegmentFixedSize = ProgramInfo.ScratchSize;
HSACodeProps.mKernargSegmentAlign =
std::max(uint32_t(4), MFI.getMaxKernArgAlign());
HSACodeProps.mKernargSegmentAlign = std::max(MaxKernArgAlign, 4u);
HSACodeProps.mWavefrontSize = STM.getWavefrontSize();
HSACodeProps.mNumSGPRs = ProgramInfo.NumSGPR;
HSACodeProps.mNumVGPRs = ProgramInfo.NumVGPR;
@ -466,12 +465,12 @@ void MetadataStreamer::end() {
void MetadataStreamer::emitKernel(const MachineFunction &MF, const SIProgramInfo &ProgramInfo) {
auto &Func = MF.getFunction();
auto CodeProps = getHSACodeProps(MF, ProgramInfo);
auto DebugProps = getHSADebugProps(MF, ProgramInfo);
if (Func.getCallingConv() != CallingConv::AMDGPU_KERNEL)
return;
auto CodeProps = getHSACodeProps(MF, ProgramInfo);
auto DebugProps = getHSADebugProps(MF, ProgramInfo);
HSAMetadata.mKernels.push_back(Kernel::Metadata());
auto &Kernel = HSAMetadata.mKernels.back();

View File

@ -30,6 +30,7 @@
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@ -40,18 +41,6 @@
#include "llvm/Support/KnownBits.h"
using namespace llvm;
static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
MachineFunction &MF = State.getMachineFunction();
AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
ArgFlags.getOrigAlign());
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State,
@ -910,74 +899,118 @@ CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
/// for each individual part is i8. We pass the memory type as LocVT to the
/// calling convention analysis function and the register type (Ins[x].VT) as
/// the ValVT.
void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const {
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
const ISD::InputArg &In = Ins[i];
EVT MemVT;
void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const {
const MachineFunction &MF = State.getMachineFunction();
const Function &Fn = MF.getFunction();
LLVMContext &Ctx = Fn.getParent()->getContext();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
unsigned MaxAlign = 1;
uint64_t ExplicitArgOffset = 0;
const DataLayout &DL = Fn.getParent()->getDataLayout();
if (!Subtarget->isAmdHsaOS() &&
(In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
// The ABI says the caller will extend these values to 32-bits.
MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
} else if (NumRegs == 1) {
// This argument is not split, so the IR type is the memory type.
assert(!In.Flags.isSplit());
if (In.ArgVT.isExtended()) {
// We have an extended type, like i24, so we should just use the register type
MemVT = In.VT;
unsigned InIndex = 0;
for (const Argument &Arg : Fn.args()) {
Type *BaseArgTy = Arg.getType();
unsigned Align = DL.getABITypeAlignment(BaseArgTy);
MaxAlign = std::max(Align, MaxAlign);
unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset;
ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
// We're basically throwing away everything passed into us and starting over
// to get accurate in-memory offsets. The "PartOffset" is completely useless
// to us as computed in Ins.
//
// We also need to figure out what type legalization is trying to do to get
// the correct memory offsets.
SmallVector<EVT, 16> ValueVTs;
SmallVector<uint64_t, 16> Offsets;
ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
for (unsigned Value = 0, NumValues = ValueVTs.size();
Value != NumValues; ++Value) {
uint64_t BasePartOffset = Offsets[Value];
EVT ArgVT = ValueVTs[Value];
EVT MemVT = ArgVT;
MVT RegisterVT =
getRegisterTypeForCallingConv(Ctx, ArgVT);
unsigned NumRegs =
getNumRegistersForCallingConv(Ctx, ArgVT);
if (!Subtarget->isAmdHsaOS() &&
(ArgVT == MVT::i16 || ArgVT == MVT::i8 || ArgVT == MVT::f16)) {
// The ABI says the caller will extend these values to 32-bits.
MemVT = ArgVT.isInteger() ? MVT::i32 : MVT::f32;
} else if (NumRegs == 1) {
// This argument is not split, so the IR type is the memory type.
if (ArgVT.isExtended()) {
// We have an extended type, like i24, so we should just use the
// register type.
MemVT = RegisterVT;
} else {
MemVT = ArgVT;
}
} else if (ArgVT.isVector() && RegisterVT.isVector() &&
ArgVT.getScalarType() == RegisterVT.getScalarType()) {
assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
// We have a vector value which has been split into a vector with
// the same scalar type, but fewer elements. This should handle
// all the floating-point vector types.
MemVT = RegisterVT;
} else if (ArgVT.isVector() &&
ArgVT.getVectorNumElements() == NumRegs) {
// This arg has been split so that each element is stored in a separate
// register.
MemVT = ArgVT.getScalarType();
} else if (ArgVT.isExtended()) {
// We have an extended type, like i65.
MemVT = RegisterVT;
} else {
MemVT = In.ArgVT;
unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
if (RegisterVT.isInteger()) {
MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
} else if (RegisterVT.isVector()) {
assert(!RegisterVT.getScalarType().isFloatingPoint());
unsigned NumElements = RegisterVT.getVectorNumElements();
assert(MemoryBits % NumElements == 0);
// This vector type has been split into another vector type with
// a different elements size.
EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
MemoryBits / NumElements);
MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
} else {
llvm_unreachable("cannot deduce memory type.");
}
}
} else if (In.ArgVT.isVector() && In.VT.isVector() &&
In.ArgVT.getScalarType() == In.VT.getScalarType()) {
assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
// We have a vector value which has been split into a vector with
// the same scalar type, but fewer elements. This should handle
// all the floating-point vector types.
MemVT = In.VT;
} else if (In.ArgVT.isVector() &&
In.ArgVT.getVectorNumElements() == NumRegs) {
// This arg has been split so that each element is stored in a separate
// register.
MemVT = In.ArgVT.getScalarType();
} else if (In.ArgVT.isExtended()) {
// We have an extended type, like i65.
MemVT = In.VT;
} else {
unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
if (In.VT.isInteger()) {
MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
} else if (In.VT.isVector()) {
assert(!In.VT.getScalarType().isFloatingPoint());
unsigned NumElements = In.VT.getVectorNumElements();
assert(MemoryBits % NumElements == 0);
// This vector type has been split into another vector type with
// a different elements size.
EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
MemoryBits / NumElements);
MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
} else {
llvm_unreachable("cannot deduce memory type.");
// Convert one element vectors to scalar.
if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
MemVT = MemVT.getScalarType();
if (MemVT.isExtended()) {
// This should really only happen if we have vec3 arguments
assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
MemVT = MemVT.getPow2VectorType(State.getContext());
}
unsigned PartOffset = 0;
for (unsigned i = 0; i != NumRegs; ++i) {
State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
BasePartOffset + PartOffset,
MemVT.getSimpleVT(),
CCValAssign::Full));
PartOffset += MemVT.getStoreSize();
}
}
// Convert one element vectors to scalar.
if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
MemVT = MemVT.getScalarType();
if (MemVT.isExtended()) {
// This should really only happen if we have vec3 arguments
assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
MemVT = MemVT.getPow2VectorType(State.getContext());
}
assert(MemVT.isSimple());
allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
State);
}
}

View File

@ -122,8 +122,11 @@ protected:
SDValue LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const;
void LowerUDIVREM64(SDValue Op, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) const;
void analyzeFormalArgumentsCompute(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const;
void analyzeFormalArgumentsCompute(
CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const;
public:
AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI);

View File

@ -77,8 +77,9 @@ bool AMDGPULowerKernelArguments::runOnFunction(Function &F) {
const unsigned KernArgBaseAlign = 16; // FIXME: Increase if necessary
const uint64_t BaseOffset = ST.getExplicitKernelArgOffset(F);
unsigned MaxAlign;
// FIXME: Alignment is broken broken with explicit arg offset.;
const uint64_t TotalKernArgSize = ST.getKernArgSegmentSize(F);
const uint64_t TotalKernArgSize = ST.getKernArgSegmentSize(F, MaxAlign);
if (TotalKernArgSize == 0)
return false;
@ -91,13 +92,11 @@ bool AMDGPULowerKernelArguments::runOnFunction(Function &F) {
Attribute::getWithDereferenceableBytes(Ctx, TotalKernArgSize));
unsigned AS = KernArgSegment->getType()->getPointerAddressSpace();
unsigned MaxAlign = 1;
uint64_t ExplicitArgOffset = 0;
for (Argument &Arg : F.args()) {
Type *ArgTy = Arg.getType();
unsigned Align = DL.getABITypeAlignment(ArgTy);
MaxAlign = std::max(Align, MaxAlign);
unsigned Size = DL.getTypeSizeInBits(ArgTy);
unsigned AllocSize = DL.getTypeAllocSize(ArgTy);

View File

@ -24,16 +24,23 @@ AMDGPUMachineFunction::AMDGPUMachineFunction(const MachineFunction &MF) :
NoSignedZerosFPMath(MF.getTarget().Options.NoSignedZerosFPMath),
MemoryBound(false),
WaveLimiter(false) {
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
// FIXME: Should initialize KernArgSize based on ExplicitKernelArgOffset,
// except reserved size is not correctly aligned.
const Function &F = MF.getFunction();
if (auto *Resolver = MF.getMMI().getResolver()) {
if (AMDGPUPerfHintAnalysis *PHA = static_cast<AMDGPUPerfHintAnalysis*>(
Resolver->getAnalysisIfAvailable(&AMDGPUPerfHintAnalysisID, true))) {
MemoryBound = PHA->isMemoryBound(&MF.getFunction());
WaveLimiter = PHA->needsWaveLimiter(&MF.getFunction());
MemoryBound = PHA->isMemoryBound(&F);
WaveLimiter = PHA->needsWaveLimiter(&F);
}
}
CallingConv::ID CC = F.getCallingConv();
if (CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL)
ExplicitKernArgSize = ST.getExplicitKernArgSize(F, MaxKernArgAlign);
}
unsigned AMDGPUMachineFunction::allocateLDSGlobal(const DataLayout &DL,

View File

@ -23,8 +23,8 @@ class AMDGPUMachineFunction : public MachineFunctionInfo {
SmallDenseMap<const GlobalValue *, unsigned, 4> LocalMemoryObjects;
protected:
uint64_t ExplicitKernArgSize;
unsigned MaxKernArgAlign;
uint64_t ExplicitKernArgSize; // Cache for this.
unsigned MaxKernArgAlign; // Cache for this.
/// Number of bytes in the LDS that are being used.
unsigned LDSSize;
@ -44,17 +44,6 @@ protected:
public:
AMDGPUMachineFunction(const MachineFunction &MF);
uint64_t allocateKernArg(uint64_t Size, unsigned Align) {
assert(isPowerOf2_32(Align));
ExplicitKernArgSize = alignTo(ExplicitKernArgSize, Align);
uint64_t Result = ExplicitKernArgSize;
ExplicitKernArgSize += Size;
MaxKernArgAlign = std::max(Align, MaxKernArgAlign);
return Result;
}
uint64_t getExplicitKernArgSize() const {
return ExplicitKernArgSize;
}

View File

@ -209,7 +209,7 @@ GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
FeatureDisable(false),
InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
TLInfo(TM, *this),
TLInfo(TM, *this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
AS = AMDGPU::getAMDGPUAS(TT);
CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
@ -406,6 +406,44 @@ bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
return true;
}
uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
unsigned &MaxAlign) const {
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL);
const DataLayout &DL = F.getParent()->getDataLayout();
uint64_t ExplicitArgBytes = 0;
MaxAlign = 1;
for (const Argument &Arg : F.args()) {
Type *ArgTy = Arg.getType();
unsigned Align = DL.getABITypeAlignment(ArgTy);
uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
ExplicitArgBytes = alignTo(ExplicitArgBytes, Align) + AllocSize;
MaxAlign = std::max(MaxAlign, Align);
}
return ExplicitArgBytes;
}
unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
unsigned &MaxAlign) const {
uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
unsigned ExplicitOffset = getExplicitKernelArgOffset(F);
uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
unsigned ImplicitBytes = getImplicitArgNumBytes(F);
if (ImplicitBytes != 0) {
unsigned Alignment = getAlignmentForImplicitArgPtr();
TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
}
// Being able to dereference past the end is useful for emitting scalar loads.
return alignTo(TotalSize, 4);
}
R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS,
const TargetMachine &TM) :
R600GenSubtargetInfo(TT, GPU, FS),
@ -446,40 +484,6 @@ bool GCNSubtarget::isVGPRSpillingEnabled(const Function& F) const {
return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv());
}
uint64_t GCNSubtarget::getExplicitKernArgSize(const Function &F) const {
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL);
const DataLayout &DL = F.getParent()->getDataLayout();
uint64_t ExplicitArgBytes = 0;
for (const Argument &Arg : F.args()) {
Type *ArgTy = Arg.getType();
unsigned Align = DL.getABITypeAlignment(ArgTy);
uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
ExplicitArgBytes = alignTo(ExplicitArgBytes, Align) + AllocSize;
}
return ExplicitArgBytes;
}
unsigned GCNSubtarget::getKernArgSegmentSize(const Function &F,
int64_t ExplicitArgBytes) const {
if (ExplicitArgBytes == -1)
ExplicitArgBytes = getExplicitKernArgSize(F);
unsigned ExplicitOffset = getExplicitKernelArgOffset(F);
uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
unsigned ImplicitBytes = getImplicitArgNumBytes(F);
if (ImplicitBytes != 0) {
unsigned Alignment = getAlignmentForImplicitArgPtr();
TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
}
// Being able to dereference past the end is useful for emitting scalar loads.
return alignTo(TotalSize, 4);
}
unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
if (SGPRs <= 80)

View File

@ -51,7 +51,7 @@ public:
enum Generation {
R600 = 0,
R700 = 1,
EVERGREEN = 2,
EVERGREEN = 2,
NORTHERN_ISLANDS = 3,
SOUTHERN_ISLANDS = 4,
SEA_ISLANDS = 5,
@ -82,7 +82,7 @@ public:
static const AMDGPUSubtarget &get(const MachineFunction &MF);
static const AMDGPUSubtarget &get(const TargetMachine &TM,
const Function &F);
const Function &F);
/// \returns Default range flat work group size for a calling convention.
std::pair<unsigned, unsigned> getDefaultFlatWorkGroupSize(CallingConv::ID CC) const;
@ -231,6 +231,18 @@ public:
/// Creates value range metadata on an workitemid.* inrinsic call or load.
bool makeLIDRangeMetadata(Instruction *I) const;
/// \returns Number of bytes of arguments that are passed to a shader or
/// kernel in addition to the explicit ones declared for the function.
unsigned getImplicitArgNumBytes(const Function &F) const {
if (isMesaKernel(F))
return 16;
return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0);
}
uint64_t getExplicitKernArgSize(const Function &F,
unsigned &MaxAlign) const;
unsigned getKernArgSegmentSize(const Function &F,
unsigned &MaxAlign) const;
virtual ~AMDGPUSubtarget() {}
};
@ -669,14 +681,6 @@ public:
return D16PreservesUnusedBits;
}
/// \returns Number of bytes of arguments that are passed to a shader or
/// kernel in addition to the explicit ones declared for the function.
unsigned getImplicitArgNumBytes(const Function &F) const {
if (isMesaKernel(F))
return 16;
return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0);
}
// Scratch is allocated in 256 dword per wave blocks for the entire
// wavefront. When viewed from the perspecive of an arbitrary workitem, this
// is 4-byte aligned.
@ -825,10 +829,6 @@ public:
return getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS;
}
uint64_t getExplicitKernArgSize(const Function &F) const;
unsigned getKernArgSegmentSize(const Function &F,
int64_t ExplicitArgBytes = -1) const;
/// Return the maximum number of waves per SIMD for kernels using \p SGPRs
/// SGPRs
unsigned getOccupancyWithNumSGPRs(unsigned SGPRs) const;

View File

@ -52,8 +52,3 @@ def CC_R600 : CallingConv<[
T30_XYZW, T31_XYZW, T32_XYZW
]>>>
]>;
// Calling convention for compute kernels
def CC_R600_Kernel : CallingConv<[
CCCustom<"allocateKernArg">
]>;

View File

@ -50,18 +50,6 @@
using namespace llvm;
static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
MachineFunction &MF = State.getMachineFunction();
AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
ArgFlags.getOrigAlign());
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
#include "R600GenCallingConv.inc"
R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
@ -234,7 +222,7 @@ R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
setOperationAction(ISD::FMA, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
}
// FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
// need it for R600.
if (!Subtarget->hasFP32Denormals())
@ -1583,7 +1571,7 @@ CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::Cold:
return CC_R600_Kernel;
llvm_unreachable("kernels should not be handled here");
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
@ -1658,13 +1646,12 @@ SDValue R600TargetLowering::LowerFormalArguments(
unsigned ValBase = ArgLocs[In.getOrigArgIndex()].getLocMemOffset();
unsigned PartOffset = VA.getLocMemOffset();
unsigned Offset = Subtarget->getExplicitKernelArgOffset(MF.getFunction()) +
VA.getLocMemOffset();
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase);
SDValue Arg = DAG.getLoad(
ISD::UNINDEXED, Ext, VT, DL, Chain,
DAG.getConstant(Offset, DL, MVT::i32), DAG.getUNDEF(MVT::i32), PtrInfo,
DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
PtrInfo,
MemVT, /* Alignment = */ 4, MachineMemOperand::MONonTemporal |
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);

View File

@ -1165,8 +1165,8 @@ SDValue SITargetLowering::lowerKernargMemParameter(
// Try to avoid using an extload by loading earlier than the argument address,
// and extracting the relevant bits. The load should hopefully be merged with
// the previous argument.
if (Align < 4) {
assert(MemVT.getStoreSize() < 4);
if (MemVT.getStoreSize() < 4 && Align < 4) {
// TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
int64_t AlignDownOffset = alignDown(Offset, 4);
int64_t OffsetDiff = Offset - AlignDownOffset;
@ -1797,7 +1797,6 @@ SDValue SITargetLowering::LowerFormalArguments(
// FIXME: Alignment of explicit arguments totally broken with non-0 explicit
// kern arg offset.
const unsigned KernelArgBaseAlign = 16;
const unsigned ExplicitOffset = Subtarget->getExplicitKernelArgOffset(Fn);
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
@ -1813,11 +1812,9 @@ SDValue SITargetLowering::LowerFormalArguments(
VT = Ins[i].VT;
EVT MemVT = VA.getLocVT();
const uint64_t Offset = ExplicitOffset + VA.getLocMemOffset();
const uint64_t Offset = VA.getLocMemOffset();
unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes for clover.
SDValue Arg = lowerKernargMemParameter(
DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
Chains.push_back(Arg.getValue(1));

View File

@ -54,6 +54,16 @@ SIMachineFunctionInfo::SIMachineFunctionInfo(const MachineFunction &MF)
Occupancy = getMaxWavesPerEU();
limitOccupancy(MF);
CallingConv::ID CC = F.getCallingConv();
if (CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL) {
if (!F.arg_empty())
KernargSegmentPtr = true;
WorkGroupIDX = true;
WorkItemIDX = true;
} else if (CC == CallingConv::AMDGPU_PS) {
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
}
if (!isEntryFunction()) {
// Non-entry functions have no special inputs for now, other registers
@ -73,21 +83,11 @@ SIMachineFunctionInfo::SIMachineFunctionInfo(const MachineFunction &MF)
} else {
if (F.hasFnAttribute("amdgpu-implicitarg-ptr")) {
KernargSegmentPtr = true;
assert(MaxKernArgAlign == 0);
MaxKernArgAlign = ST.getAlignmentForImplicitArgPtr();
MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(),
MaxKernArgAlign);
}
}
CallingConv::ID CC = F.getCallingConv();
if (CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL) {
if (!F.arg_empty())
KernargSegmentPtr = true;
WorkGroupIDX = true;
WorkItemIDX = true;
} else if (CC == CallingConv::AMDGPU_PS) {
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
}
if (ST.debuggerEmitPrologue()) {
// Enable everything.
WorkGroupIDX = true;

View File

@ -589,6 +589,17 @@ entry:
; ret void
; }
; FUNC-LABEL: {{^}}i65_arg:
; HSA-VI: kernarg_segment_byte_size = 24
; HSA-VI: kernarg_segment_alignment = 4
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x0
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x8
define amdgpu_kernel void @i65_arg(i65 addrspace(1)* nocapture %out, i65 %in) nounwind {
entry:
store i65 %in, i65 addrspace(1)* %out, align 4
ret void
}
; FUNC-LABEL: {{^}}i1_arg:
; HSA-VI: kernarg_segment_byte_size = 12
; HSA-VI: kernarg_segment_alignment = 4
@ -651,7 +662,7 @@ define amdgpu_kernel void @i1_arg_sext_i64(i64 addrspace(1)* %out, i1 %x) nounwi
}
; FUNC-LABEL: {{^}}empty_struct_arg:
; HSA: kernarg_segment_byte_size = 0
; HSA-VI: kernarg_segment_byte_size = 0
define amdgpu_kernel void @empty_struct_arg({} %in) nounwind {
ret void
}
@ -667,11 +678,11 @@ define amdgpu_kernel void @empty_struct_arg({} %in) nounwind {
; FIXME: Total argument size is computed wrong
; FUNC-LABEL: {{^}}struct_argument_alignment:
; HSA: kernarg_segment_byte_size = 40
; HSA: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x8
; HSA: s_load_dword s{{[0-9]+}}, s[4:5], 0x18
; HSA: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x20
; HSA-VI: kernarg_segment_byte_size = 40
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x8
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x18
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x20
define amdgpu_kernel void @struct_argument_alignment({i32, i64} %arg0, i8, {i32, i64} %arg1) {
%val0 = extractvalue {i32, i64} %arg0, 0
%val1 = extractvalue {i32, i64} %arg0, 1
@ -687,11 +698,11 @@ define amdgpu_kernel void @struct_argument_alignment({i32, i64} %arg0, i8, {i32,
; No padding between i8 and next struct, but round up at end to 4 byte
; multiple.
; FUNC-LABEL: {{^}}packed_struct_argument_alignment:
; HSA: kernarg_segment_byte_size = 28
; HSA: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x4
; HSA: s_load_dword s{{[0-9]+}}, s[4:5], 0xc
; HSA: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x10
; HSA-VI: kernarg_segment_byte_size = 28
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x4
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0xc
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x10
define amdgpu_kernel void @packed_struct_argument_alignment(<{i32, i64}> %arg0, i8, <{i32, i64}> %arg1) {
%val0 = extractvalue <{i32, i64}> %arg0, 0
%val1 = extractvalue <{i32, i64}> %arg0, 1
@ -703,3 +714,47 @@ define amdgpu_kernel void @packed_struct_argument_alignment(<{i32, i64}> %arg0,
store volatile i64 %val3, i64 addrspace(1)* null
ret void
}
; GCN-LABEL: {{^}}struct_argument_alignment_after:
; HSA-VI: kernarg_segment_byte_size = 64
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x8
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x18
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x20
; HSA-VI: s_load_dwordx4 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x30
define amdgpu_kernel void @struct_argument_alignment_after({i32, i64} %arg0, i8, {i32, i64} %arg2, i8, <4 x i32> %arg4) {
%val0 = extractvalue {i32, i64} %arg0, 0
%val1 = extractvalue {i32, i64} %arg0, 1
%val2 = extractvalue {i32, i64} %arg2, 0
%val3 = extractvalue {i32, i64} %arg2, 1
store volatile i32 %val0, i32 addrspace(1)* null
store volatile i64 %val1, i64 addrspace(1)* null
store volatile i32 %val2, i32 addrspace(1)* null
store volatile i64 %val3, i64 addrspace(1)* null
store volatile <4 x i32> %arg4, <4 x i32> addrspace(1)* null
ret void
}
; GCN-LABEL: {{^}}array_3xi32:
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x4
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x8
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0xc
define amdgpu_kernel void @array_3xi32(i16 %arg0, [3 x i32] %arg1) {
store volatile i16 %arg0, i16 addrspace(1)* undef
store volatile [3 x i32] %arg1, [3 x i32] addrspace(1)* undef
ret void
}
; FIXME: Why not all scalar loads?
; GCN-LABEL: {{^}}array_3xi16:
; HSA-VI: s_add_u32 s{{[0-9]+}}, s4, 2
; HSA-VI: s_addc_u32 s{{[0-9]+}}, s5, 0
; HSA-VI: flat_load_ushort
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x4
define amdgpu_kernel void @array_3xi16(i8 %arg0, [3 x i16] %arg1) {
store volatile i8 %arg0, i8 addrspace(1)* undef
store volatile [3 x i16] %arg1, [3 x i16] addrspace(1)* undef
ret void
}

View File

@ -0,0 +1,132 @@
; RUN: llc -mtriple=amdgcn--amdhsa -mcpu=gfx900 -amdgpu-ir-lower-kernel-arguments=0 -verify-machineinstrs < %s | FileCheck -enable-var-scope -check-prefixes=VI,GCN,HSA-VI,FUNC %s
; Repeat of some problematic tests in kernel-args.ll, with the IR
; argument lowering pass disabled. Struct padding needs to be
; accounted for, as well as legalization of types changing offsets.
; FUNC-LABEL: {{^}}i1_arg:
; HSA-VI: kernarg_segment_byte_size = 12
; HSA-VI: kernarg_segment_alignment = 4
; GCN: s_load_dword s
; GCN: s_and_b32
define amdgpu_kernel void @i1_arg(i1 addrspace(1)* %out, i1 %x) nounwind {
store i1 %x, i1 addrspace(1)* %out, align 1
ret void
}
; FUNC-LABEL: {{^}}v3i8_arg:
; HSA-VI: kernarg_segment_byte_size = 12
; HSA-VI: kernarg_segment_alignment = 4
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x0
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x8
define amdgpu_kernel void @v3i8_arg(<3 x i8> addrspace(1)* nocapture %out, <3 x i8> %in) nounwind {
entry:
store <3 x i8> %in, <3 x i8> addrspace(1)* %out, align 4
ret void
}
; FUNC-LABEL: {{^}}i65_arg:
; HSA-VI: kernarg_segment_byte_size = 24
; HSA-VI: kernarg_segment_alignment = 4
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x0
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x8
define amdgpu_kernel void @i65_arg(i65 addrspace(1)* nocapture %out, i65 %in) nounwind {
entry:
store i65 %in, i65 addrspace(1)* %out, align 4
ret void
}
; FUNC-LABEL: {{^}}empty_struct_arg:
; HSA-VI: kernarg_segment_byte_size = 0
define amdgpu_kernel void @empty_struct_arg({} %in) nounwind {
ret void
}
; The correct load offsets for these:
; load 4 from 0,
; load 8 from 8
; load 4 from 24
; load 8 from 32
; With the SelectionDAG argument lowering, the alignments for the
; struct members is not properly considered, making these wrong.
; FIXME: Total argument size is computed wrong
; FUNC-LABEL: {{^}}struct_argument_alignment:
; HSA-VI: kernarg_segment_byte_size = 40
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x8
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x18
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x20
define amdgpu_kernel void @struct_argument_alignment({i32, i64} %arg0, i8, {i32, i64} %arg1) {
%val0 = extractvalue {i32, i64} %arg0, 0
%val1 = extractvalue {i32, i64} %arg0, 1
%val2 = extractvalue {i32, i64} %arg1, 0
%val3 = extractvalue {i32, i64} %arg1, 1
store volatile i32 %val0, i32 addrspace(1)* null
store volatile i64 %val1, i64 addrspace(1)* null
store volatile i32 %val2, i32 addrspace(1)* null
store volatile i64 %val3, i64 addrspace(1)* null
ret void
}
; No padding between i8 and next struct, but round up at end to 4 byte
; multiple.
; FUNC-LABEL: {{^}}packed_struct_argument_alignment:
; HSA-VI: kernarg_segment_byte_size = 28
; HSA-VI: global_load_dword v{{[0-9]+}}, v{{\[[0-9]+:[0-9]+\]}}, off offset:13
; HSA-VI: global_load_dwordx2 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, off offset:17
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x4
define amdgpu_kernel void @packed_struct_argument_alignment(<{i32, i64}> %arg0, i8, <{i32, i64}> %arg1) {
%val0 = extractvalue <{i32, i64}> %arg0, 0
%val1 = extractvalue <{i32, i64}> %arg0, 1
%val2 = extractvalue <{i32, i64}> %arg1, 0
%val3 = extractvalue <{i32, i64}> %arg1, 1
store volatile i32 %val0, i32 addrspace(1)* null
store volatile i64 %val1, i64 addrspace(1)* null
store volatile i32 %val2, i32 addrspace(1)* null
store volatile i64 %val3, i64 addrspace(1)* null
ret void
}
; GCN-LABEL: {{^}}struct_argument_alignment_after:
; HSA-VI: kernarg_segment_byte_size = 64
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x8
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x18
; HSA-VI: s_load_dwordx2 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x20
; HSA-VI: s_load_dwordx4 s{{\[[0-9]+:[0-9]+\]}}, s[4:5], 0x30
define amdgpu_kernel void @struct_argument_alignment_after({i32, i64} %arg0, i8, {i32, i64} %arg2, i8, <4 x i32> %arg4) {
%val0 = extractvalue {i32, i64} %arg0, 0
%val1 = extractvalue {i32, i64} %arg0, 1
%val2 = extractvalue {i32, i64} %arg2, 0
%val3 = extractvalue {i32, i64} %arg2, 1
store volatile i32 %val0, i32 addrspace(1)* null
store volatile i64 %val1, i64 addrspace(1)* null
store volatile i32 %val2, i32 addrspace(1)* null
store volatile i64 %val3, i64 addrspace(1)* null
store volatile <4 x i32> %arg4, <4 x i32> addrspace(1)* null
ret void
}
; GCN-LABEL: {{^}}array_3xi32:
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x4
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x8
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0xc
define amdgpu_kernel void @array_3xi32(i16 %arg0, [3 x i32] %arg1) {
store volatile i16 %arg0, i16 addrspace(1)* undef
store volatile [3 x i32] %arg1, [3 x i32] addrspace(1)* undef
ret void
}
; GCN-LABEL: {{^}}array_3xi16:
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x0
; HSA-VI: s_load_dword s{{[0-9]+}}, s[4:5], 0x4
define amdgpu_kernel void @array_3xi16(i8 %arg0, [3 x i16] %arg1) {
store volatile i8 %arg0, i8 addrspace(1)* undef
store volatile [3 x i16] %arg1, [3 x i16] addrspace(1)* undef
ret void
}

View File

@ -33,7 +33,7 @@ define amdgpu_kernel void @opencl_kernel_implicitarg_ptr_empty() #1 {
; GCN: enable_sgpr_kernarg_segment_ptr = 1
; HSA: kernarg_segment_byte_size = 112
; MESA: kernarg_segment_byte_size = 464
; MESA: kernarg_segment_byte_size = 128
; HSA: s_load_dword s0, s[4:5], 0x1c
define amdgpu_kernel void @kernel_implicitarg_ptr([112 x i8]) #0 {
@ -47,7 +47,7 @@ define amdgpu_kernel void @kernel_implicitarg_ptr([112 x i8]) #0 {
; GCN: enable_sgpr_kernarg_segment_ptr = 1
; HSA: kernarg_segment_byte_size = 160
; MESA: kernarg_segment_byte_size = 464
; MESA: kernarg_segment_byte_size = 128
; HSA: s_load_dword s0, s[4:5], 0x1c
define amdgpu_kernel void @opencl_kernel_implicitarg_ptr([112 x i8]) #1 {
@ -118,10 +118,10 @@ define amdgpu_kernel void @opencl_kernel_call_implicitarg_ptr_func_empty() #1 {
; GCN-LABEL: {{^}}kernel_call_implicitarg_ptr_func:
; GCN: enable_sgpr_kernarg_segment_ptr = 1
; HSA: kernarg_segment_byte_size = 112
; MESA: kernarg_segment_byte_size = 464
; MESA: kernarg_segment_byte_size = 128
; HSA: s_add_u32 s6, s4, 0x70
; MESA: s_add_u32 s6, s4, 0x1c0
; MESA: s_add_u32 s6, s4, 0x70
; GCN: s_addc_u32 s7, s5, 0{{$}}
; GCN: s_swappc_b64
@ -133,10 +133,9 @@ define amdgpu_kernel void @kernel_call_implicitarg_ptr_func([112 x i8]) #0 {
; GCN-LABEL: {{^}}opencl_kernel_call_implicitarg_ptr_func:
; GCN: enable_sgpr_kernarg_segment_ptr = 1
; HSA: kernarg_segment_byte_size = 160
; MESA: kernarg_segment_byte_size = 464
; MESA: kernarg_segment_byte_size = 128
; HSA: s_add_u32 s6, s4, 0x70
; MESA: s_add_u32 s6, s4, 0x1c0
; GCN: s_add_u32 s6, s4, 0x70
; GCN: s_addc_u32 s7, s5, 0{{$}}
; GCN: s_swappc_b64
@ -219,8 +218,7 @@ define void @opencl_func_kernarg_implicitarg_ptr() #0 {
; GCN-LABEL: {{^}}kernel_call_kernarg_implicitarg_ptr_func:
; GCN: s_mov_b64 s[6:7], s[4:5]
; HSA: s_add_u32 s8, s6, 0x70
; MESA: s_add_u32 s8, s6, 0x1c0
; GCN: s_add_u32 s8, s6, 0x70
; GCN: s_addc_u32 s9, s7, 0
; GCN: s_swappc_b64
define amdgpu_kernel void @kernel_call_kernarg_implicitarg_ptr_func([112 x i8]) #0 {

View File

@ -79,7 +79,7 @@ define amdgpu_kernel void @opencl_test_implicit_alignment(i32 addrspace(1)* %out
; CO-V2: enable_sgpr_kernarg_segment_ptr = 1
; HSA: kernarg_segment_byte_size = 0
; OS-MESA3D: kernarg_segment_byte_size = 16
; CO-V2: kernarg_segment_alignment = 32
; CO-V2: kernarg_segment_alignment = 4
; HSA: s_load_dword s{{[0-9]+}}, s[4:5]
define amdgpu_kernel void @test_no_kernargs() #1 {