[Hexagon] Initial instruction cost model for auto-vectorization

llvm-svn: 330065
This commit is contained in:
Krzysztof Parzyszek 2018-04-13 20:46:50 +00:00
parent 13e186c088
commit 4bdf1aa416
2 changed files with 195 additions and 98 deletions

View File

@ -16,6 +16,7 @@
#include "HexagonTargetTransformInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/User.h"
@ -27,16 +28,35 @@ using namespace llvm;
#define DEBUG_TYPE "hexagontti"
static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(true),
cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
cl::init(true), cl::Hidden,
cl::desc("Control lookup table emission on Hexagon target"));
bool HexagonTTIImpl::useHVX() const {
return ST.useHVXOps() && HexagonAutoHVX;
}
bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
assert(VecTy->isVectorTy());
// Avoid types like <2 x i32*>.
if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
return false;
EVT VecVT = EVT::getEVT(VecTy);
if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
return false;
if (ST.isHVXVectorType(VecVT.getSimpleVT()))
return true;
auto Action = TLI.getPreferredVectorAction(VecVT);
return Action == TargetLoweringBase::TypeWidenVector;
}
TargetTransformInfo::PopcntSupportKind
HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
// Return Fast Hardware support as every input < 64 bits will be promoted
// Return fast hardware support as every input < 64 bits will be promoted
// to 64 bits.
return TargetTransformInfo::PSK_FastHardware;
}
@ -58,14 +78,16 @@ bool HexagonTTIImpl::shouldFavorPostInc() const {
return true;
}
/// --- Vector TTI begin ---
unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
if (Vector)
return HexagonAutoHVX && getST()->useHVXOps() ? 32 : 0;
return useHVX() ? 32 : 0;
return 32;
}
unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
return HexagonAutoHVX && getST()->useHVXOps() ? 64 : 0;
return useHVX() ? 2 : 0;
}
unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
@ -73,38 +95,161 @@ unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
}
unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
return getST()->useHVXOps() ? getST()->getVectorLength()*8 : 0;
return useHVX() ? ST.getVectorLength()*8 : 0;
}
unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
return (8 * getST()->getVectorLength()) / ElemWidth;
return (8 * ST.getVectorLength()) / ElemWidth;
}
unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
bool Extract) {
return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
}
unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
ArrayRef<const Value*> Args, unsigned VF) {
return BaseT::getOperandsScalarizationOverhead(Args, VF);
}
unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type*> Tys) {
return BaseT::getCallInstrCost(F, RetTy, Tys);
}
unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
}
unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type*> Tys, FastMathFlags FMF,
unsigned ScalarizationCostPassed) {
if (ID == Intrinsic::bswap) {
std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
return LT.first + 2;
}
return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
ScalarizationCostPassed);
}
unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
ScalarEvolution *SE, const SCEV *S) {
return 0;
}
unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment, unsigned AddressSpace, const Instruction *I) {
if (Opcode == Instruction::Load && Src->isVectorTy()) {
assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
if (Opcode == Instruction::Store)
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
if (Src->isVectorTy()) {
VectorType *VecTy = cast<VectorType>(Src);
unsigned VecWidth = VecTy->getBitWidth();
if (VecWidth > 64) {
// Assume that vectors longer than 64 bits are meant for HVX.
if (getNumberOfRegisters(true) > 0) {
if (VecWidth % getRegisterBitWidth(true) == 0)
return 1;
}
if (useHVX() && isTypeForHVX(VecTy)) {
unsigned RegWidth = getRegisterBitWidth(true);
Alignment = std::min(Alignment, RegWidth/8);
// Cost of HVX loads.
if (VecWidth % RegWidth == 0)
return VecWidth / RegWidth;
// Cost of constructing HVX vector from scalar loads.
unsigned AlignWidth = 8 * std::max(1u, Alignment);
unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
return 3*NumLoads;
}
// Non-HVX vectors.
// Add extra cost for floating point types.
unsigned Cost = VecTy->getElementType()->isFloatingPointTy() ? 4 : 1;
Alignment = std::min(Alignment, 8u);
unsigned AlignWidth = 8 * std::max(1u, Alignment);
unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
if (Alignment == 4 || Alignment == 8)
return Cost * NumLoads;
// Loads of less than 32 bits will need extra inserts to compose a vector.
unsigned LogA = Log2_32(Alignment);
return (3 - LogA) * Cost * NumLoads;
}
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
}
unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
Type *Src, unsigned Alignment, unsigned AddressSpace) {
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
}
unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) {
return 1;
}
unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
Value *Ptr, bool VariableMask, unsigned Alignment) {
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment);
}
unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
unsigned Alignment, unsigned AddressSpace) {
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace);
}
unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy, const Instruction *I) {
if (ValTy->isVectorTy()) {
auto *VecTy = dyn_cast<VectorType>(ValTy);
std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
if (Opcode == Instruction::FCmp)
return LT.first + 4 * VecTy->getNumElements();
}
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}
unsigned HexagonTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value*> Args) {
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args);
}
unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src, const Instruction *I) {
return 1;
}
unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) {
Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
: Val;
if (Opcode == Instruction::InsertElement) {
// Need two rotations for non-zero index.
unsigned Cost = (Index != 0) ? 2 : 0;
if (ElemTy->isIntegerTy(32))
return Cost;
// If it's not a 32-bit value, there will need to be an extract.
return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
}
if (Opcode == Instruction::ExtractElement)
return 2;
return 1;
}
/// --- Vector TTI end ---
unsigned HexagonTTIImpl::getPrefetchDistance() const {
return getST()->getL1PrefetchDistance();
return ST.getL1PrefetchDistance();
}
unsigned HexagonTTIImpl::getCacheLineSize() const {
return getST()->getL1CacheLineSize();
return ST.getL1CacheLineSize();
}
int HexagonTTIImpl::getUserCost(const User *U,

View File

@ -37,16 +37,19 @@ class HexagonTTIImpl : public BasicTTIImplBase<HexagonTTIImpl> {
friend BaseT;
const HexagonSubtarget *ST;
const HexagonTargetLowering *TLI;
const HexagonSubtarget &ST;
const HexagonTargetLowering &TLI;
const HexagonSubtarget *getST() const { return ST; }
const HexagonTargetLowering *getTLI() const { return TLI; }
const HexagonSubtarget *getST() const { return &ST; }
const HexagonTargetLowering *getTLI() const { return &TLI; }
bool useHVX() const;
bool isTypeForHVX(Type *VecTy) const;
public:
explicit HexagonTTIImpl(const HexagonTargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
TLI(ST->getTargetLowering()) {}
: BaseT(TM, F.getParent()->getDataLayout()),
ST(*TM->getSubtargetImpl(F)), TLI(*ST.getTargetLowering()) {}
/// \name Scalar TTI Implementations
/// @{
@ -73,110 +76,59 @@ public:
unsigned getMaxInterleaveFactor(unsigned VF);
unsigned getRegisterBitWidth(bool Vector) const;
unsigned getMinVectorRegisterBitWidth() const;
bool shouldMaximizeVectorBandwidth(bool OptSize) const { return true; }
unsigned getMinimumVF(unsigned ElemWidth) const;
bool shouldMaximizeVectorBandwidth(bool OptSize) const {
return true;
}
bool supportsEfficientVectorElementLoadStore() {
return false;
}
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
return 0;
}
unsigned getOperandsScalarizationOverhead(ArrayRef<const Value*> Args,
unsigned VF) {
return 0;
}
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type*> Tys) {
return 1;
}
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
}
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type*> Tys, FastMathFlags FMF,
unsigned ScalarizationCostPassed = UINT_MAX) {
return 1;
}
bool hasBranchDivergence() {
return false;
}
bool enableAggressiveInterleaving(bool LoopHasReductions) {
return false;
}
unsigned getCFInstrCost(unsigned Opcode) {
return 1;
}
unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
const SCEV *) {
return 0;
bool prefersVectorizedAddressing() {
return false;
}
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract);
unsigned getOperandsScalarizationOverhead(ArrayRef<const Value*> Args,
unsigned VF);
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type*> Tys);
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF);
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type*> Tys, FastMathFlags FMF,
unsigned ScalarizationCostPassed = UINT_MAX);
unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
const SCEV *S);
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace, const Instruction *I = nullptr);
unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) {
return 1;
}
unsigned AddressSpace);
unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) {
return 1;
}
Type *SubTp);
unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
bool VariableMask,
unsigned Alignment) {
return 1;
}
bool VariableMask, unsigned Alignment);
unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
unsigned Factor,
ArrayRef<unsigned> Indices,
unsigned Alignment,
unsigned AddressSpace) {
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace);
}
unsigned getNumberOfParts(Type *Tp) {
return BaseT::getNumberOfParts(Tp);
}
bool prefersVectorizedAddressing() {
return true;
}
unsigned Factor, ArrayRef<unsigned> Indices, unsigned Alignment,
unsigned AddressSpace);
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
const Instruction *I) {
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}
const Instruction *I);
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
ArrayRef<const Value *> Args = ArrayRef<const Value *>()) {
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args);
}
ArrayRef<const Value *> Args = ArrayRef<const Value *>());
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
const Instruction *I = nullptr) {
return 1;
}
const Instruction *I = nullptr);
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index);
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
unsigned getCFInstrCost(unsigned Opcode) {
return 1;
}