forked from OSchip/llvm-project
Re-apply 70645, converting ScalarEvolution to use
CallbackVH, with fixes. allUsesReplacedWith need to walk the def-use chains and invalidate all users of a value that is replaced. SCEVs of users need to be recalcualted even if the new value is equivalent. Also, make forgetLoopPHIs walk def-use chains, since any SCEV that depends on a PHI should be recalculated when more information about that PHI becomes available. llvm-svn: 70927
This commit is contained in:
parent
fc2a8d1eb0
commit
48f8222293
|
@ -24,6 +24,7 @@
|
|||
#include "llvm/Pass.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Support/DataTypes.h"
|
||||
#include "llvm/Support/ValueHandle.h"
|
||||
#include <iosfwd>
|
||||
|
||||
namespace llvm {
|
||||
|
@ -140,13 +141,23 @@ namespace llvm {
|
|||
static bool classof(const SCEV *S);
|
||||
};
|
||||
|
||||
/// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
|
||||
/// notified whenever a Value is deleted.
|
||||
class SCEVCallbackVH : public CallbackVH {
|
||||
ScalarEvolution *SE;
|
||||
virtual void deleted();
|
||||
virtual void allUsesReplacedWith(Value *New);
|
||||
public:
|
||||
SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
|
||||
};
|
||||
|
||||
/// SCEVHandle - This class is used to maintain the SCEV object's refcounts,
|
||||
/// freeing the objects when the last reference is dropped.
|
||||
class SCEVHandle {
|
||||
SCEV *S;
|
||||
const SCEV *S;
|
||||
SCEVHandle(); // DO NOT IMPLEMENT
|
||||
public:
|
||||
SCEVHandle(const SCEV *s) : S(const_cast<SCEV*>(s)) {
|
||||
SCEVHandle(const SCEV *s) : S(s) {
|
||||
assert(S && "Cannot create a handle to a null SCEV!");
|
||||
S->addRef();
|
||||
}
|
||||
|
@ -155,13 +166,13 @@ namespace llvm {
|
|||
}
|
||||
~SCEVHandle() { S->dropRef(); }
|
||||
|
||||
operator SCEV*() const { return S; }
|
||||
operator const SCEV*() const { return S; }
|
||||
|
||||
SCEV &operator*() const { return *S; }
|
||||
SCEV *operator->() const { return S; }
|
||||
const SCEV &operator*() const { return *S; }
|
||||
const SCEV *operator->() const { return S; }
|
||||
|
||||
bool operator==(SCEV *RHS) const { return S == RHS; }
|
||||
bool operator!=(SCEV *RHS) const { return S != RHS; }
|
||||
bool operator==(const SCEV *RHS) const { return S == RHS; }
|
||||
bool operator!=(const SCEV *RHS) const { return S != RHS; }
|
||||
|
||||
const SCEVHandle &operator=(SCEV *RHS) {
|
||||
if (S != RHS) {
|
||||
|
@ -184,7 +195,7 @@ namespace llvm {
|
|||
|
||||
template<typename From> struct simplify_type;
|
||||
template<> struct simplify_type<const SCEVHandle> {
|
||||
typedef SCEV* SimpleType;
|
||||
typedef const SCEV* SimpleType;
|
||||
static SimpleType getSimplifiedValue(const SCEVHandle &Node) {
|
||||
return Node;
|
||||
}
|
||||
|
@ -197,6 +208,8 @@ namespace llvm {
|
|||
/// they must ask this class for services.
|
||||
///
|
||||
class ScalarEvolution : public FunctionPass {
|
||||
friend class SCEVCallbackVH;
|
||||
|
||||
/// F - The function we are analyzing.
|
||||
///
|
||||
Function *F;
|
||||
|
@ -215,7 +228,7 @@ namespace llvm {
|
|||
|
||||
/// Scalars - This is a cache of the scalars we have analyzed so far.
|
||||
///
|
||||
std::map<Value*, SCEVHandle> Scalars;
|
||||
std::map<SCEVCallbackVH, SCEVHandle> Scalars;
|
||||
|
||||
/// BackedgeTakenInfo - Information about the backedge-taken count
|
||||
/// of a loop. This currently inclues an exact count and a maximum count.
|
||||
|
@ -232,7 +245,7 @@ namespace llvm {
|
|||
/*implicit*/ BackedgeTakenInfo(SCEVHandle exact) :
|
||||
Exact(exact), Max(exact) {}
|
||||
|
||||
/*implicit*/ BackedgeTakenInfo(SCEV *exact) :
|
||||
/*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
|
||||
Exact(exact), Max(exact) {}
|
||||
|
||||
BackedgeTakenInfo(SCEVHandle exact, SCEVHandle max) :
|
||||
|
@ -302,18 +315,18 @@ namespace llvm {
|
|||
/// HowFarToZero - Return the number of times a backedge comparing the
|
||||
/// specified value to zero will execute. If not computable, return
|
||||
/// UnknownValue.
|
||||
SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
|
||||
SCEVHandle HowFarToZero(const SCEV *V, const Loop *L);
|
||||
|
||||
/// HowFarToNonZero - Return the number of times a backedge checking the
|
||||
/// specified value for nonzero will execute. If not computable, return
|
||||
/// UnknownValue.
|
||||
SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
|
||||
SCEVHandle HowFarToNonZero(const SCEV *V, const Loop *L);
|
||||
|
||||
/// HowManyLessThans - Return the number of times a backedge containing the
|
||||
/// specified less-than comparison will execute. If not computable, return
|
||||
/// UnknownValue. isSigned specifies whether the less-than is signed.
|
||||
BackedgeTakenInfo HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
|
||||
bool isSigned);
|
||||
BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
const Loop *L, bool isSigned);
|
||||
|
||||
/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
|
||||
/// (which may not be an immediate predecessor) which has exactly one
|
||||
|
@ -331,7 +344,7 @@ namespace llvm {
|
|||
/// getSCEVAtScope - Compute the value of the specified expression within
|
||||
/// the indicated loop (which may be null to indicate in no loop). If the
|
||||
/// expression cannot be evaluated, return UnknownValue itself.
|
||||
SCEVHandle getSCEVAtScope(SCEV *S, const Loop *L);
|
||||
SCEVHandle getSCEVAtScope(const SCEV *S, const Loop *L);
|
||||
|
||||
/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
|
||||
/// PHI nodes in the given loop. This is used when the trip count of
|
||||
|
@ -457,7 +470,7 @@ namespace llvm {
|
|||
/// a conditional between LHS and RHS. This is used to help avoid max
|
||||
/// expressions in loop trip counts.
|
||||
bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
|
||||
SCEV *LHS, SCEV *RHS);
|
||||
const SCEV *LHS, const SCEV *RHS);
|
||||
|
||||
/// getBackedgeTakenCount - If the specified loop has a predictable
|
||||
/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
|
||||
|
@ -487,11 +500,6 @@ namespace llvm {
|
|||
/// is deleted.
|
||||
void forgetLoopBackedgeTakenCount(const Loop *L);
|
||||
|
||||
/// deleteValueFromRecords - This method should be called by the
|
||||
/// client before it removes a Value from the program, to make sure
|
||||
/// that no dangling references are left around.
|
||||
void deleteValueFromRecords(Value *V);
|
||||
|
||||
virtual bool runOnFunction(Function &F);
|
||||
virtual void releaseMemory();
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
||||
|
|
|
@ -25,7 +25,6 @@ namespace llvm {
|
|||
class Instruction;
|
||||
class Pass;
|
||||
class AliasAnalysis;
|
||||
class ValueDeletionListener;
|
||||
|
||||
/// DeleteDeadBlock - Delete the specified block, which must have no
|
||||
/// predecessors.
|
||||
|
@ -41,9 +40,8 @@ void FoldSingleEntryPHINodes(BasicBlock *BB);
|
|||
/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
|
||||
/// is dead. Also recursively delete any operands that become dead as
|
||||
/// a result. This includes tracing the def-use list from the PHI to see if
|
||||
/// it is ultimately unused or if it reaches an unused cycle. If a
|
||||
/// ValueDeletionListener is specified, it is notified of the deletions.
|
||||
void DeleteDeadPHIs(BasicBlock *BB, ValueDeletionListener *VDL = 0);
|
||||
/// it is ultimately unused or if it reaches an unused cycle.
|
||||
void DeleteDeadPHIs(BasicBlock *BB);
|
||||
|
||||
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
|
||||
/// if possible. The return value indicates success or failure.
|
||||
|
|
|
@ -50,40 +50,17 @@ bool ConstantFoldTerminator(BasicBlock *BB);
|
|||
///
|
||||
bool isInstructionTriviallyDead(Instruction *I);
|
||||
|
||||
/// ValueDeletionListener - A simple abstract interface for delivering
|
||||
/// notifications when Values are deleted.
|
||||
///
|
||||
/// @todo Consider whether ValueDeletionListener can be made obsolete by
|
||||
/// requiring clients to use CallbackVH instead.
|
||||
class ValueDeletionListener {
|
||||
public:
|
||||
/// ValueWillBeDeleted - This method is called shortly before the specified
|
||||
/// value will be deleted.
|
||||
virtual void ValueWillBeDeleted(Value *V) = 0;
|
||||
|
||||
protected:
|
||||
virtual ~ValueDeletionListener();
|
||||
};
|
||||
|
||||
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
|
||||
/// trivially dead instruction, delete it. If that makes any of its operands
|
||||
/// trivially dead, delete them too, recursively.
|
||||
///
|
||||
/// If a ValueDeletionListener is specified, it is notified of instructions that
|
||||
/// are actually deleted (before they are actually deleted).
|
||||
void RecursivelyDeleteTriviallyDeadInstructions(Value *V,
|
||||
ValueDeletionListener *VDL = 0);
|
||||
void RecursivelyDeleteTriviallyDeadInstructions(Value *V);
|
||||
|
||||
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
|
||||
/// dead PHI node, due to being a def-use chain of single-use nodes that
|
||||
/// either forms a cycle or is terminated by a trivially dead instruction,
|
||||
/// delete it. If that makes any of its operands trivially dead, delete them
|
||||
/// too, recursively.
|
||||
///
|
||||
/// If a ValueDeletionListener is specified, it is notified of instructions that
|
||||
/// are actually deleted (before they are actually deleted).
|
||||
void RecursivelyDeleteDeadPHINode(PHINode *PN,
|
||||
ValueDeletionListener *VDL = 0);
|
||||
void RecursivelyDeleteDeadPHINode(PHINode *PN);
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Control Flow Graph Restructuring.
|
||||
|
|
|
@ -204,7 +204,7 @@ bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
|
|||
// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
|
||||
// particular input. Don't use a SCEVHandle here, or else the object will
|
||||
// never be deleted!
|
||||
static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
|
||||
static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
|
||||
SCEVTruncateExpr*> > SCEVTruncates;
|
||||
|
||||
SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
|
||||
|
@ -225,7 +225,7 @@ void SCEVTruncateExpr::print(raw_ostream &OS) const {
|
|||
// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
|
||||
// particular input. Don't use a SCEVHandle here, or else the object will never
|
||||
// be deleted!
|
||||
static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
|
||||
static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
|
||||
SCEVZeroExtendExpr*> > SCEVZeroExtends;
|
||||
|
||||
SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
|
||||
|
@ -246,7 +246,7 @@ void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
|
|||
// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
|
||||
// particular input. Don't use a SCEVHandle here, or else the object will never
|
||||
// be deleted!
|
||||
static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
|
||||
static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
|
||||
SCEVSignExtendExpr*> > SCEVSignExtends;
|
||||
|
||||
SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
|
||||
|
@ -267,13 +267,12 @@ void SCEVSignExtendExpr::print(raw_ostream &OS) const {
|
|||
// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
|
||||
// particular input. Don't use a SCEVHandle here, or else the object will never
|
||||
// be deleted!
|
||||
static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
|
||||
static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
|
||||
SCEVCommutativeExpr*> > SCEVCommExprs;
|
||||
|
||||
SCEVCommutativeExpr::~SCEVCommutativeExpr() {
|
||||
SCEVCommExprs->erase(std::make_pair(getSCEVType(),
|
||||
std::vector<SCEV*>(Operands.begin(),
|
||||
Operands.end())));
|
||||
std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
|
||||
SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
|
||||
}
|
||||
|
||||
void SCEVCommutativeExpr::print(raw_ostream &OS) const {
|
||||
|
@ -329,7 +328,7 @@ bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
|
|||
// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
|
||||
// input. Don't use a SCEVHandle here, or else the object will never be
|
||||
// deleted!
|
||||
static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
|
||||
static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
|
||||
SCEVUDivExpr*> > SCEVUDivs;
|
||||
|
||||
SCEVUDivExpr::~SCEVUDivExpr() {
|
||||
|
@ -351,13 +350,13 @@ const Type *SCEVUDivExpr::getType() const {
|
|||
// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
|
||||
// particular input. Don't use a SCEVHandle here, or else the object will never
|
||||
// be deleted!
|
||||
static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
|
||||
static ManagedStatic<std::map<std::pair<const Loop *,
|
||||
std::vector<const SCEV*> >,
|
||||
SCEVAddRecExpr*> > SCEVAddRecExprs;
|
||||
|
||||
SCEVAddRecExpr::~SCEVAddRecExpr() {
|
||||
SCEVAddRecExprs->erase(std::make_pair(L,
|
||||
std::vector<SCEV*>(Operands.begin(),
|
||||
Operands.end())));
|
||||
std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
|
||||
SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
|
||||
}
|
||||
|
||||
bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
|
||||
|
@ -480,7 +479,7 @@ static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
|
|||
// be extremely short in practice. Note that we take this approach because we
|
||||
// do not want to depend on the addresses of the objects we are grouping.
|
||||
for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
|
||||
SCEV *S = Ops[i];
|
||||
const SCEV *S = Ops[i];
|
||||
unsigned Complexity = S->getSCEVType();
|
||||
|
||||
// If there are any objects of the same complexity and same value as this
|
||||
|
@ -919,9 +918,9 @@ SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
|
|||
// something is not already an operand of the multiply. If so, merge it into
|
||||
// the multiply.
|
||||
for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
|
||||
SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
|
||||
const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
|
||||
for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
|
||||
SCEV *MulOpSCEV = Mul->getOperand(MulOp);
|
||||
const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
|
||||
for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
|
||||
if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
|
||||
// Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
|
||||
|
@ -952,7 +951,7 @@ SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
|
|||
for (unsigned OtherMulIdx = Idx+1;
|
||||
OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
|
||||
++OtherMulIdx) {
|
||||
SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
|
||||
const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
|
||||
// If MulOp occurs in OtherMul, we can fold the two multiplies
|
||||
// together.
|
||||
for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
|
||||
|
@ -995,7 +994,7 @@ SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
|
|||
// Scan all of the other operands to this add and add them to the vector if
|
||||
// they are loop invariant w.r.t. the recurrence.
|
||||
std::vector<SCEVHandle> LIOps;
|
||||
SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
|
||||
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
|
||||
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
||||
if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
|
||||
LIOps.push_back(Ops[i]);
|
||||
|
@ -1030,7 +1029,7 @@ SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
|
|||
for (unsigned OtherIdx = Idx+1;
|
||||
OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
|
||||
if (OtherIdx != Idx) {
|
||||
SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
|
||||
const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
|
||||
if (AddRec->getLoop() == OtherAddRec->getLoop()) {
|
||||
// Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
|
||||
std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
|
||||
|
@ -1059,7 +1058,7 @@ SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
|
|||
|
||||
// Okay, it looks like we really DO need an add expr. Check to see if we
|
||||
// already have one, otherwise create a new one.
|
||||
std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
||||
std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
||||
SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
|
||||
SCEVOps)];
|
||||
if (Result == 0) Result = new SCEVAddExpr(Ops);
|
||||
|
@ -1143,7 +1142,7 @@ SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
|
|||
// Scan all of the other operands to this mul and add them to the vector if
|
||||
// they are loop invariant w.r.t. the recurrence.
|
||||
std::vector<SCEVHandle> LIOps;
|
||||
SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
|
||||
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
|
||||
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
||||
if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
|
||||
LIOps.push_back(Ops[i]);
|
||||
|
@ -1157,7 +1156,7 @@ SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
|
|||
std::vector<SCEVHandle> NewOps;
|
||||
NewOps.reserve(AddRec->getNumOperands());
|
||||
if (LIOps.size() == 1) {
|
||||
SCEV *Scale = LIOps[0];
|
||||
const SCEV *Scale = LIOps[0];
|
||||
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
|
||||
NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
|
||||
} else {
|
||||
|
@ -1188,10 +1187,10 @@ SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
|
|||
for (unsigned OtherIdx = Idx+1;
|
||||
OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
|
||||
if (OtherIdx != Idx) {
|
||||
SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
|
||||
const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
|
||||
if (AddRec->getLoop() == OtherAddRec->getLoop()) {
|
||||
// F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
|
||||
SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
|
||||
const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
|
||||
SCEVHandle NewStart = getMulExpr(F->getStart(),
|
||||
G->getStart());
|
||||
SCEVHandle B = F->getStepRecurrence(*this);
|
||||
|
@ -1216,7 +1215,7 @@ SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
|
|||
|
||||
// Okay, it looks like we really DO need an mul expr. Check to see if we
|
||||
// already have one, otherwise create a new one.
|
||||
std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
||||
std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
||||
SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
|
||||
SCEVOps)];
|
||||
if (Result == 0)
|
||||
|
@ -1286,9 +1285,8 @@ SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
|
|||
}
|
||||
}
|
||||
|
||||
SCEVAddRecExpr *&Result =
|
||||
(*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
|
||||
Operands.end()))];
|
||||
std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
|
||||
SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
|
||||
if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
|
||||
return Result;
|
||||
}
|
||||
|
@ -1366,7 +1364,7 @@ SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
|
|||
|
||||
// Okay, it looks like we really DO need an smax expr. Check to see if we
|
||||
// already have one, otherwise create a new one.
|
||||
std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
||||
std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
||||
SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
|
||||
SCEVOps)];
|
||||
if (Result == 0) Result = new SCEVSMaxExpr(Ops);
|
||||
|
@ -1446,7 +1444,7 @@ SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
|
|||
|
||||
// Okay, it looks like we really DO need a umax expr. Check to see if we
|
||||
// already have one, otherwise create a new one.
|
||||
std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
||||
std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
||||
SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
|
||||
SCEVOps)];
|
||||
if (Result == 0) Result = new SCEVUMaxExpr(Ops);
|
||||
|
@ -1467,34 +1465,6 @@ SCEVHandle ScalarEvolution::getUnknown(Value *V) {
|
|||
// Basic SCEV Analysis and PHI Idiom Recognition Code
|
||||
//
|
||||
|
||||
/// deleteValueFromRecords - This method should be called by the
|
||||
/// client before it removes an instruction from the program, to make sure
|
||||
/// that no dangling references are left around.
|
||||
void ScalarEvolution::deleteValueFromRecords(Value *V) {
|
||||
SmallVector<Value *, 16> Worklist;
|
||||
|
||||
if (Scalars.erase(V)) {
|
||||
if (PHINode *PN = dyn_cast<PHINode>(V))
|
||||
ConstantEvolutionLoopExitValue.erase(PN);
|
||||
Worklist.push_back(V);
|
||||
}
|
||||
|
||||
while (!Worklist.empty()) {
|
||||
Value *VV = Worklist.back();
|
||||
Worklist.pop_back();
|
||||
|
||||
for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
|
||||
UI != UE; ++UI) {
|
||||
Instruction *Inst = cast<Instruction>(*UI);
|
||||
if (Scalars.erase(Inst)) {
|
||||
if (PHINode *PN = dyn_cast<PHINode>(VV))
|
||||
ConstantEvolutionLoopExitValue.erase(PN);
|
||||
Worklist.push_back(Inst);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// isSCEVable - Test if values of the given type are analyzable within
|
||||
/// the SCEV framework. This primarily includes integer types, and it
|
||||
/// can optionally include pointer types if the ScalarEvolution class
|
||||
|
@ -1556,10 +1526,10 @@ bool ScalarEvolution::hasSCEV(Value *V) const {
|
|||
SCEVHandle ScalarEvolution::getSCEV(Value *V) {
|
||||
assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
|
||||
|
||||
std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
|
||||
std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
|
||||
if (I != Scalars.end()) return I->second;
|
||||
SCEVHandle S = createSCEV(V);
|
||||
Scalars.insert(std::make_pair(V, S));
|
||||
Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
|
||||
return S;
|
||||
}
|
||||
|
||||
|
@ -1648,7 +1618,8 @@ ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
|
|||
void ScalarEvolution::
|
||||
ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
|
||||
const SCEVHandle &NewVal) {
|
||||
std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
|
||||
std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
|
||||
Scalars.find(SCEVCallbackVH(I, this));
|
||||
if (SI == Scalars.end()) return;
|
||||
|
||||
SCEVHandle NV =
|
||||
|
@ -1680,7 +1651,7 @@ SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
|
|||
SCEVHandle SymbolicName = getUnknown(PN);
|
||||
assert(Scalars.find(PN) == Scalars.end() &&
|
||||
"PHI node already processed?");
|
||||
Scalars.insert(std::make_pair(PN, SymbolicName));
|
||||
Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
|
||||
|
||||
// Using this symbolic name for the PHI, analyze the value coming around
|
||||
// the back-edge.
|
||||
|
@ -2131,9 +2102,20 @@ void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
|
|||
/// PHI nodes in the given loop. This is used when the trip count of
|
||||
/// the loop may have changed.
|
||||
void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
|
||||
for (BasicBlock::iterator I = L->getHeader()->begin();
|
||||
BasicBlock *Header = L->getHeader();
|
||||
|
||||
SmallVector<Instruction *, 16> Worklist;
|
||||
for (BasicBlock::iterator I = Header->begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
||||
deleteValueFromRecords(PN);
|
||||
Worklist.push_back(PN);
|
||||
|
||||
while (!Worklist.empty()) {
|
||||
Instruction *I = Worklist.pop_back_val();
|
||||
if (Scalars.erase(I))
|
||||
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
|
||||
UI != UE; ++UI)
|
||||
Worklist.push_back(cast<Instruction>(UI));
|
||||
}
|
||||
}
|
||||
|
||||
/// ComputeBackedgeTakenCount - Compute the number of times the backedge
|
||||
|
@ -2384,7 +2366,7 @@ ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
|
|||
|
||||
// We can only recognize very limited forms of loop index expressions, in
|
||||
// particular, only affine AddRec's like {C1,+,C2}.
|
||||
SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
|
||||
const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
|
||||
if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
|
||||
!isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
|
||||
!isa<SCEVConstant>(IdxExpr->getOperand(1)))
|
||||
|
@ -2605,7 +2587,7 @@ ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen)
|
|||
/// getSCEVAtScope - Compute the value of the specified expression within the
|
||||
/// indicated loop (which may be null to indicate in no loop). If the
|
||||
/// expression cannot be evaluated, return UnknownValue.
|
||||
SCEVHandle ScalarEvolution::getSCEVAtScope(SCEV *V, const Loop *L) {
|
||||
SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
// FIXME: this should be turned into a virtual method on SCEV!
|
||||
|
||||
if (isa<SCEVConstant>(V)) return V;
|
||||
|
@ -2847,13 +2829,13 @@ static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
|
|||
static std::pair<SCEVHandle,SCEVHandle>
|
||||
SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
|
||||
assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
|
||||
SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
|
||||
SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
|
||||
SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
|
||||
const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
|
||||
const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
|
||||
const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
|
||||
|
||||
// We currently can only solve this if the coefficients are constants.
|
||||
if (!LC || !MC || !NC) {
|
||||
SCEV *CNC = SE.getCouldNotCompute();
|
||||
const SCEV *CNC = SE.getCouldNotCompute();
|
||||
return std::make_pair(CNC, CNC);
|
||||
}
|
||||
|
||||
|
@ -2889,7 +2871,7 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
|
|||
APInt NegB(-B);
|
||||
APInt TwoA( A << 1 );
|
||||
if (TwoA.isMinValue()) {
|
||||
SCEV *CNC = SE.getCouldNotCompute();
|
||||
const SCEV *CNC = SE.getCouldNotCompute();
|
||||
return std::make_pair(CNC, CNC);
|
||||
}
|
||||
|
||||
|
@ -2903,7 +2885,7 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
|
|||
|
||||
/// HowFarToZero - Return the number of times a backedge comparing the specified
|
||||
/// value to zero will execute. If not computable, return UnknownValue
|
||||
SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
|
||||
SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
|
||||
// If the value is a constant
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
|
||||
// If the value is already zero, the branch will execute zero times.
|
||||
|
@ -2911,7 +2893,7 @@ SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
|
|||
return UnknownValue; // Otherwise it will loop infinitely.
|
||||
}
|
||||
|
||||
SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
|
||||
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
|
||||
if (!AddRec || AddRec->getLoop() != L)
|
||||
return UnknownValue;
|
||||
|
||||
|
@ -2953,8 +2935,8 @@ SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
|
|||
// the quadratic equation to solve it.
|
||||
std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
|
||||
*this);
|
||||
SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
|
||||
SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
|
||||
const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
|
||||
const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
|
||||
if (R1) {
|
||||
#if 0
|
||||
errs() << "HFTZ: " << *V << " - sol#1: " << *R1
|
||||
|
@ -2983,7 +2965,7 @@ SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
|
|||
/// HowFarToNonZero - Return the number of times a backedge checking the
|
||||
/// specified value for nonzero will execute. If not computable, return
|
||||
/// UnknownValue
|
||||
SCEVHandle ScalarEvolution::HowFarToNonZero(SCEV *V, const Loop *L) {
|
||||
SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
|
||||
// Loops that look like: while (X == 0) are very strange indeed. We don't
|
||||
// handle them yet except for the trivial case. This could be expanded in the
|
||||
// future as needed.
|
||||
|
@ -3029,7 +3011,7 @@ ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
|
|||
/// expressions in loop trip counts.
|
||||
bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
|
||||
ICmpInst::Predicate Pred,
|
||||
SCEV *LHS, SCEV *RHS) {
|
||||
const SCEV *LHS, const SCEV *RHS) {
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
BasicBlock *PreheaderDest = L->getHeader();
|
||||
|
||||
|
@ -3133,11 +3115,12 @@ bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
|
|||
/// specified less-than comparison will execute. If not computable, return
|
||||
/// UnknownValue.
|
||||
ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
|
||||
HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
|
||||
HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
const Loop *L, bool isSigned) {
|
||||
// Only handle: "ADDREC < LoopInvariant".
|
||||
if (!RHS->isLoopInvariant(L)) return UnknownValue;
|
||||
|
||||
SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
|
||||
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
|
||||
if (!AddRec || AddRec->getLoop() != L)
|
||||
return UnknownValue;
|
||||
|
||||
|
@ -3304,8 +3287,8 @@ SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
|
|||
// Next, solve the constructed addrec
|
||||
std::pair<SCEVHandle,SCEVHandle> Roots =
|
||||
SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
|
||||
SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
|
||||
SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
|
||||
const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
|
||||
const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
|
||||
if (R1) {
|
||||
// Pick the smallest positive root value.
|
||||
if (ConstantInt *CB =
|
||||
|
@ -3346,6 +3329,57 @@ SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
|
|||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// SCEVCallbackVH Class Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void SCEVCallbackVH::deleted() {
|
||||
assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
|
||||
if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
|
||||
SE->ConstantEvolutionLoopExitValue.erase(PN);
|
||||
SE->Scalars.erase(getValPtr());
|
||||
// this now dangles!
|
||||
}
|
||||
|
||||
void SCEVCallbackVH::allUsesReplacedWith(Value *) {
|
||||
assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
|
||||
|
||||
// Forget all the expressions associated with users of the old value,
|
||||
// so that future queries will recompute the expressions using the new
|
||||
// value.
|
||||
SmallVector<User *, 16> Worklist;
|
||||
Value *Old = getValPtr();
|
||||
bool DeleteOld = false;
|
||||
for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
|
||||
UI != UE; ++UI)
|
||||
Worklist.push_back(*UI);
|
||||
while (!Worklist.empty()) {
|
||||
User *U = Worklist.pop_back_val();
|
||||
// Deleting the Old value will cause this to dangle. Postpone
|
||||
// that until everything else is done.
|
||||
if (U == Old) {
|
||||
DeleteOld = true;
|
||||
continue;
|
||||
}
|
||||
if (PHINode *PN = dyn_cast<PHINode>(U))
|
||||
SE->ConstantEvolutionLoopExitValue.erase(PN);
|
||||
if (SE->Scalars.erase(U))
|
||||
for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
|
||||
UI != UE; ++UI)
|
||||
Worklist.push_back(*UI);
|
||||
}
|
||||
if (DeleteOld) {
|
||||
if (PHINode *PN = dyn_cast<PHINode>(Old))
|
||||
SE->ConstantEvolutionLoopExitValue.erase(PN);
|
||||
SE->Scalars.erase(Old);
|
||||
// this now dangles!
|
||||
}
|
||||
// this may dangle!
|
||||
}
|
||||
|
||||
SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
|
||||
: CallbackVH(V), SE(se) {}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ScalarEvolution Class Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
|
|
@ -124,7 +124,6 @@ DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
|
|||
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
||||
if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
|
||||
Insts.insert(U);
|
||||
SE->deleteValueFromRecords(I);
|
||||
DOUT << "INDVARS: Deleting: " << *I;
|
||||
I->eraseFromParent();
|
||||
Changed = true;
|
||||
|
@ -308,7 +307,6 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L,
|
|||
// the PHI entirely. This is safe, because the NewVal won't be variant
|
||||
// in the loop, so we don't need an LCSSA phi node anymore.
|
||||
if (NumPreds == 1) {
|
||||
SE->deleteValueFromRecords(PN);
|
||||
PN->replaceAllUsesWith(ExitVal);
|
||||
PN->eraseFromParent();
|
||||
break;
|
||||
|
|
|
@ -246,13 +246,6 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
|
|||
DT.eraseNode(*LI);
|
||||
if (DF) DF->removeBlock(*LI);
|
||||
|
||||
// Remove instructions that we're deleting from ScalarEvolution.
|
||||
for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
|
||||
BI != BE; ++BI)
|
||||
SE.deleteValueFromRecords(BI);
|
||||
|
||||
SE.deleteValueFromRecords(*LI);
|
||||
|
||||
// Remove the block from the reference counting scheme, so that we can
|
||||
// delete it freely later.
|
||||
(*LI)->dropAllReferences();
|
||||
|
|
|
@ -253,8 +253,6 @@ void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
|
|||
if (I == 0 || !isInstructionTriviallyDead(I))
|
||||
continue;
|
||||
|
||||
SE->deleteValueFromRecords(I);
|
||||
|
||||
for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
|
||||
if (Instruction *U = dyn_cast<Instruction>(*OI)) {
|
||||
*OI = 0;
|
||||
|
@ -2130,7 +2128,6 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
|
|||
|
||||
// Remove the old compare instruction. The old indvar is probably dead too.
|
||||
DeadInsts.push_back(cast<Instruction>(CondUse->OperandValToReplace));
|
||||
SE->deleteValueFromRecords(OldCond);
|
||||
OldCond->replaceAllUsesWith(Cond);
|
||||
OldCond->eraseFromParent();
|
||||
|
||||
|
@ -2214,7 +2211,7 @@ ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
|
|||
SCEVHandle IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
|
||||
|
||||
// Check for a max calculation that matches the pattern.
|
||||
SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
|
||||
const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
|
||||
if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;
|
||||
|
||||
SCEVHandle SMaxLHS = SMax->getOperand(0);
|
||||
|
@ -2251,16 +2248,12 @@ ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
|
|||
Cond->getOperand(0), NewRHS, "scmp", Cond);
|
||||
|
||||
// Delete the max calculation instructions.
|
||||
SE->deleteValueFromRecords(Cond);
|
||||
Cond->replaceAllUsesWith(NewCond);
|
||||
Cond->eraseFromParent();
|
||||
Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
|
||||
SE->deleteValueFromRecords(Sel);
|
||||
Sel->eraseFromParent();
|
||||
if (Cmp->use_empty()) {
|
||||
SE->deleteValueFromRecords(Cmp);
|
||||
if (Cmp->use_empty())
|
||||
Cmp->eraseFromParent();
|
||||
}
|
||||
CondUse->User = NewCond;
|
||||
return NewCond;
|
||||
}
|
||||
|
@ -2367,7 +2360,6 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
|
|||
NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
|
||||
|
||||
/* Remove cast operation */
|
||||
SE->deleteValueFromRecords(ShadowUse);
|
||||
ShadowUse->replaceAllUsesWith(NewPH);
|
||||
ShadowUse->eraseFromParent();
|
||||
SI->second.Users.erase(CandidateUI);
|
||||
|
@ -2507,17 +2499,8 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|||
DeleteTriviallyDeadInstructions();
|
||||
|
||||
// At this point, it is worth checking to see if any recurrence PHIs are also
|
||||
// dead, so that we can remove them as well. To keep ScalarEvolution
|
||||
// current, use a ValueDeletionListener class.
|
||||
struct LSRListener : public ValueDeletionListener {
|
||||
ScalarEvolution &SE;
|
||||
explicit LSRListener(ScalarEvolution &se) : SE(se) {}
|
||||
|
||||
virtual void ValueWillBeDeleted(Value *V) {
|
||||
SE.deleteValueFromRecords(V);
|
||||
}
|
||||
} VDL(*SE);
|
||||
DeleteDeadPHIs(L->getHeader(), &VDL);
|
||||
// dead, so that we can remove them as well.
|
||||
DeleteDeadPHIs(L->getHeader());
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
|
|
@ -78,9 +78,8 @@ void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
|
|||
/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
|
||||
/// is dead. Also recursively delete any operands that become dead as
|
||||
/// a result. This includes tracing the def-use list from the PHI to see if
|
||||
/// it is ultimately unused or if it reaches an unused cycle. If a
|
||||
/// ValueDeletionListener is specified, it is notified of the deletions.
|
||||
void llvm::DeleteDeadPHIs(BasicBlock *BB, ValueDeletionListener *VDL) {
|
||||
/// it is ultimately unused or if it reaches an unused cycle.
|
||||
void llvm::DeleteDeadPHIs(BasicBlock *BB) {
|
||||
// Recursively deleting a PHI may cause multiple PHIs to be deleted
|
||||
// or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
|
||||
SmallVector<WeakVH, 8> PHIs;
|
||||
|
@ -90,7 +89,7 @@ void llvm::DeleteDeadPHIs(BasicBlock *BB, ValueDeletionListener *VDL) {
|
|||
|
||||
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
|
||||
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
|
||||
RecursivelyDeleteDeadPHINode(PN, VDL);
|
||||
RecursivelyDeleteDeadPHINode(PN);
|
||||
}
|
||||
|
||||
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
|
||||
|
|
|
@ -178,18 +178,10 @@ bool llvm::isInstructionTriviallyDead(Instruction *I) {
|
|||
return false;
|
||||
}
|
||||
|
||||
/// ~ValueDeletionListener - A trivial dtor, defined out of line to give the
|
||||
/// class a home.
|
||||
llvm::ValueDeletionListener::~ValueDeletionListener() {}
|
||||
|
||||
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
|
||||
/// trivially dead instruction, delete it. If that makes any of its operands
|
||||
/// trivially dead, delete them too, recursively.
|
||||
///
|
||||
/// If a ValueDeletionListener is specified, it is notified of instructions that
|
||||
/// are actually deleted (before they are actually deleted).
|
||||
void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
|
||||
ValueDeletionListener *VDL) {
|
||||
void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
|
||||
Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
|
||||
return;
|
||||
|
@ -201,10 +193,6 @@ void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
|
|||
I = DeadInsts.back();
|
||||
DeadInsts.pop_back();
|
||||
|
||||
// If the client wanted to know, tell it about deleted instructions.
|
||||
if (VDL)
|
||||
VDL->ValueWillBeDeleted(I);
|
||||
|
||||
// Null out all of the instruction's operands to see if any operand becomes
|
||||
// dead as we go.
|
||||
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
||||
|
@ -230,11 +218,8 @@ void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
|
|||
/// either forms a cycle or is terminated by a trivially dead instruction,
|
||||
/// delete it. If that makes any of its operands trivially dead, delete them
|
||||
/// too, recursively.
|
||||
///
|
||||
/// If a ValueDeletionListener is specified, it is notified of instructions that
|
||||
/// are actually deleted (before they are actually deleted).
|
||||
void
|
||||
llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, ValueDeletionListener *VDL) {
|
||||
llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
|
||||
|
||||
// We can remove a PHI if it is on a cycle in the def-use graph
|
||||
// where each node in the cycle has degree one, i.e. only one use,
|
||||
|
@ -253,7 +238,7 @@ llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, ValueDeletionListener *VDL) {
|
|||
if (!PHIs.insert(cast<PHINode>(JP))) {
|
||||
// Break the cycle and delete the PHI and its operands.
|
||||
JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
|
||||
RecursivelyDeleteTriviallyDeadInstructions(JP, VDL);
|
||||
RecursivelyDeleteTriviallyDeadInstructions(JP);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue