[llvm-mca] Introduce the ExecuteStage (was originally the Scheduler class).

Summary: This patch transforms the Scheduler class into the ExecuteStage.  Most of the logic remains.  

Reviewers: andreadb, RKSimon, courbet

Reviewed By: andreadb

Subscribers: mgorny, javed.absar, tschuett, gbedwell, llvm-commits

Differential Revision: https://reviews.llvm.org/D47246

llvm-svn: 334679
This commit is contained in:
Matt Davis 2018-06-14 01:20:18 +00:00
parent 239452ca3e
commit 488ac4cb39
9 changed files with 398 additions and 214 deletions

View File

@ -41,14 +41,13 @@ void Backend::runCycle(unsigned Cycle) {
InstRef IR;
Retire->preExecute(IR);
Dispatch->preExecute(IR);
// This will execute scheduled instructions.
HWS->cycleEvent(); // TODO: This will eventually be stage-ified.
Execute->preExecute(IR);
// Fetch instructions and dispatch them to the hardware.
while (Fetch->execute(IR)) {
if (!Dispatch->execute(IR))
break;
Execute->execute(IR);
Fetch->postExecute(IR);
}

View File

@ -16,6 +16,7 @@
#define LLVM_TOOLS_LLVM_MCA_BACKEND_H
#include "DispatchStage.h"
#include "ExecuteStage.h"
#include "FetchStage.h"
#include "InstrBuilder.h"
#include "RegisterFile.h"
@ -57,12 +58,13 @@ class Backend {
// The following are the simulated hardware components of the backend.
RetireControlUnit RCU;
RegisterFile PRF;
Scheduler HWS;
/// TODO: Eventually this will become a list of unique Stage* that this
/// backend pipeline executes.
std::unique_ptr<FetchStage> Fetch;
std::unique_ptr<Scheduler> HWS;
std::unique_ptr<DispatchStage> Dispatch;
std::unique_ptr<ExecuteStage> Execute;
std::unique_ptr<RetireStage> Retire;
std::set<HWEventListener *> Listeners;
@ -78,13 +80,13 @@ public:
unsigned StoreQueueSize = 0, bool AssumeNoAlias = false)
: RCU(Subtarget.getSchedModel()),
PRF(Subtarget.getSchedModel(), MRI, RegisterFileSize),
HWS(Subtarget.getSchedModel(), LoadQueueSize, StoreQueueSize,
AssumeNoAlias),
Fetch(std::move(InitialStage)),
HWS(llvm::make_unique<Scheduler>(this, Subtarget.getSchedModel(), RCU,
LoadQueueSize, StoreQueueSize,
AssumeNoAlias)),
Dispatch(llvm::make_unique<DispatchStage>(
this, Subtarget, MRI, RegisterFileSize, DispatchWidth, RCU, PRF,
HWS.get())),
HWS)),
Execute(llvm::make_unique<ExecuteStage>(this, RCU, HWS)),
Retire(llvm::make_unique<RetireStage>(this, RCU, PRF)), Cycles(0) {}
void run();

View File

@ -15,6 +15,7 @@ add_llvm_tool(llvm-mca
CodeRegion.cpp
DispatchStage.cpp
DispatchStatistics.cpp
ExecuteStage.cpp
FetchStage.cpp
HWEventListener.cpp
InstrBuilder.cpp

View File

@ -60,7 +60,11 @@ bool DispatchStage::checkRCU(const InstRef &IR) {
}
bool DispatchStage::checkScheduler(const InstRef &IR) {
return SC->canBeDispatched(IR);
HWStallEvent::GenericEventType Event;
const bool Ready = SC.canBeDispatched(IR, Event);
if (!Ready)
Owner->notifyStallEvent(HWStallEvent(Event, IR));
return Ready;
}
void DispatchStage::updateRAWDependencies(ReadState &RS,
@ -129,11 +133,6 @@ void DispatchStage::dispatch(InstRef IR) {
// Notify listeners of the "instruction dispatched" event.
notifyInstructionDispatched(IR, RegisterFiles);
// Now move the instruction into the scheduler's queue.
// The scheduler is responsible for checking if this is a zero-latency
// instruction that doesn't consume pipeline/scheduler resources.
SC->scheduleInstruction(IR);
}
void DispatchStage::preExecute(const InstRef &IR) {

View File

@ -59,11 +59,11 @@ class DispatchStage : public Stage {
unsigned DispatchWidth;
unsigned AvailableEntries;
unsigned CarryOver;
Scheduler *SC;
Backend *Owner;
const llvm::MCSubtargetInfo &STI;
RetireControlUnit &RCU;
RegisterFile &PRF;
Scheduler &SC;
bool checkRCU(const InstRef &IR);
bool checkPRF(const InstRef &IR);
@ -93,9 +93,9 @@ public:
DispatchStage(Backend *B, const llvm::MCSubtargetInfo &Subtarget,
const llvm::MCRegisterInfo &MRI, unsigned RegisterFileSize,
unsigned MaxDispatchWidth, RetireControlUnit &R,
RegisterFile &F, Scheduler *Sched)
RegisterFile &F, Scheduler &Sched)
: DispatchWidth(MaxDispatchWidth), AvailableEntries(MaxDispatchWidth),
CarryOver(0U), SC(Sched), Owner(B), STI(Subtarget), RCU(R), PRF(F) {}
CarryOver(0U), Owner(B), STI(Subtarget), RCU(R), PRF(F), SC(Sched) {}
virtual bool isReady() const override final { return isRCUEmpty(); }
virtual void preExecute(const InstRef &IR) override final;

View File

@ -0,0 +1,205 @@
//===---------------------- ExecuteStage.cpp --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines the execution stage of an instruction pipeline.
///
/// The ExecuteStage is responsible for managing the hardware scheduler
/// and issuing notifications that an instruction has been executed.
///
//===----------------------------------------------------------------------===//
#include "ExecuteStage.h"
#include "Backend.h"
#include "Scheduler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "llvm-mca"
namespace mca {
using namespace llvm;
// Reclaim the simulated resources used by the scheduler.
void ExecuteStage::reclaimSchedulerResources() {
SmallVector<ResourceRef, 8> ResourcesFreed;
HWS.reclaimSimulatedResources(ResourcesFreed);
for (const ResourceRef &RR : ResourcesFreed)
notifyResourceAvailable(RR);
}
// Update the scheduler's instruction queues.
void ExecuteStage::updateSchedulerQueues() {
SmallVector<InstRef, 4> InstructionIDs;
HWS.updateIssuedQueue(InstructionIDs);
for (const InstRef &IR : InstructionIDs)
notifyInstructionExecuted(IR);
InstructionIDs.clear();
HWS.updatePendingQueue(InstructionIDs);
for (const InstRef &IR : InstructionIDs)
notifyInstructionReady(IR);
}
// Issue instructions that are waiting in the scheduler's ready queue.
void ExecuteStage::issueReadyInstructions() {
SmallVector<InstRef, 4> InstructionIDs;
InstRef IR = HWS.select();
while (IR.isValid()) {
SmallVector<std::pair<ResourceRef, double>, 4> Used;
HWS.issueInstruction(IR, Used);
// Reclaim instruction resources and perform notifications.
const InstrDesc &Desc = IR.getInstruction()->getDesc();
notifyReleasedBuffers(Desc.Buffers);
notifyInstructionIssued(IR, Used);
if (IR.getInstruction()->isExecuted())
notifyInstructionExecuted(IR);
// Instructions that have been issued during this cycle might have unblocked
// other dependent instructions. Dependent instructions may be issued during
// this same cycle if operands have ReadAdvance entries. Promote those
// instructions to the ReadyQueue and tell to the caller that we need
// another round of 'issue()'.
HWS.promoteToReadyQueue(InstructionIDs);
for (const InstRef &I : InstructionIDs)
notifyInstructionReady(I);
InstructionIDs.clear();
// Select the next instruction to issue.
IR = HWS.select();
}
}
// The following routine is the maintenance routine of the ExecuteStage.
// It is responsible for updating the hardware scheduler (HWS), including
// reclaiming the HWS's simulated hardware resources, as well as updating the
// HWS's queues.
//
// This routine also processes the instructions that are ready for issuance.
// These instructions are managed by the HWS's ready queue and can be accessed
// via the Scheduler::select() routine.
//
// Notifications are issued to this stage's listeners when instructions are
// moved between the HWS's queues. In particular, when an instruction becomes
// ready or executed.
void ExecuteStage::preExecute(const InstRef &Unused) {
reclaimSchedulerResources();
updateSchedulerQueues();
issueReadyInstructions();
}
// Schedule the instruction for execution on the hardware.
bool ExecuteStage::execute(InstRef &IR) {
#ifndef NDEBUG
// Ensure that the HWS has not stored this instruction in its queues.
HWS.sanityCheck(IR);
#endif
// Reserve a slot in each buffered resource. Also, mark units with
// BufferSize=0 as reserved. Resources with a buffer size of zero will only
// be released after MCIS is issued, and all the ResourceCycles for those
// units have been consumed.
const InstrDesc &Desc = IR.getInstruction()->getDesc();
HWS.reserveBuffers(Desc.Buffers);
notifyReservedBuffers(Desc.Buffers);
// Obtain a slot in the LSU.
if (!HWS.reserveResources(IR))
return false;
// If we did not return early, then the scheduler is ready for execution.
notifyInstructionReady(IR);
// Don't add a zero-latency instruction to the Wait or Ready queue.
// A zero-latency instruction doesn't consume any scheduler resources. That is
// because it doesn't need to be executed, and it is often removed at register
// renaming stage. For example, register-register moves are often optimized at
// register renaming stage by simply updating register aliases. On some
// targets, zero-idiom instructions (for example: a xor that clears the value
// of a register) are treated specially, and are often eliminated at register
// renaming stage.
//
// Instructions that use an in-order dispatch/issue processor resource must be
// issued immediately to the pipeline(s). Any other in-order buffered
// resources (i.e. BufferSize=1) is consumed.
//
// If we cannot issue immediately, the HWS will add IR to its ready queue for
// execution later, so we must return early here.
if (!HWS.issueImmediately(IR))
return true;
LLVM_DEBUG(dbgs() << "[SCHEDULER] Instruction " << IR
<< " issued immediately\n");
// Issue IR. The resources for this issuance will be placed in 'Used.'
SmallVector<std::pair<ResourceRef, double>, 4> Used;
HWS.issueInstruction(IR, Used);
// Perform notifications.
notifyReleasedBuffers(Desc.Buffers);
notifyInstructionIssued(IR, Used);
if (IR.getInstruction()->isExecuted())
notifyInstructionExecuted(IR);
return true;
}
void ExecuteStage::notifyInstructionExecuted(const InstRef &IR) {
HWS.onInstructionExecuted(IR);
LLVM_DEBUG(dbgs() << "[E] Instruction Executed: " << IR << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Executed, IR));
RCU.onInstructionExecuted(IR.getInstruction()->getRCUTokenID());
}
void ExecuteStage::notifyInstructionReady(const InstRef &IR) {
LLVM_DEBUG(dbgs() << "[E] Instruction Ready: " << IR << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Ready, IR));
}
void ExecuteStage::notifyResourceAvailable(const ResourceRef &RR) {
Owner->notifyResourceAvailable(RR);
}
void ExecuteStage::notifyInstructionIssued(
const InstRef &IR, ArrayRef<std::pair<ResourceRef, double>> Used) {
LLVM_DEBUG({
dbgs() << "[E] Instruction Issued: " << IR << '\n';
for (const std::pair<ResourceRef, unsigned> &Resource : Used) {
dbgs() << "[E] Resource Used: [" << Resource.first.first << '.'
<< Resource.first.second << "]\n";
dbgs() << " cycles: " << Resource.second << '\n';
}
});
Owner->notifyInstructionEvent(HWInstructionIssuedEvent(IR, Used));
}
void ExecuteStage::notifyReservedBuffers(ArrayRef<uint64_t> Buffers) {
if (Buffers.empty())
return;
SmallVector<unsigned, 4> BufferIDs(Buffers.begin(), Buffers.end());
std::transform(Buffers.begin(), Buffers.end(), BufferIDs.begin(),
[&](uint64_t Op) { return HWS.getResourceID(Op); });
Owner->notifyReservedBuffers(BufferIDs);
}
void ExecuteStage::notifyReleasedBuffers(ArrayRef<uint64_t> Buffers) {
if (Buffers.empty())
return;
SmallVector<unsigned, 4> BufferIDs(Buffers.begin(), Buffers.end());
std::transform(Buffers.begin(), Buffers.end(), BufferIDs.begin(),
[&](uint64_t Op) { return HWS.getResourceID(Op); });
Owner->notifyReleasedBuffers(BufferIDs);
}
} // namespace mca

View File

@ -0,0 +1,67 @@
//===---------------------- ExecuteStage.h ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines the execution stage of an instruction pipeline.
///
/// The ExecuteStage is responsible for managing the hardware scheduler
/// and issuing notifications that an instruction has been executed.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_MCA_EXECUTE_STAGE_H
#define LLVM_TOOLS_LLVM_MCA_EXECUTE_STAGE_H
#include "Instruction.h"
#include "RetireControlUnit.h"
#include "Scheduler.h"
#include "Stage.h"
#include "llvm/ADT/ArrayRef.h"
namespace mca {
class Backend;
class ExecuteStage : public Stage {
// Owner will go away when we move listeners/eventing to the stages.
Backend *Owner;
RetireControlUnit &RCU;
Scheduler &HWS;
// The following routines are used to maintain the HWS.
void reclaimSchedulerResources();
void updateSchedulerQueues();
void issueReadyInstructions();
public:
ExecuteStage(Backend *B, RetireControlUnit &R, Scheduler &S)
: Stage(), Owner(B), RCU(R), HWS(S) {}
ExecuteStage(const ExecuteStage &Other) = delete;
ExecuteStage &operator=(const ExecuteStage &Other) = delete;
virtual void preExecute(const InstRef &IR) override final;
virtual bool execute(InstRef &IR) override final;
void
notifyInstructionIssued(const InstRef &IR,
llvm::ArrayRef<std::pair<ResourceRef, double>> Used);
void notifyInstructionExecuted(const InstRef &IR);
void notifyInstructionReady(const InstRef &IR);
void notifyResourceAvailable(const ResourceRef &RR);
// Notify listeners that buffered resources were consumed.
void notifyReservedBuffers(llvm::ArrayRef<uint64_t> Buffers);
// Notify listeners that buffered resources were freed.
void notifyReleasedBuffers(llvm::ArrayRef<uint64_t> Buffers);
};
} // namespace mca
#endif // LLVM_TOOLS_LLVM_MCA_EXECUTE_STAGE_H

View File

@ -15,11 +15,8 @@
#include "Backend.h"
#include "HWEventListener.h"
#include "Support.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "llvm-mca"
namespace mca {
using namespace llvm;
@ -226,93 +223,6 @@ void ResourceManager::cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed) {
BusyResources.erase(RF);
}
void Scheduler::scheduleInstruction(InstRef &IR) {
const unsigned Idx = IR.getSourceIndex();
assert(WaitQueue.find(Idx) == WaitQueue.end());
assert(ReadyQueue.find(Idx) == ReadyQueue.end());
assert(IssuedQueue.find(Idx) == IssuedQueue.end());
// Reserve a slot in each buffered resource. Also, mark units with
// BufferSize=0 as reserved. Resources with a buffer size of zero will only
// be released after MCIS is issued, and all the ResourceCycles for those
// units have been consumed.
const InstrDesc &Desc = IR.getInstruction()->getDesc();
reserveBuffers(Desc.Buffers);
notifyReservedBuffers(Desc.Buffers);
// If necessary, reserve queue entries in the load-store unit (LSU).
bool Reserved = LSU->reserve(IR);
if (!IR.getInstruction()->isReady() || (Reserved && !LSU->isReady(IR))) {
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx
<< " to the Wait Queue\n");
WaitQueue[Idx] = IR.getInstruction();
return;
}
notifyInstructionReady(IR);
// Don't add a zero-latency instruction to the Wait or Ready queue.
// A zero-latency instruction doesn't consume any scheduler resources. That is
// because it doesn't need to be executed, and it is often removed at register
// renaming stage. For example, register-register moves are often optimized at
// register renaming stage by simply updating register aliases. On some
// targets, zero-idiom instructions (for example: a xor that clears the value
// of a register) are treated speacially, and are often eliminated at register
// renaming stage.
// Instructions that use an in-order dispatch/issue processor resource must be
// issued immediately to the pipeline(s). Any other in-order buffered
// resources (i.e. BufferSize=1) is consumed.
if (!Desc.isZeroLatency() && !Resources->mustIssueImmediately(Desc)) {
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding " << IR
<< " to the Ready Queue\n");
ReadyQueue[IR.getSourceIndex()] = IR.getInstruction();
return;
}
LLVM_DEBUG(dbgs() << "[SCHEDULER] Instruction " << IR
<< " issued immediately\n");
// Release buffered resources and issue MCIS to the underlying pipelines.
issueInstruction(IR);
}
void Scheduler::cycleEvent() {
SmallVector<ResourceRef, 8> ResourcesFreed;
Resources->cycleEvent(ResourcesFreed);
for (const ResourceRef &RR : ResourcesFreed)
notifyResourceAvailable(RR);
SmallVector<InstRef, 4> InstructionIDs;
updateIssuedQueue(InstructionIDs);
for (const InstRef &IR : InstructionIDs)
notifyInstructionExecuted(IR);
InstructionIDs.clear();
updatePendingQueue(InstructionIDs);
for (const InstRef &IR : InstructionIDs)
notifyInstructionReady(IR);
InstructionIDs.clear();
InstRef IR = select();
while (IR.isValid()) {
issueInstruction(IR);
// Instructions that have been issued during this cycle might have unblocked
// other dependent instructions. Dependent instructions may be issued during
// this same cycle if operands have ReadAdvance entries. Promote those
// instructions to the ReadyQueue and tell to the caller that we need
// another round of 'issue()'.
promoteToReadyQueue(InstructionIDs);
for (const InstRef &I : InstructionIDs)
notifyInstructionReady(I);
InstructionIDs.clear();
// Select the next instruction to issue.
IR = select();
}
}
#ifndef NDEBUG
void Scheduler::dump() const {
dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n';
@ -322,27 +232,27 @@ void Scheduler::dump() const {
}
#endif
bool Scheduler::canBeDispatched(const InstRef &IR) const {
HWStallEvent::GenericEventType Type = HWStallEvent::Invalid;
bool Scheduler::canBeDispatched(const InstRef &IR,
HWStallEvent::GenericEventType &Event) const {
Event = HWStallEvent::Invalid;
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (Desc.MayLoad && LSU->isLQFull())
Type = HWStallEvent::LoadQueueFull;
Event = HWStallEvent::LoadQueueFull;
else if (Desc.MayStore && LSU->isSQFull())
Type = HWStallEvent::StoreQueueFull;
Event = HWStallEvent::StoreQueueFull;
else {
switch (Resources->canBeDispatched(Desc.Buffers)) {
default:
return true;
case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
Type = HWStallEvent::SchedulerQueueFull;
Event = HWStallEvent::SchedulerQueueFull;
break;
case ResourceStateEvent::RS_RESERVED:
Type = HWStallEvent::DispatchGroupStall;
Event = HWStallEvent::DispatchGroupStall;
}
}
Owner->notifyStallEvent(HWStallEvent(Type, IR));
return false;
}
@ -364,18 +274,13 @@ void Scheduler::issueInstructionImpl(
IssuedQueue[IR.getSourceIndex()] = IS;
}
void Scheduler::issueInstruction(InstRef &IR) {
// Release buffered resources.
// Release the buffered resources and issue the instruction.
void Scheduler::issueInstruction(
InstRef &IR,
SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
releaseBuffers(Desc.Buffers);
notifyReleasedBuffers(Desc.Buffers);
// Issue IS to the underlying pipelines and notify listeners.
SmallVector<std::pair<ResourceRef, double>, 4> Pipes;
issueInstructionImpl(IR, Pipes);
notifyInstructionIssued(IR, Pipes);
if (IR.getInstruction()->isExecuted())
notifyInstructionExecuted(IR);
issueInstructionImpl(IR, UsedResources);
}
void Scheduler::promoteToReadyQueue(SmallVectorImpl<InstRef> &Ready) {
@ -448,56 +353,34 @@ void Scheduler::updateIssuedQueue(SmallVectorImpl<InstRef> &Executed) {
}
}
void Scheduler::notifyInstructionIssued(
const InstRef &IR, ArrayRef<std::pair<ResourceRef, double>> Used) {
LLVM_DEBUG({
dbgs() << "[E] Instruction Issued: " << IR << '\n';
for (const std::pair<ResourceRef, unsigned> &Resource : Used) {
dbgs() << "[E] Resource Used: [" << Resource.first.first << '.'
<< Resource.first.second << "]\n";
dbgs() << " cycles: " << Resource.second << '\n';
}
});
Owner->notifyInstructionEvent(HWInstructionIssuedEvent(IR, Used));
}
void Scheduler::notifyInstructionExecuted(const InstRef &IR) {
void Scheduler::onInstructionExecuted(const InstRef &IR) {
LSU->onInstructionExecuted(IR);
LLVM_DEBUG(dbgs() << "[E] Instruction Executed: " << IR << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Executed, IR));
RCU.onInstructionExecuted(IR.getInstruction()->getRCUTokenID());
}
void Scheduler::notifyInstructionReady(const InstRef &IR) {
LLVM_DEBUG(dbgs() << "[E] Instruction Ready: " << IR << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Ready, IR));
void Scheduler::reclaimSimulatedResources(SmallVectorImpl<ResourceRef> &Freed) {
Resources->cycleEvent(Freed);
}
void Scheduler::notifyResourceAvailable(const ResourceRef &RR) {
Owner->notifyResourceAvailable(RR);
bool Scheduler::reserveResources(InstRef &IR) {
// If necessary, reserve queue entries in the load-store unit (LSU).
const bool Reserved = LSU->reserve(IR);
if (!IR.getInstruction()->isReady() || (Reserved && !LSU->isReady(IR))) {
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding " << IR << " to the Wait Queue\n");
WaitQueue[IR.getSourceIndex()] = IR.getInstruction();
return false;
}
return true;
}
void Scheduler::notifyReservedBuffers(ArrayRef<uint64_t> Buffers) {
if (Buffers.empty())
return;
SmallVector<unsigned, 4> BufferIDs(Buffers.begin(), Buffers.end());
std::transform(
Buffers.begin(), Buffers.end(), BufferIDs.begin(),
[&](uint64_t Op) { return Resources->resolveResourceMask(Op); });
Owner->notifyReservedBuffers(BufferIDs);
bool Scheduler::issueImmediately(InstRef &IR) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (!Desc.isZeroLatency() && !Resources->mustIssueImmediately(Desc)) {
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding " << IR
<< " to the Ready Queue\n");
ReadyQueue[IR.getSourceIndex()] = IR.getInstruction();
return false;
}
return true;
}
void Scheduler::notifyReleasedBuffers(ArrayRef<uint64_t> Buffers) {
if (Buffers.empty())
return;
SmallVector<unsigned, 4> BufferIDs(Buffers.begin(), Buffers.end());
std::transform(
Buffers.begin(), Buffers.end(), BufferIDs.begin(),
[&](uint64_t Op) { return Resources->resolveResourceMask(Op); });
Owner->notifyReleasedBuffers(BufferIDs);
}
} // namespace mca

View File

@ -15,17 +15,18 @@
#ifndef LLVM_TOOLS_LLVM_MCA_SCHEDULER_H
#define LLVM_TOOLS_LLVM_MCA_SCHEDULER_H
#include "HWEventListener.h"
#include "Instruction.h"
#include "LSUnit.h"
#include "RetireControlUnit.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include <map>
namespace mca {
class Backend;
/// Used to notify the internal state of a processor resource.
///
/// A processor resource is available if it is not reserved, and there are
@ -402,68 +403,52 @@ public:
/// An Instruction leaves the IssuedQueue when it reaches the write-back stage.
class Scheduler {
const llvm::MCSchedModel &SM;
RetireControlUnit &RCU;
// Hardware resources that are managed by this scheduler.
std::unique_ptr<ResourceManager> Resources;
std::unique_ptr<LSUnit> LSU;
// The Backend gets notified when instructions are ready/issued/executed.
Backend *const Owner;
using QueueEntryTy = std::pair<unsigned, Instruction *>;
std::map<unsigned, Instruction *> WaitQueue;
std::map<unsigned, Instruction *> ReadyQueue;
std::map<unsigned, Instruction *> IssuedQueue;
void
notifyInstructionIssued(const InstRef &IR,
llvm::ArrayRef<std::pair<ResourceRef, double>> Used);
void notifyInstructionExecuted(const InstRef &IR);
void notifyInstructionReady(const InstRef &IR);
void notifyResourceAvailable(const ResourceRef &RR);
// Notify the Backend that buffered resources were consumed.
void notifyReservedBuffers(llvm::ArrayRef<uint64_t> Buffers);
// Notify the Backend that buffered resources were freed.
void notifyReleasedBuffers(llvm::ArrayRef<uint64_t> Buffers);
/// Select the next instruction to issue from the ReadyQueue.
/// This method gives priority to older instructions.
InstRef select();
/// Move instructions from the WaitQueue to the ReadyQueue if input operands
/// are all available.
void promoteToReadyQueue(llvm::SmallVectorImpl<InstRef> &Ready);
/// Issue an instruction without updating the ready queue.
void issueInstructionImpl(
InstRef &IR,
llvm::SmallVectorImpl<std::pair<ResourceRef, double>> &Pipes);
void updatePendingQueue(llvm::SmallVectorImpl<InstRef> &Ready);
void updateIssuedQueue(llvm::SmallVectorImpl<InstRef> &Executed);
public:
Scheduler(Backend *B, const llvm::MCSchedModel &Model, RetireControlUnit &R,
unsigned LoadQueueSize, unsigned StoreQueueSize, bool AssumeNoAlias)
: SM(Model), RCU(R), Resources(llvm::make_unique<ResourceManager>(SM)),
Scheduler(const llvm::MCSchedModel &Model, unsigned LoadQueueSize,
unsigned StoreQueueSize, bool AssumeNoAlias)
: SM(Model), Resources(llvm::make_unique<ResourceManager>(SM)),
LSU(llvm::make_unique<LSUnit>(LoadQueueSize, StoreQueueSize,
AssumeNoAlias)),
Owner(B) {}
AssumeNoAlias)) {}
/// Check if the instruction in 'IR' can be dispatched.
///
/// The DispatchStage is responsible for querying the Scheduler before
/// dispatching new instructions. Queries are performed through method
/// `Scheduler::canBeDispatched`. If scheduling resources are available,
/// and the instruction can be dispatched, then this method returns true.
/// Otherwise, a generic HWStallEvent is notified to the listeners.
bool canBeDispatched(const InstRef &IR) const;
void scheduleInstruction(InstRef &IR);
/// dispatching new instructions. This routine is used for performing such
/// a query. If the instruction 'IR' can be dispatched, then true is
/// returned, otherwise false is returned with Event set to the stall type.
bool canBeDispatched(const InstRef &IR,
HWStallEvent::GenericEventType &Event) const;
/// Issue an instruction.
void issueInstruction(InstRef &IR);
/// Returns true if there is availibility for IR in the LSU.
bool isReady(const InstRef &IR) const { return LSU->isReady(IR); }
/// Issue an instruction. The Used container is populated with
/// the resource objects consumed on behalf of issuing this instruction.
void
issueInstruction(InstRef &IR,
llvm::SmallVectorImpl<std::pair<ResourceRef, double>> &Used);
/// This routine will attempt to issue an instruction immediately (for
/// zero-latency instructions).
///
/// Returns true if the instruction is issued immediately. If this does not
/// occur, then the instruction will be added to the Scheduler's ReadyQueue.
bool issueImmediately(InstRef &IR);
/// Reserve one entry in each buffered resource.
void reserveBuffers(llvm::ArrayRef<uint64_t> Buffers) {
@ -475,12 +460,55 @@ public:
Resources->releaseBuffers(Buffers);
}
void cycleEvent();
/// Update the resources managed by the scheduler.
/// This routine is to be called at the start of a new cycle, and is
/// responsible for updating scheduler resources. Resources are released
/// once they have been fully consumed.
void reclaimSimulatedResources(llvm::SmallVectorImpl<ResourceRef> &Freed);
/// Move instructions from the WaitQueue to the ReadyQueue if input operands
/// are all available.
void promoteToReadyQueue(llvm::SmallVectorImpl<InstRef> &Ready);
/// Update the ready queue.
void updatePendingQueue(llvm::SmallVectorImpl<InstRef> &Ready);
/// Update the issued queue.
void updateIssuedQueue(llvm::SmallVectorImpl<InstRef> &Executed);
/// Updates the Scheduler's resources to reflect that an instruction has just
/// been executed.
void onInstructionExecuted(const InstRef &IR);
/// Obtain the processor's resource identifier for the given
/// resource mask.
unsigned getResourceID(uint64_t Mask) {
return Resources->resolveResourceMask(Mask);
}
/// Reserve resources necessary to issue the instruction.
/// Returns true if the resources are ready and the (LSU) can
/// execute the given instruction immediately.
bool reserveResources(InstRef &IR);
/// Select the next instruction to issue from the ReadyQueue.
/// This method gives priority to older instructions.
InstRef select();
#ifndef NDEBUG
// Update the ready queues.
void dump() const;
#endif
};
} // Namespace mca
#endif
// This routine performs a sanity check. This routine should only be called
// when we know that 'IR' is not in the scheduler's instruction queues.
void sanityCheck(const InstRef &IR) const {
const unsigned Idx = IR.getSourceIndex();
assert(WaitQueue.find(Idx) == WaitQueue.end());
assert(ReadyQueue.find(Idx) == ReadyQueue.end());
assert(IssuedQueue.find(Idx) == IssuedQueue.end());
}
#endif // !NDEBUG
};
} // namespace mca
#endif // LLVM_TOOLS_LLVM_MCA_SCHEDULER_H