[AArch64][SVE] Add intrinsics for non-temporal scatters/gathers

Summary:
This patch adds the following intrinsics for non-temporal gather loads
and scatter stores:
  * aarch64_sve_ldnt1_gather_index
  * aarch64_sve_stnt1_scatter_index
These intrinsics implement the "scalar + vector of indices" addressing
mode.

As opposed to regular and first-faulting gathers/scatters, there's no
instruction that would take indices and then scale them. Instead, the
indices for non-temporal gathers/scatters are scaled before the
intrinsics are lowered to `ldnt1` instructions.

The new ISD nodes, GLDNT1_INDEX and SSTNT1_INDEX, are only used as
placeholders so that we can easily identify the cases implemented in
this patch in performGatherLoadCombine and performScatterStoreCombined.
Once encountered, they are replaced with:
  * GLDNT1_INDEX -> SPLAT_VECTOR + SHL + GLDNT1
  * SSTNT1_INDEX -> SPLAT_VECTOR + SHL + SSTNT1

The patterns for lowering ISD::SHL for scalable vectors (required by
this patch) were missing, so these are added too.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D75601
This commit is contained in:
Andrzej Warzynski 2020-03-04 11:21:20 +00:00
parent a66dc755db
commit 46b9f14d71
9 changed files with 261 additions and 17 deletions

View File

@ -1782,6 +1782,9 @@ def int_aarch64_sve_ldff1_gather_scalar_offset : AdvSIMD_GatherLoad_VS_Intrinsic
// 64 bit unscaled offsets // 64 bit unscaled offsets
def int_aarch64_sve_ldnt1_gather : AdvSIMD_GatherLoad_SV_64b_Offsets_Intrinsic; def int_aarch64_sve_ldnt1_gather : AdvSIMD_GatherLoad_SV_64b_Offsets_Intrinsic;
// 64 bit indices
def int_aarch64_sve_ldnt1_gather_index : AdvSIMD_GatherLoad_SV_64b_Offsets_Intrinsic;
// 32 bit unscaled offsets, zero (zxtw) extended to 64 bits // 32 bit unscaled offsets, zero (zxtw) extended to 64 bits
def int_aarch64_sve_ldnt1_gather_uxtw : AdvSIMD_GatherLoad_SV_32b_Offsets_Intrinsic; def int_aarch64_sve_ldnt1_gather_uxtw : AdvSIMD_GatherLoad_SV_32b_Offsets_Intrinsic;
@ -1829,6 +1832,10 @@ def int_aarch64_sve_st1_scatter_scalar_offset : AdvSIMD_ScatterStore_VS_Intrinsi
// 64 bit unscaled offsets // 64 bit unscaled offsets
def int_aarch64_sve_stnt1_scatter : AdvSIMD_ScatterStore_SV_64b_Offsets_Intrinsic; def int_aarch64_sve_stnt1_scatter : AdvSIMD_ScatterStore_SV_64b_Offsets_Intrinsic;
// 64 bit indices
def int_aarch64_sve_stnt1_scatter_index
: AdvSIMD_ScatterStore_SV_64b_Offsets_Intrinsic;
// 32 bit unscaled offsets, zero (zxtw) extended to 64 bits // 32 bit unscaled offsets, zero (zxtw) extended to 64 bits
def int_aarch64_sve_stnt1_scatter_uxtw : AdvSIMD_ScatterStore_SV_32b_Offsets_Intrinsic; def int_aarch64_sve_stnt1_scatter_uxtw : AdvSIMD_ScatterStore_SV_32b_Offsets_Intrinsic;

View File

@ -5262,7 +5262,8 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
// amounts. This catches things like trying to shift an i1024 value by an // amounts. This catches things like trying to shift an i1024 value by an
// i8, which is easy to fall into in generic code that uses // i8, which is easy to fall into in generic code that uses
// TLI.getShiftAmount(). // TLI.getShiftAmount().
assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >=
Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) &&
"Invalid use of small shift amount with oversized value!"); "Invalid use of small shift amount with oversized value!");
// Always fold shifts of i1 values so the code generator doesn't need to // Always fold shifts of i1 values so the code generator doesn't need to

View File

@ -190,6 +190,11 @@ public:
return SelectSVELogicalImm(N, VT, Imm); return SelectSVELogicalImm(N, VT, Imm);
} }
template <unsigned Low, unsigned High>
bool SelectSVEShiftImm64(SDValue N, SDValue &Imm) {
return SelectSVEShiftImm64(N, Low, High, Imm);
}
// Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N. // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
template<signed Min, signed Max, signed Scale, bool Shift> template<signed Min, signed Max, signed Scale, bool Shift>
bool SelectCntImm(SDValue N, SDValue &Imm) { bool SelectCntImm(SDValue N, SDValue &Imm) {
@ -307,6 +312,8 @@ private:
bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm); bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm);
bool SelectSVESignedArithImm(SDValue N, SDValue &Imm); bool SelectSVESignedArithImm(SDValue N, SDValue &Imm);
bool SelectSVEShiftImm64(SDValue N, uint64_t Low, uint64_t High,
SDValue &Imm);
bool SelectSVEArithImm(SDValue N, SDValue &Imm); bool SelectSVEArithImm(SDValue N, SDValue &Imm);
bool SelectSVERegRegAddrMode(SDValue N, unsigned Scale, SDValue &Base, bool SelectSVERegRegAddrMode(SDValue N, unsigned Scale, SDValue &Base,
@ -3072,6 +3079,24 @@ bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm) {
return false; return false;
} }
// This method is only needed to "cast" i64s into i32s when the value
// is a valid shift which has been splatted into a vector with i64 elements.
// Every other type is fine in tablegen.
bool AArch64DAGToDAGISel::SelectSVEShiftImm64(SDValue N, uint64_t Low,
uint64_t High, SDValue &Imm) {
if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
uint64_t ImmVal = CN->getZExtValue();
SDLoc DL(N);
if (ImmVal >= Low && ImmVal <= High) {
Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
return true;
}
}
return false;
}
bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) { bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) {
// tagp(FrameIndex, IRGstack, tag_offset): // tagp(FrameIndex, IRGstack, tag_offset):
// since the offset between FrameIndex and IRGstack is a compile-time // since the offset between FrameIndex and IRGstack is a compile-time

View File

@ -1440,6 +1440,7 @@ const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
case AArch64ISD::GLDFF1S_IMM: return "AArch64ISD::GLDFF1S_IMM"; case AArch64ISD::GLDFF1S_IMM: return "AArch64ISD::GLDFF1S_IMM";
case AArch64ISD::GLDNT1: return "AArch64ISD::GLDNT1"; case AArch64ISD::GLDNT1: return "AArch64ISD::GLDNT1";
case AArch64ISD::GLDNT1_INDEX: return "AArch64ISD::GLDNT1_INDEX";
case AArch64ISD::GLDNT1S: return "AArch64ISD::GLDNT1S"; case AArch64ISD::GLDNT1S: return "AArch64ISD::GLDNT1S";
case AArch64ISD::SST1: return "AArch64ISD::SST1"; case AArch64ISD::SST1: return "AArch64ISD::SST1";
@ -1451,6 +1452,7 @@ const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
case AArch64ISD::SST1_IMM: return "AArch64ISD::SST1_IMM"; case AArch64ISD::SST1_IMM: return "AArch64ISD::SST1_IMM";
case AArch64ISD::SSTNT1: return "AArch64ISD::SSTNT1"; case AArch64ISD::SSTNT1: return "AArch64ISD::SSTNT1";
case AArch64ISD::SSTNT1_INDEX: return "AArch64ISD::SSTNT1_INDEX";
case AArch64ISD::LDP: return "AArch64ISD::LDP"; case AArch64ISD::LDP: return "AArch64ISD::LDP";
case AArch64ISD::STP: return "AArch64ISD::STP"; case AArch64ISD::STP: return "AArch64ISD::STP";
@ -12628,6 +12630,19 @@ static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
DAG.getConstant(MinOffset, DL, MVT::i64)); DAG.getConstant(MinOffset, DL, MVT::i64));
} }
// Turns the vector of indices into a vector of byte offstes by scaling Offset
// by (BitWidth / 8).
static SDValue getScaledOffsetForBitWidth(SelectionDAG &DAG, SDValue Offset,
SDLoc DL, unsigned BitWidth) {
assert(Offset.getValueType().isScalableVector() &&
"This method is only for scalable vectors of offsets");
SDValue Shift = DAG.getConstant(Log2_32(BitWidth / 8), DL, MVT::i64);
SDValue SplatShift = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Shift);
return DAG.getNode(ISD::SHL, DL, MVT::nxv2i64, Offset, SplatShift);
}
static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG, static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG,
unsigned Opcode, unsigned Opcode,
bool OnlyPackedOffsets = true) { bool OnlyPackedOffsets = true) {
@ -12655,6 +12670,15 @@ static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG,
// vector of offsets (that fits into one register) // vector of offsets (that fits into one register)
SDValue Offset = N->getOperand(5); SDValue Offset = N->getOperand(5);
// For "scalar + vector of indices", just scale the indices. This only
// applies to non-temporal scatters because there's no instruction that takes
// indicies.
if (Opcode == AArch64ISD::SSTNT1_INDEX) {
Offset =
getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits());
Opcode = AArch64ISD::SSTNT1;
}
// In the case of non-temporal gather loads there's only one SVE instruction // In the case of non-temporal gather loads there's only one SVE instruction
// per data-size: "scalar + vector", i.e. // per data-size: "scalar + vector", i.e.
// * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] // * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0]
@ -12749,6 +12773,15 @@ static SDValue performGatherLoadCombine(SDNode *N, SelectionDAG &DAG,
// vector of offsets (that fits into one register) // vector of offsets (that fits into one register)
SDValue Offset = N->getOperand(4); SDValue Offset = N->getOperand(4);
// For "scalar + vector of indices", just scale the indices. This only
// applies to non-temporal gathers because there's no instruction that takes
// indicies.
if (Opcode == AArch64ISD::GLDNT1_INDEX) {
Offset =
getScaledOffsetForBitWidth(DAG, Offset, DL, RetElVT.getSizeInBits());
Opcode = AArch64ISD::GLDNT1;
}
// In the case of non-temporal gather loads there's only one SVE instruction // In the case of non-temporal gather loads there's only one SVE instruction
// per data-size: "scalar + vector", i.e. // per data-size: "scalar + vector", i.e.
// * ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] // * ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0]
@ -13006,6 +13039,8 @@ SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1); return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1);
case Intrinsic::aarch64_sve_ldnt1_gather: case Intrinsic::aarch64_sve_ldnt1_gather:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1); return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1);
case Intrinsic::aarch64_sve_ldnt1_gather_index:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_INDEX);
case Intrinsic::aarch64_sve_ldnt1_gather_uxtw: case Intrinsic::aarch64_sve_ldnt1_gather_uxtw:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1); return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1);
case Intrinsic::aarch64_sve_ldnf1: case Intrinsic::aarch64_sve_ldnf1:
@ -13020,6 +13055,8 @@ SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1); return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1);
case Intrinsic::aarch64_sve_stnt1_scatter: case Intrinsic::aarch64_sve_stnt1_scatter:
return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1); return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1);
case Intrinsic::aarch64_sve_stnt1_scatter_index:
return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_INDEX);
case Intrinsic::aarch64_sve_ld1_gather: case Intrinsic::aarch64_sve_ld1_gather:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1); return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1);
case Intrinsic::aarch64_sve_ld1_gather_index: case Intrinsic::aarch64_sve_ld1_gather_index:

View File

@ -263,6 +263,7 @@ enum NodeType : unsigned {
// Non-temporal gather loads // Non-temporal gather loads
GLDNT1, GLDNT1,
GLDNT1_INDEX,
GLDNT1S, GLDNT1S,
// Scatter store // Scatter store
@ -276,6 +277,7 @@ enum NodeType : unsigned {
// Non-temporal scatter store // Non-temporal scatter store
SSTNT1, SSTNT1,
SSTNT1_INDEX,
// Strict (exception-raising) floating point comparison // Strict (exception-raising) floating point comparison
STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE, STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,

View File

@ -11,6 +11,7 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
def SVE8BitLslImm : ComplexPattern<i32, 2, "SelectSVE8BitLslImm", [imm]>; def SVE8BitLslImm : ComplexPattern<i32, 2, "SelectSVE8BitLslImm", [imm]>;
def SVELShiftImm64 : ComplexPattern<i32, 1, "SelectSVEShiftImm64<0, 64>", []>;
// Non-faulting loads - node definitions // Non-faulting loads - node definitions
// //
@ -139,7 +140,6 @@ def index_vector : SDNode<"AArch64ISD::INDEX_VECTOR", SDT_IndexVector, []>;
def reinterpret_cast : SDNode<"AArch64ISD::REINTERPRET_CAST", SDTUnaryOp>; def reinterpret_cast : SDNode<"AArch64ISD::REINTERPRET_CAST", SDTUnaryOp>;
let Predicates = [HasSVE] in { let Predicates = [HasSVE] in {
defm RDFFR_PPz : sve_int_rdffr_pred<0b0, "rdffr", int_aarch64_sve_rdffr_z>; defm RDFFR_PPz : sve_int_rdffr_pred<0b0, "rdffr", int_aarch64_sve_rdffr_z>;
def RDFFRS_PPz : sve_int_rdffr_pred<0b1, "rdffrs">; def RDFFRS_PPz : sve_int_rdffr_pred<0b1, "rdffrs">;
defm RDFFR_P : sve_int_rdffr_unpred<"rdffr", int_aarch64_sve_rdffr>; defm RDFFR_P : sve_int_rdffr_unpred<"rdffr", int_aarch64_sve_rdffr>;
@ -1108,9 +1108,23 @@ multiclass sve_prefetch<SDPatternOperator prefetch, ValueType PredTy, Instructio
defm INDEX_II : sve_int_index_ii<"index", index_vector>; defm INDEX_II : sve_int_index_ii<"index", index_vector>;
// Unpredicated shifts // Unpredicated shifts
defm ASR_ZZI : sve_int_bin_cons_shift_imm_right<0b00, "asr">; defm ASR_ZZI : sve_int_bin_cons_shift_imm_right<0b00, "asr", sra>;
defm LSR_ZZI : sve_int_bin_cons_shift_imm_right<0b01, "lsr">; defm LSR_ZZI : sve_int_bin_cons_shift_imm_right<0b01, "lsr", srl>;
defm LSL_ZZI : sve_int_bin_cons_shift_imm_left< 0b11, "lsl">; defm LSL_ZZI : sve_int_bin_cons_shift_imm_left< 0b11, "lsl", shl>;
// Patterns for unpredicated left shift by immediate
def : Pat<(nxv16i8 (shl (nxv16i8 ZPR:$Zs1),
(nxv16i8 (AArch64dup (vecshiftL8:$imm))))),
(LSL_ZZI_B ZPR:$Zs1, vecshiftL8:$imm)>;
def : Pat<(nxv8i16 (shl (nxv8i16 ZPR:$Zs1),
(nxv8i16 (AArch64dup (vecshiftL16:$imm))))),
(LSL_ZZI_H ZPR:$Zs1, vecshiftL16:$imm)>;
def : Pat<(nxv4i32 (shl (nxv4i32 ZPR:$Zs1),
(nxv4i32 (AArch64dup (vecshiftL32:$imm))))),
(LSL_ZZI_S ZPR:$Zs1, vecshiftL32:$imm)>;
def : Pat<(nxv2i64 (shl (nxv2i64 ZPR:$Zs1),
(nxv2i64 (AArch64dup (i64 (SVELShiftImm64 i32:$imm)))))),
(LSL_ZZI_D ZPR:$Zs1, vecshiftL64:$imm)>;
defm ASR_WIDE_ZZZ : sve_int_bin_cons_shift_wide<0b00, "asr">; defm ASR_WIDE_ZZZ : sve_int_bin_cons_shift_wide<0b00, "asr">;
defm LSR_WIDE_ZZZ : sve_int_bin_cons_shift_wide<0b01, "lsr">; defm LSR_WIDE_ZZZ : sve_int_bin_cons_shift_wide<0b01, "lsr">;

View File

@ -4828,10 +4828,12 @@ multiclass sve_int_bin_cons_shift_wide<bits<2> opc, string asm> {
} }
class sve_int_bin_cons_shift_imm<bits<4> tsz8_64, bits<2> opc, string asm, class sve_int_bin_cons_shift_imm<bits<4> tsz8_64, bits<2> opc, string asm,
ZPRRegOp zprty, Operand immtype> ZPRRegOp zprty, Operand immtype, ValueType vt,
SDPatternOperator op>
: I<(outs zprty:$Zd), (ins zprty:$Zn, immtype:$imm), : I<(outs zprty:$Zd), (ins zprty:$Zn, immtype:$imm),
asm, "\t$Zd, $Zn, $imm", asm, "\t$Zd, $Zn, $imm",
"", []>, Sched<[]> { "",
[(set (vt zprty:$Zd), (op (vt zprty:$Zn), immtype:$imm))]>, Sched<[]> {
bits<5> Zd; bits<5> Zd;
bits<5> Zn; bits<5> Zn;
bits<6> imm; bits<6> imm;
@ -4846,29 +4848,31 @@ class sve_int_bin_cons_shift_imm<bits<4> tsz8_64, bits<2> opc, string asm,
let Inst{4-0} = Zd; let Inst{4-0} = Zd;
} }
multiclass sve_int_bin_cons_shift_imm_left<bits<2> opc, string asm> { multiclass sve_int_bin_cons_shift_imm_left<bits<2> opc, string asm,
def _B : sve_int_bin_cons_shift_imm<{0,0,0,1}, opc, asm, ZPR8, vecshiftL8>; SDPatternOperator op> {
def _H : sve_int_bin_cons_shift_imm<{0,0,1,?}, opc, asm, ZPR16, vecshiftL16> { def _B : sve_int_bin_cons_shift_imm<{0,0,0,1}, opc, asm, ZPR8, vecshiftL8, nxv16i8, op>;
def _H : sve_int_bin_cons_shift_imm<{0,0,1,?}, opc, asm, ZPR16, vecshiftL16, nxv8i16, op> {
let Inst{19} = imm{3}; let Inst{19} = imm{3};
} }
def _S : sve_int_bin_cons_shift_imm<{0,1,?,?}, opc, asm, ZPR32, vecshiftL32> { def _S : sve_int_bin_cons_shift_imm<{0,1,?,?}, opc, asm, ZPR32, vecshiftL32, nxv4i32, op> {
let Inst{20-19} = imm{4-3}; let Inst{20-19} = imm{4-3};
} }
def _D : sve_int_bin_cons_shift_imm<{1,?,?,?}, opc, asm, ZPR64, vecshiftL64> { def _D : sve_int_bin_cons_shift_imm<{1,?,?,?}, opc, asm, ZPR64, vecshiftL64, nxv2i64, op> {
let Inst{22} = imm{5}; let Inst{22} = imm{5};
let Inst{20-19} = imm{4-3}; let Inst{20-19} = imm{4-3};
} }
} }
multiclass sve_int_bin_cons_shift_imm_right<bits<2> opc, string asm> { multiclass sve_int_bin_cons_shift_imm_right<bits<2> opc, string asm,
def _B : sve_int_bin_cons_shift_imm<{0,0,0,1}, opc, asm, ZPR8, vecshiftR8>; SDPatternOperator op> {
def _H : sve_int_bin_cons_shift_imm<{0,0,1,?}, opc, asm, ZPR16, vecshiftR16> { def _B : sve_int_bin_cons_shift_imm<{0,0,0,1}, opc, asm, ZPR8, vecshiftR8, nxv16i8, op>;
def _H : sve_int_bin_cons_shift_imm<{0,0,1,?}, opc, asm, ZPR16, vecshiftR16, nxv8i16, op> {
let Inst{19} = imm{3}; let Inst{19} = imm{3};
} }
def _S : sve_int_bin_cons_shift_imm<{0,1,?,?}, opc, asm, ZPR32, vecshiftR32> { def _S : sve_int_bin_cons_shift_imm<{0,1,?,?}, opc, asm, ZPR32, vecshiftR32, nxv4i32, op> {
let Inst{20-19} = imm{4-3}; let Inst{20-19} = imm{4-3};
} }
def _D : sve_int_bin_cons_shift_imm<{1,?,?,?}, opc, asm, ZPR64, vecshiftR64> { def _D : sve_int_bin_cons_shift_imm<{1,?,?,?}, opc, asm, ZPR64, vecshiftR64, nxv2i64, op> {
let Inst{22} = imm{5}; let Inst{22} = imm{5};
let Inst{20-19} = imm{4-3}; let Inst{20-19} = imm{4-3};
} }

View File

@ -0,0 +1,90 @@
; RUN: llc -mtriple=aarch64-linux-gnu -mattr=+sve2 < %s | FileCheck %s
;
; LDNT1H, LDNT1W, LDNT1D: base + 64-bit index
; e.g.
; lsl z0.d, z0.d, #1
; ldnt1h z0.d, p0/z, [z0.d, x0]
;
define <vscale x 2 x i64> @gldnt1h_index(<vscale x 2 x i1> %pg, i16* %base, <vscale x 2 x i64> %b) {
; CHECK-LABEL: gldnt1h_index
; CHECK: lsl z0.d, z0.d, #1
; CHECK-NEXT: ldnt1h { z0.d }, p0/z, [z0.d, x0]
; CHECK-NEXT: ret
%load = call <vscale x 2 x i16> @llvm.aarch64.sve.ldnt1.gather.index.nxv2i16(<vscale x 2 x i1> %pg,
i16* %base,
<vscale x 2 x i64> %b)
%res = zext <vscale x 2 x i16> %load to <vscale x 2 x i64>
ret <vscale x 2 x i64> %res
}
define <vscale x 2 x i64> @gldnt1w_index(<vscale x 2 x i1> %pg, i32* %base, <vscale x 2 x i64> %b) {
; CHECK-LABEL: gldnt1w_index
; CHECK: lsl z0.d, z0.d, #2
; CHECK-NEXT: ldnt1w { z0.d }, p0/z, [z0.d, x0]
; CHECK-NEXT: ret
%load = call <vscale x 2 x i32> @llvm.aarch64.sve.ldnt1.gather.index.nxv2i32(<vscale x 2 x i1> %pg,
i32* %base,
<vscale x 2 x i64> %b)
%res = zext <vscale x 2 x i32> %load to <vscale x 2 x i64>
ret <vscale x 2 x i64> %res
}
define <vscale x 2 x i64> @gldnt1d_index(<vscale x 2 x i1> %pg, i64* %base, <vscale x 2 x i64> %b) {
; CHECK-LABEL: gldnt1d_index
; CHECK: lsl z0.d, z0.d, #3
; CHECK-NEXT: ldnt1d { z0.d }, p0/z, [z0.d, x0]
; CHECK-NEXT: ret
%load = call <vscale x 2 x i64> @llvm.aarch64.sve.ldnt1.gather.index.nxv2i64(<vscale x 2 x i1> %pg,
i64* %base,
<vscale x 2 x i64> %b)
ret <vscale x 2 x i64> %load
}
define <vscale x 2 x double> @gldnt1d_index_double(<vscale x 2 x i1> %pg, double* %base, <vscale x 2 x i64> %b) {
; CHECK-LABEL: gldnt1d_index_double
; CHECK: lsl z0.d, z0.d, #3
; CHECK-NEXT: ldnt1d { z0.d }, p0/z, [z0.d, x0]
; CHECK-NEXT: ret
%load = call <vscale x 2 x double> @llvm.aarch64.sve.ldnt1.gather.index.nxv2f64(<vscale x 2 x i1> %pg,
double* %base,
<vscale x 2 x i64> %b)
ret <vscale x 2 x double> %load
}
;
; LDNT1SH, LDNT1SW: base + 64-bit index
; e.g.
; lsl z0.d, z0.d, #1
; ldnt1sh z0.d, p0/z, [z0.d, x0]
;
define <vscale x 2 x i64> @gldnt1sh_index(<vscale x 2 x i1> %pg, i16* %base, <vscale x 2 x i64> %b) {
; CHECK-LABEL: gldnt1sh_index
; CHECK: lsl z0.d, z0.d, #1
; CHECK-NEXT: ldnt1sh { z0.d }, p0/z, [z0.d, x0]
; CHECK-NEXT: ret
%load = call <vscale x 2 x i16> @llvm.aarch64.sve.ldnt1.gather.index.nxv2i16(<vscale x 2 x i1> %pg,
i16* %base,
<vscale x 2 x i64> %b)
%res = sext <vscale x 2 x i16> %load to <vscale x 2 x i64>
ret <vscale x 2 x i64> %res
}
define <vscale x 2 x i64> @gldnt1sw_index(<vscale x 2 x i1> %pg, i32* %base, <vscale x 2 x i64> %b) {
; CHECK-LABEL: gldnt1sw_index
; CHECK: lsl z0.d, z0.d, #2
; CHECK-NEXT: ldnt1sw { z0.d }, p0/z, [z0.d, x0]
; CHECK-NEXT: ret
%load = call <vscale x 2 x i32> @llvm.aarch64.sve.ldnt1.gather.index.nxv2i32(<vscale x 2 x i1> %pg,
i32* %base,
<vscale x 2 x i64> %b)
%res = sext <vscale x 2 x i32> %load to <vscale x 2 x i64>
ret <vscale x 2 x i64> %res
}
declare <vscale x 2 x i16> @llvm.aarch64.sve.ldnt1.gather.index.nxv2i16(<vscale x 2 x i1>, i16*, <vscale x 2 x i64>)
declare <vscale x 2 x i32> @llvm.aarch64.sve.ldnt1.gather.index.nxv2i32(<vscale x 2 x i1>, i32*, <vscale x 2 x i64>)
declare <vscale x 2 x i64> @llvm.aarch64.sve.ldnt1.gather.index.nxv2i64(<vscale x 2 x i1>, i64*, <vscale x 2 x i64>)
declare <vscale x 2 x double> @llvm.aarch64.sve.ldnt1.gather.index.nxv2f64(<vscale x 2 x i1>, double*, <vscale x 2 x i64>)

View File

@ -0,0 +1,64 @@
; RUN: llc -mtriple=aarch64-linux-gnu -mattr=+sve2 < %s | FileCheck %s
;
; STNT1H, STNT1W, STNT1D: base + 64-bit index
; e.g.
; lsl z1.d, z1.d, #1
; stnt1h { z0.d }, p0, [z0.d, x0]
;
define void @sstnt1h_index(<vscale x 2 x i64> %data, <vscale x 2 x i1> %pg, i16* %base, <vscale x 2 x i64> %offsets) {
; CHECK-LABEL: sstnt1h_index
; CHECK: lsl z1.d, z1.d, #1
; CHECK-NEXT: stnt1h { z0.d }, p0, [z1.d, x0]
; CHECK-NEXT: ret
%data_trunc = trunc <vscale x 2 x i64> %data to <vscale x 2 x i16>
call void @llvm.aarch64.sve.stnt1.scatter.index.nxv2i16(<vscale x 2 x i16> %data_trunc,
<vscale x 2 x i1> %pg,
i16* %base,
<vscale x 2 x i64> %offsets)
ret void
}
define void @sstnt1w_index(<vscale x 2 x i64> %data, <vscale x 2 x i1> %pg, i32* %base, <vscale x 2 x i64> %offsets) {
; CHECK-LABEL: sstnt1w_index
; CHECK: lsl z1.d, z1.d, #2
; CHECK-NEXT: stnt1w { z0.d }, p0, [z1.d, x0]
; CHECK-NEXT: ret
%data_trunc = trunc <vscale x 2 x i64> %data to <vscale x 2 x i32>
call void @llvm.aarch64.sve.stnt1.scatter.index.nxv2i32(<vscale x 2 x i32> %data_trunc,
<vscale x 2 x i1> %pg,
i32* %base,
<vscale x 2 x i64> %offsets)
ret void
}
define void @sstnt1d_index(<vscale x 2 x i64> %data, <vscale x 2 x i1> %pg, i64* %base, <vscale x 2 x i64> %offsets) {
; CHECK-LABEL: sstnt1d_index
; CHECK: lsl z1.d, z1.d, #3
; CHECK-NEXT: stnt1d { z0.d }, p0, [z1.d, x0]
; CHECK-NEXT: ret
call void @llvm.aarch64.sve.stnt1.scatter.index.nxv2i64(<vscale x 2 x i64> %data,
<vscale x 2 x i1> %pg,
i64* %base,
<vscale x 2 x i64> %offsets)
ret void
}
define void @sstnt1d_index_double(<vscale x 2 x double> %data, <vscale x 2 x i1> %pg, double* %base, <vscale x 2 x i64> %offsets) {
; CHECK-LABEL: sstnt1d_index_double
; CHECK: lsl z1.d, z1.d, #3
; CHECK-NEXT: stnt1d { z0.d }, p0, [z1.d, x0]
; CHECK-NEXT: ret
call void @llvm.aarch64.sve.stnt1.scatter.index.nxv2f64(<vscale x 2 x double> %data,
<vscale x 2 x i1> %pg,
double* %base,
<vscale x 2 x i64> %offsets)
ret void
}
declare void @llvm.aarch64.sve.stnt1.scatter.index.nxv2i16(<vscale x 2 x i16>, <vscale x 2 x i1>, i16*, <vscale x 2 x i64>)
declare void @llvm.aarch64.sve.stnt1.scatter.index.nxv2i32(<vscale x 2 x i32>, <vscale x 2 x i1>, i32*, <vscale x 2 x i64>)
declare void @llvm.aarch64.sve.stnt1.scatter.index.nxv2i64(<vscale x 2 x i64>, <vscale x 2 x i1>, i64*, <vscale x 2 x i64>)
declare void @llvm.aarch64.sve.stnt1.scatter.index.nxv2f64(<vscale x 2 x double>, <vscale x 2 x i1>, double*, <vscale x 2 x i64>)