forked from OSchip/llvm-project
Create the DataLayout class, as a direct copy of TargetData.
llvm-svn: 165249
This commit is contained in:
parent
7af848bf1f
commit
4639774625
|
@ -0,0 +1,363 @@
|
|||
//===------ llvm/DataLayout.h - Data size & alignment info ------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines target properties related to datatype size/offset/alignment
|
||||
// information. It uses lazy annotations to cache information about how
|
||||
// structure types are laid out and used.
|
||||
//
|
||||
// This structure should be created once, filled in if the defaults are not
|
||||
// correct and then passed around by const&. None of the members functions
|
||||
// require modification to the object.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_DATALAYOUT_H
|
||||
#define LLVM_DATALAYOUT_H
|
||||
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/Support/DataTypes.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Value;
|
||||
class Type;
|
||||
class IntegerType;
|
||||
class StructType;
|
||||
class StructLayout;
|
||||
class GlobalVariable;
|
||||
class LLVMContext;
|
||||
template<typename T>
|
||||
class ArrayRef;
|
||||
|
||||
/// Enum used to categorize the alignment types stored by TargetAlignElem
|
||||
enum AlignTypeEnum {
|
||||
INTEGER_ALIGN = 'i', ///< Integer type alignment
|
||||
VECTOR_ALIGN = 'v', ///< Vector type alignment
|
||||
FLOAT_ALIGN = 'f', ///< Floating point type alignment
|
||||
AGGREGATE_ALIGN = 'a', ///< Aggregate alignment
|
||||
STACK_ALIGN = 's' ///< Stack objects alignment
|
||||
};
|
||||
|
||||
/// Target alignment element.
|
||||
///
|
||||
/// Stores the alignment data associated with a given alignment type (pointer,
|
||||
/// integer, vector, float) and type bit width.
|
||||
///
|
||||
/// @note The unusual order of elements in the structure attempts to reduce
|
||||
/// padding and make the structure slightly more cache friendly.
|
||||
struct TargetAlignElem {
|
||||
unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum)
|
||||
unsigned TypeBitWidth : 24; ///< Type bit width
|
||||
unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw
|
||||
unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw
|
||||
|
||||
/// Initializer
|
||||
static TargetAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
|
||||
unsigned pref_align, uint32_t bit_width);
|
||||
/// Equality predicate
|
||||
bool operator==(const TargetAlignElem &rhs) const;
|
||||
};
|
||||
|
||||
/// DataLayout - This class holds a parsed version of the target data layout
|
||||
/// string in a module and provides methods for querying it. The target data
|
||||
/// layout string is specified *by the target* - a frontend generating LLVM IR
|
||||
/// is required to generate the right target data for the target being codegen'd
|
||||
/// to. If some measure of portability is desired, an empty string may be
|
||||
/// specified in the module.
|
||||
class DataLayout : public ImmutablePass {
|
||||
private:
|
||||
bool LittleEndian; ///< Defaults to false
|
||||
unsigned PointerMemSize; ///< Pointer size in bytes
|
||||
unsigned PointerABIAlign; ///< Pointer ABI alignment
|
||||
unsigned PointerPrefAlign; ///< Pointer preferred alignment
|
||||
unsigned StackNaturalAlign; ///< Stack natural alignment
|
||||
|
||||
SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
|
||||
|
||||
/// Alignments- Where the primitive type alignment data is stored.
|
||||
///
|
||||
/// @sa init().
|
||||
/// @note Could support multiple size pointer alignments, e.g., 32-bit
|
||||
/// pointers vs. 64-bit pointers by extending TargetAlignment, but for now,
|
||||
/// we don't.
|
||||
SmallVector<TargetAlignElem, 16> Alignments;
|
||||
|
||||
/// InvalidAlignmentElem - This member is a signal that a requested alignment
|
||||
/// type and bit width were not found in the SmallVector.
|
||||
static const TargetAlignElem InvalidAlignmentElem;
|
||||
|
||||
// The StructType -> StructLayout map.
|
||||
mutable void *LayoutMap;
|
||||
|
||||
//! Set/initialize target alignments
|
||||
void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
|
||||
unsigned pref_align, uint32_t bit_width);
|
||||
unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
|
||||
bool ABIAlign, Type *Ty) const;
|
||||
//! Internal helper method that returns requested alignment for type.
|
||||
unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
|
||||
|
||||
/// Valid alignment predicate.
|
||||
///
|
||||
/// Predicate that tests a TargetAlignElem reference returned by get() against
|
||||
/// InvalidAlignmentElem.
|
||||
bool validAlignment(const TargetAlignElem &align) const {
|
||||
return &align != &InvalidAlignmentElem;
|
||||
}
|
||||
|
||||
/// Initialise a DataLayout object with default values, ensure that the
|
||||
/// target data pass is registered.
|
||||
void init();
|
||||
|
||||
public:
|
||||
/// Default ctor.
|
||||
///
|
||||
/// @note This has to exist, because this is a pass, but it should never be
|
||||
/// used.
|
||||
DataLayout();
|
||||
|
||||
/// Constructs a DataLayout from a specification string. See init().
|
||||
explicit DataLayout(StringRef TargetDescription)
|
||||
: ImmutablePass(ID) {
|
||||
std::string errMsg = parseSpecifier(TargetDescription, this);
|
||||
assert(errMsg == "" && "Invalid target data layout string.");
|
||||
(void)errMsg;
|
||||
}
|
||||
|
||||
/// Parses a target data specification string. Returns an error message
|
||||
/// if the string is malformed, or the empty string on success. Optionally
|
||||
/// initialises a DataLayout object if passed a non-null pointer.
|
||||
static std::string parseSpecifier(StringRef TargetDescription, DataLayout* td = 0);
|
||||
|
||||
/// Initialize target data from properties stored in the module.
|
||||
explicit DataLayout(const Module *M);
|
||||
|
||||
DataLayout(const DataLayout &TD) :
|
||||
ImmutablePass(ID),
|
||||
LittleEndian(TD.isLittleEndian()),
|
||||
PointerMemSize(TD.PointerMemSize),
|
||||
PointerABIAlign(TD.PointerABIAlign),
|
||||
PointerPrefAlign(TD.PointerPrefAlign),
|
||||
LegalIntWidths(TD.LegalIntWidths),
|
||||
Alignments(TD.Alignments),
|
||||
LayoutMap(0)
|
||||
{ }
|
||||
|
||||
~DataLayout(); // Not virtual, do not subclass this class
|
||||
|
||||
/// Target endianness...
|
||||
bool isLittleEndian() const { return LittleEndian; }
|
||||
bool isBigEndian() const { return !LittleEndian; }
|
||||
|
||||
/// getStringRepresentation - Return the string representation of the
|
||||
/// DataLayout. This representation is in the same format accepted by the
|
||||
/// string constructor above.
|
||||
std::string getStringRepresentation() const;
|
||||
|
||||
/// isLegalInteger - This function returns true if the specified type is
|
||||
/// known to be a native integer type supported by the CPU. For example,
|
||||
/// i64 is not native on most 32-bit CPUs and i37 is not native on any known
|
||||
/// one. This returns false if the integer width is not legal.
|
||||
///
|
||||
/// The width is specified in bits.
|
||||
///
|
||||
bool isLegalInteger(unsigned Width) const {
|
||||
for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
|
||||
if (LegalIntWidths[i] == Width)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool isIllegalInteger(unsigned Width) const {
|
||||
return !isLegalInteger(Width);
|
||||
}
|
||||
|
||||
/// Returns true if the given alignment exceeds the natural stack alignment.
|
||||
bool exceedsNaturalStackAlignment(unsigned Align) const {
|
||||
return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
|
||||
}
|
||||
|
||||
/// fitsInLegalInteger - This function returns true if the specified type fits
|
||||
/// in a native integer type supported by the CPU. For example, if the CPU
|
||||
/// only supports i32 as a native integer type, then i27 fits in a legal
|
||||
// integer type but i45 does not.
|
||||
bool fitsInLegalInteger(unsigned Width) const {
|
||||
for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
|
||||
if (Width <= LegalIntWidths[i])
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Target pointer alignment
|
||||
unsigned getPointerABIAlignment() const { return PointerABIAlign; }
|
||||
/// Return target's alignment for stack-based pointers
|
||||
unsigned getPointerPrefAlignment() const { return PointerPrefAlign; }
|
||||
/// Target pointer size
|
||||
unsigned getPointerSize() const { return PointerMemSize; }
|
||||
/// Target pointer size, in bits
|
||||
unsigned getPointerSizeInBits() const { return 8*PointerMemSize; }
|
||||
|
||||
/// Size examples:
|
||||
///
|
||||
/// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
|
||||
/// ---- ---------- --------------- ---------------
|
||||
/// i1 1 8 8
|
||||
/// i8 8 8 8
|
||||
/// i19 19 24 32
|
||||
/// i32 32 32 32
|
||||
/// i100 100 104 128
|
||||
/// i128 128 128 128
|
||||
/// Float 32 32 32
|
||||
/// Double 64 64 64
|
||||
/// X86_FP80 80 80 96
|
||||
///
|
||||
/// [*] The alloc size depends on the alignment, and thus on the target.
|
||||
/// These values are for x86-32 linux.
|
||||
|
||||
/// getTypeSizeInBits - Return the number of bits necessary to hold the
|
||||
/// specified type. For example, returns 36 for i36 and 80 for x86_fp80.
|
||||
uint64_t getTypeSizeInBits(Type* Ty) const;
|
||||
|
||||
/// getTypeStoreSize - Return the maximum number of bytes that may be
|
||||
/// overwritten by storing the specified type. For example, returns 5
|
||||
/// for i36 and 10 for x86_fp80.
|
||||
uint64_t getTypeStoreSize(Type *Ty) const {
|
||||
return (getTypeSizeInBits(Ty)+7)/8;
|
||||
}
|
||||
|
||||
/// getTypeStoreSizeInBits - Return the maximum number of bits that may be
|
||||
/// overwritten by storing the specified type; always a multiple of 8. For
|
||||
/// example, returns 40 for i36 and 80 for x86_fp80.
|
||||
uint64_t getTypeStoreSizeInBits(Type *Ty) const {
|
||||
return 8*getTypeStoreSize(Ty);
|
||||
}
|
||||
|
||||
/// getTypeAllocSize - Return the offset in bytes between successive objects
|
||||
/// of the specified type, including alignment padding. This is the amount
|
||||
/// that alloca reserves for this type. For example, returns 12 or 16 for
|
||||
/// x86_fp80, depending on alignment.
|
||||
uint64_t getTypeAllocSize(Type* Ty) const {
|
||||
// Round up to the next alignment boundary.
|
||||
return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
|
||||
}
|
||||
|
||||
/// getTypeAllocSizeInBits - Return the offset in bits between successive
|
||||
/// objects of the specified type, including alignment padding; always a
|
||||
/// multiple of 8. This is the amount that alloca reserves for this type.
|
||||
/// For example, returns 96 or 128 for x86_fp80, depending on alignment.
|
||||
uint64_t getTypeAllocSizeInBits(Type* Ty) const {
|
||||
return 8*getTypeAllocSize(Ty);
|
||||
}
|
||||
|
||||
/// getABITypeAlignment - Return the minimum ABI-required alignment for the
|
||||
/// specified type.
|
||||
unsigned getABITypeAlignment(Type *Ty) const;
|
||||
|
||||
/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
|
||||
/// an integer type of the specified bitwidth.
|
||||
unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
|
||||
|
||||
|
||||
/// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
|
||||
/// for the specified type when it is part of a call frame.
|
||||
unsigned getCallFrameTypeAlignment(Type *Ty) const;
|
||||
|
||||
|
||||
/// getPrefTypeAlignment - Return the preferred stack/global alignment for
|
||||
/// the specified type. This is always at least as good as the ABI alignment.
|
||||
unsigned getPrefTypeAlignment(Type *Ty) const;
|
||||
|
||||
/// getPreferredTypeAlignmentShift - Return the preferred alignment for the
|
||||
/// specified type, returned as log2 of the value (a shift amount).
|
||||
///
|
||||
unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
|
||||
|
||||
/// getIntPtrType - Return an unsigned integer type that is the same size or
|
||||
/// greater to the host pointer size.
|
||||
///
|
||||
IntegerType *getIntPtrType(LLVMContext &C) const;
|
||||
|
||||
/// getIndexedOffset - return the offset from the beginning of the type for
|
||||
/// the specified indices. This is used to implement getelementptr.
|
||||
///
|
||||
uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
|
||||
|
||||
/// getStructLayout - Return a StructLayout object, indicating the alignment
|
||||
/// of the struct, its size, and the offsets of its fields. Note that this
|
||||
/// information is lazily cached.
|
||||
const StructLayout *getStructLayout(StructType *Ty) const;
|
||||
|
||||
/// getPreferredAlignment - Return the preferred alignment of the specified
|
||||
/// global. This includes an explicitly requested alignment (if the global
|
||||
/// has one).
|
||||
unsigned getPreferredAlignment(const GlobalVariable *GV) const;
|
||||
|
||||
/// getPreferredAlignmentLog - Return the preferred alignment of the
|
||||
/// specified global, returned in log form. This includes an explicitly
|
||||
/// requested alignment (if the global has one).
|
||||
unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
|
||||
|
||||
/// RoundUpAlignment - Round the specified value up to the next alignment
|
||||
/// boundary specified by Alignment. For example, 7 rounded up to an
|
||||
/// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4
|
||||
/// is 8 because it is already aligned.
|
||||
template <typename UIntTy>
|
||||
static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
|
||||
assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
|
||||
return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
|
||||
}
|
||||
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
};
|
||||
|
||||
/// StructLayout - used to lazily calculate structure layout information for a
|
||||
/// target machine, based on the DataLayout structure.
|
||||
///
|
||||
class StructLayout {
|
||||
uint64_t StructSize;
|
||||
unsigned StructAlignment;
|
||||
unsigned NumElements;
|
||||
uint64_t MemberOffsets[1]; // variable sized array!
|
||||
public:
|
||||
|
||||
uint64_t getSizeInBytes() const {
|
||||
return StructSize;
|
||||
}
|
||||
|
||||
uint64_t getSizeInBits() const {
|
||||
return 8*StructSize;
|
||||
}
|
||||
|
||||
unsigned getAlignment() const {
|
||||
return StructAlignment;
|
||||
}
|
||||
|
||||
/// getElementContainingOffset - Given a valid byte offset into the structure,
|
||||
/// return the structure index that contains it.
|
||||
///
|
||||
unsigned getElementContainingOffset(uint64_t Offset) const;
|
||||
|
||||
uint64_t getElementOffset(unsigned Idx) const {
|
||||
assert(Idx < NumElements && "Invalid element idx!");
|
||||
return MemberOffsets[Idx];
|
||||
}
|
||||
|
||||
uint64_t getElementOffsetInBits(unsigned Idx) const {
|
||||
return getElementOffset(Idx)*8;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class DataLayout; // Only DataLayout can create this class
|
||||
StructLayout(StructType *ST, const DataLayout &TD);
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
|
@ -8,6 +8,7 @@ add_llvm_library(LLVMCore
|
|||
ConstantFold.cpp
|
||||
Constants.cpp
|
||||
Core.cpp
|
||||
DataLayout.cpp
|
||||
DebugInfo.cpp
|
||||
DebugLoc.cpp
|
||||
DIBuilder.cpp
|
||||
|
|
|
@ -0,0 +1,665 @@
|
|||
//===-- TargetData.cpp - Data size & alignment routines --------------------==//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines target properties related to datatype size/offset/alignment
|
||||
// information.
|
||||
//
|
||||
// This structure should be created once, filled in if the defaults are not
|
||||
// correct and then passed around by const&. None of the members functions
|
||||
// require modification to the object.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
#include "llvm/Support/ManagedStatic.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Support/Mutex.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include <algorithm>
|
||||
#include <cstdlib>
|
||||
using namespace llvm;
|
||||
|
||||
// Handle the Pass registration stuff necessary to use TargetData's.
|
||||
|
||||
// Register the default SparcV9 implementation...
|
||||
INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true)
|
||||
char TargetData::ID = 0;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Support for StructLayout
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
StructLayout::StructLayout(StructType *ST, const TargetData &TD) {
|
||||
assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
|
||||
StructAlignment = 0;
|
||||
StructSize = 0;
|
||||
NumElements = ST->getNumElements();
|
||||
|
||||
// Loop over each of the elements, placing them in memory.
|
||||
for (unsigned i = 0, e = NumElements; i != e; ++i) {
|
||||
Type *Ty = ST->getElementType(i);
|
||||
unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
|
||||
|
||||
// Add padding if necessary to align the data element properly.
|
||||
if ((StructSize & (TyAlign-1)) != 0)
|
||||
StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign);
|
||||
|
||||
// Keep track of maximum alignment constraint.
|
||||
StructAlignment = std::max(TyAlign, StructAlignment);
|
||||
|
||||
MemberOffsets[i] = StructSize;
|
||||
StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
|
||||
}
|
||||
|
||||
// Empty structures have alignment of 1 byte.
|
||||
if (StructAlignment == 0) StructAlignment = 1;
|
||||
|
||||
// Add padding to the end of the struct so that it could be put in an array
|
||||
// and all array elements would be aligned correctly.
|
||||
if ((StructSize & (StructAlignment-1)) != 0)
|
||||
StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment);
|
||||
}
|
||||
|
||||
|
||||
/// getElementContainingOffset - Given a valid offset into the structure,
|
||||
/// return the structure index that contains it.
|
||||
unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
|
||||
const uint64_t *SI =
|
||||
std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
|
||||
assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
|
||||
--SI;
|
||||
assert(*SI <= Offset && "upper_bound didn't work");
|
||||
assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
|
||||
(SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
|
||||
"Upper bound didn't work!");
|
||||
|
||||
// Multiple fields can have the same offset if any of them are zero sized.
|
||||
// For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
|
||||
// at the i32 element, because it is the last element at that offset. This is
|
||||
// the right one to return, because anything after it will have a higher
|
||||
// offset, implying that this element is non-empty.
|
||||
return SI-&MemberOffsets[0];
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// TargetAlignElem, TargetAlign support
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
TargetAlignElem
|
||||
TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align,
|
||||
unsigned pref_align, uint32_t bit_width) {
|
||||
assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
|
||||
TargetAlignElem retval;
|
||||
retval.AlignType = align_type;
|
||||
retval.ABIAlign = abi_align;
|
||||
retval.PrefAlign = pref_align;
|
||||
retval.TypeBitWidth = bit_width;
|
||||
return retval;
|
||||
}
|
||||
|
||||
bool
|
||||
TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
|
||||
return (AlignType == rhs.AlignType
|
||||
&& ABIAlign == rhs.ABIAlign
|
||||
&& PrefAlign == rhs.PrefAlign
|
||||
&& TypeBitWidth == rhs.TypeBitWidth);
|
||||
}
|
||||
|
||||
const TargetAlignElem
|
||||
TargetData::InvalidAlignmentElem = { (AlignTypeEnum)0xFF, 0, 0, 0 };
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// TargetData Class Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// getInt - Get an integer ignoring errors.
|
||||
static int getInt(StringRef R) {
|
||||
int Result = 0;
|
||||
R.getAsInteger(10, Result);
|
||||
return Result;
|
||||
}
|
||||
|
||||
void TargetData::init() {
|
||||
initializeTargetDataPass(*PassRegistry::getPassRegistry());
|
||||
|
||||
LayoutMap = 0;
|
||||
LittleEndian = false;
|
||||
PointerMemSize = 8;
|
||||
PointerABIAlign = 8;
|
||||
PointerPrefAlign = PointerABIAlign;
|
||||
StackNaturalAlign = 0;
|
||||
|
||||
// Default alignments
|
||||
setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1
|
||||
setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8
|
||||
setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16
|
||||
setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32
|
||||
setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64
|
||||
setAlignment(FLOAT_ALIGN, 2, 2, 16); // half
|
||||
setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
|
||||
setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
|
||||
setAlignment(FLOAT_ALIGN, 16, 16, 128); // ppcf128, quad, ...
|
||||
setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ...
|
||||
setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
|
||||
setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct
|
||||
}
|
||||
|
||||
std::string TargetData::parseSpecifier(StringRef Desc, TargetData *td) {
|
||||
|
||||
if (td)
|
||||
td->init();
|
||||
|
||||
while (!Desc.empty()) {
|
||||
std::pair<StringRef, StringRef> Split = Desc.split('-');
|
||||
StringRef Token = Split.first;
|
||||
Desc = Split.second;
|
||||
|
||||
if (Token.empty())
|
||||
continue;
|
||||
|
||||
Split = Token.split(':');
|
||||
StringRef Specifier = Split.first;
|
||||
Token = Split.second;
|
||||
|
||||
assert(!Specifier.empty() && "Can't be empty here");
|
||||
|
||||
switch (Specifier[0]) {
|
||||
case 'E':
|
||||
if (td)
|
||||
td->LittleEndian = false;
|
||||
break;
|
||||
case 'e':
|
||||
if (td)
|
||||
td->LittleEndian = true;
|
||||
break;
|
||||
case 'p': {
|
||||
// Pointer size.
|
||||
Split = Token.split(':');
|
||||
int PointerMemSizeBits = getInt(Split.first);
|
||||
if (PointerMemSizeBits < 0 || PointerMemSizeBits % 8 != 0)
|
||||
return "invalid pointer size, must be a positive 8-bit multiple";
|
||||
if (td)
|
||||
td->PointerMemSize = PointerMemSizeBits / 8;
|
||||
|
||||
// Pointer ABI alignment.
|
||||
Split = Split.second.split(':');
|
||||
int PointerABIAlignBits = getInt(Split.first);
|
||||
if (PointerABIAlignBits < 0 || PointerABIAlignBits % 8 != 0) {
|
||||
return "invalid pointer ABI alignment, "
|
||||
"must be a positive 8-bit multiple";
|
||||
}
|
||||
if (td)
|
||||
td->PointerABIAlign = PointerABIAlignBits / 8;
|
||||
|
||||
// Pointer preferred alignment.
|
||||
Split = Split.second.split(':');
|
||||
int PointerPrefAlignBits = getInt(Split.first);
|
||||
if (PointerPrefAlignBits < 0 || PointerPrefAlignBits % 8 != 0) {
|
||||
return "invalid pointer preferred alignment, "
|
||||
"must be a positive 8-bit multiple";
|
||||
}
|
||||
if (td) {
|
||||
td->PointerPrefAlign = PointerPrefAlignBits / 8;
|
||||
if (td->PointerPrefAlign == 0)
|
||||
td->PointerPrefAlign = td->PointerABIAlign;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'i':
|
||||
case 'v':
|
||||
case 'f':
|
||||
case 'a':
|
||||
case 's': {
|
||||
AlignTypeEnum AlignType;
|
||||
char field = Specifier[0];
|
||||
switch (field) {
|
||||
default:
|
||||
case 'i': AlignType = INTEGER_ALIGN; break;
|
||||
case 'v': AlignType = VECTOR_ALIGN; break;
|
||||
case 'f': AlignType = FLOAT_ALIGN; break;
|
||||
case 'a': AlignType = AGGREGATE_ALIGN; break;
|
||||
case 's': AlignType = STACK_ALIGN; break;
|
||||
}
|
||||
int Size = getInt(Specifier.substr(1));
|
||||
if (Size < 0) {
|
||||
return std::string("invalid ") + field + "-size field, "
|
||||
"must be positive";
|
||||
}
|
||||
|
||||
Split = Token.split(':');
|
||||
int ABIAlignBits = getInt(Split.first);
|
||||
if (ABIAlignBits < 0 || ABIAlignBits % 8 != 0) {
|
||||
return std::string("invalid ") + field +"-abi-alignment field, "
|
||||
"must be a positive 8-bit multiple";
|
||||
}
|
||||
unsigned ABIAlign = ABIAlignBits / 8;
|
||||
|
||||
Split = Split.second.split(':');
|
||||
|
||||
int PrefAlignBits = getInt(Split.first);
|
||||
if (PrefAlignBits < 0 || PrefAlignBits % 8 != 0) {
|
||||
return std::string("invalid ") + field +"-preferred-alignment field, "
|
||||
"must be a positive 8-bit multiple";
|
||||
}
|
||||
unsigned PrefAlign = PrefAlignBits / 8;
|
||||
if (PrefAlign == 0)
|
||||
PrefAlign = ABIAlign;
|
||||
|
||||
if (td)
|
||||
td->setAlignment(AlignType, ABIAlign, PrefAlign, Size);
|
||||
break;
|
||||
}
|
||||
case 'n': // Native integer types.
|
||||
Specifier = Specifier.substr(1);
|
||||
do {
|
||||
int Width = getInt(Specifier);
|
||||
if (Width <= 0) {
|
||||
return std::string("invalid native integer size \'") + Specifier.str() +
|
||||
"\', must be a positive integer.";
|
||||
}
|
||||
if (td && Width != 0)
|
||||
td->LegalIntWidths.push_back(Width);
|
||||
Split = Token.split(':');
|
||||
Specifier = Split.first;
|
||||
Token = Split.second;
|
||||
} while (!Specifier.empty() || !Token.empty());
|
||||
break;
|
||||
case 'S': { // Stack natural alignment.
|
||||
int StackNaturalAlignBits = getInt(Specifier.substr(1));
|
||||
if (StackNaturalAlignBits < 0 || StackNaturalAlignBits % 8 != 0) {
|
||||
return "invalid natural stack alignment (S-field), "
|
||||
"must be a positive 8-bit multiple";
|
||||
}
|
||||
if (td)
|
||||
td->StackNaturalAlign = StackNaturalAlignBits / 8;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return "";
|
||||
}
|
||||
|
||||
/// Default ctor.
|
||||
///
|
||||
/// @note This has to exist, because this is a pass, but it should never be
|
||||
/// used.
|
||||
TargetData::TargetData() : ImmutablePass(ID) {
|
||||
report_fatal_error("Bad TargetData ctor used. "
|
||||
"Tool did not specify a TargetData to use?");
|
||||
}
|
||||
|
||||
TargetData::TargetData(const Module *M)
|
||||
: ImmutablePass(ID) {
|
||||
std::string errMsg = parseSpecifier(M->getDataLayout(), this);
|
||||
assert(errMsg == "" && "Module M has malformed target data layout string.");
|
||||
(void)errMsg;
|
||||
}
|
||||
|
||||
void
|
||||
TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align,
|
||||
unsigned pref_align, uint32_t bit_width) {
|
||||
assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
|
||||
assert(pref_align < (1 << 16) && "Alignment doesn't fit in bitfield");
|
||||
assert(bit_width < (1 << 24) && "Bit width doesn't fit in bitfield");
|
||||
for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
|
||||
if (Alignments[i].AlignType == align_type &&
|
||||
Alignments[i].TypeBitWidth == bit_width) {
|
||||
// Update the abi, preferred alignments.
|
||||
Alignments[i].ABIAlign = abi_align;
|
||||
Alignments[i].PrefAlign = pref_align;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
|
||||
pref_align, bit_width));
|
||||
}
|
||||
|
||||
/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
|
||||
/// preferred if ABIInfo = false) the target wants for the specified datatype.
|
||||
unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
|
||||
uint32_t BitWidth, bool ABIInfo,
|
||||
Type *Ty) const {
|
||||
// Check to see if we have an exact match and remember the best match we see.
|
||||
int BestMatchIdx = -1;
|
||||
int LargestInt = -1;
|
||||
for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
|
||||
if (Alignments[i].AlignType == AlignType &&
|
||||
Alignments[i].TypeBitWidth == BitWidth)
|
||||
return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
|
||||
|
||||
// The best match so far depends on what we're looking for.
|
||||
if (AlignType == INTEGER_ALIGN &&
|
||||
Alignments[i].AlignType == INTEGER_ALIGN) {
|
||||
// The "best match" for integers is the smallest size that is larger than
|
||||
// the BitWidth requested.
|
||||
if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
|
||||
Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
|
||||
BestMatchIdx = i;
|
||||
// However, if there isn't one that's larger, then we must use the
|
||||
// largest one we have (see below)
|
||||
if (LargestInt == -1 ||
|
||||
Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
|
||||
LargestInt = i;
|
||||
}
|
||||
}
|
||||
|
||||
// Okay, we didn't find an exact solution. Fall back here depending on what
|
||||
// is being looked for.
|
||||
if (BestMatchIdx == -1) {
|
||||
// If we didn't find an integer alignment, fall back on most conservative.
|
||||
if (AlignType == INTEGER_ALIGN) {
|
||||
BestMatchIdx = LargestInt;
|
||||
} else {
|
||||
assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
|
||||
|
||||
// By default, use natural alignment for vector types. This is consistent
|
||||
// with what clang and llvm-gcc do.
|
||||
unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
|
||||
Align *= cast<VectorType>(Ty)->getNumElements();
|
||||
// If the alignment is not a power of 2, round up to the next power of 2.
|
||||
// This happens for non-power-of-2 length vectors.
|
||||
if (Align & (Align-1))
|
||||
Align = NextPowerOf2(Align);
|
||||
return Align;
|
||||
}
|
||||
}
|
||||
|
||||
// Since we got a "best match" index, just return it.
|
||||
return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
|
||||
: Alignments[BestMatchIdx].PrefAlign;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
class StructLayoutMap {
|
||||
typedef DenseMap<StructType*, StructLayout*> LayoutInfoTy;
|
||||
LayoutInfoTy LayoutInfo;
|
||||
|
||||
public:
|
||||
virtual ~StructLayoutMap() {
|
||||
// Remove any layouts.
|
||||
for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end();
|
||||
I != E; ++I) {
|
||||
StructLayout *Value = I->second;
|
||||
Value->~StructLayout();
|
||||
free(Value);
|
||||
}
|
||||
}
|
||||
|
||||
StructLayout *&operator[](StructType *STy) {
|
||||
return LayoutInfo[STy];
|
||||
}
|
||||
|
||||
// for debugging...
|
||||
virtual void dump() const {}
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
TargetData::~TargetData() {
|
||||
delete static_cast<StructLayoutMap*>(LayoutMap);
|
||||
}
|
||||
|
||||
const StructLayout *TargetData::getStructLayout(StructType *Ty) const {
|
||||
if (!LayoutMap)
|
||||
LayoutMap = new StructLayoutMap();
|
||||
|
||||
StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
|
||||
StructLayout *&SL = (*STM)[Ty];
|
||||
if (SL) return SL;
|
||||
|
||||
// Otherwise, create the struct layout. Because it is variable length, we
|
||||
// malloc it, then use placement new.
|
||||
int NumElts = Ty->getNumElements();
|
||||
StructLayout *L =
|
||||
(StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
|
||||
|
||||
// Set SL before calling StructLayout's ctor. The ctor could cause other
|
||||
// entries to be added to TheMap, invalidating our reference.
|
||||
SL = L;
|
||||
|
||||
new (L) StructLayout(Ty, *this);
|
||||
|
||||
return L;
|
||||
}
|
||||
|
||||
std::string TargetData::getStringRepresentation() const {
|
||||
std::string Result;
|
||||
raw_string_ostream OS(Result);
|
||||
|
||||
OS << (LittleEndian ? "e" : "E")
|
||||
<< "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8
|
||||
<< ':' << PointerPrefAlign*8
|
||||
<< "-S" << StackNaturalAlign*8;
|
||||
|
||||
for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
|
||||
const TargetAlignElem &AI = Alignments[i];
|
||||
OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':'
|
||||
<< AI.ABIAlign*8 << ':' << AI.PrefAlign*8;
|
||||
}
|
||||
|
||||
if (!LegalIntWidths.empty()) {
|
||||
OS << "-n" << (unsigned)LegalIntWidths[0];
|
||||
|
||||
for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i)
|
||||
OS << ':' << (unsigned)LegalIntWidths[i];
|
||||
}
|
||||
return OS.str();
|
||||
}
|
||||
|
||||
|
||||
uint64_t TargetData::getTypeSizeInBits(Type *Ty) const {
|
||||
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
||||
switch (Ty->getTypeID()) {
|
||||
case Type::LabelTyID:
|
||||
case Type::PointerTyID:
|
||||
return getPointerSizeInBits();
|
||||
case Type::ArrayTyID: {
|
||||
ArrayType *ATy = cast<ArrayType>(Ty);
|
||||
return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
|
||||
}
|
||||
case Type::StructTyID:
|
||||
// Get the layout annotation... which is lazily created on demand.
|
||||
return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
|
||||
case Type::IntegerTyID:
|
||||
return cast<IntegerType>(Ty)->getBitWidth();
|
||||
case Type::VoidTyID:
|
||||
return 8;
|
||||
case Type::HalfTyID:
|
||||
return 16;
|
||||
case Type::FloatTyID:
|
||||
return 32;
|
||||
case Type::DoubleTyID:
|
||||
case Type::X86_MMXTyID:
|
||||
return 64;
|
||||
case Type::PPC_FP128TyID:
|
||||
case Type::FP128TyID:
|
||||
return 128;
|
||||
// In memory objects this is always aligned to a higher boundary, but
|
||||
// only 80 bits contain information.
|
||||
case Type::X86_FP80TyID:
|
||||
return 80;
|
||||
case Type::VectorTyID:
|
||||
return cast<VectorType>(Ty)->getBitWidth();
|
||||
default:
|
||||
llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type");
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
\param abi_or_pref Flag that determines which alignment is returned. true
|
||||
returns the ABI alignment, false returns the preferred alignment.
|
||||
\param Ty The underlying type for which alignment is determined.
|
||||
|
||||
Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
|
||||
== false) for the requested type \a Ty.
|
||||
*/
|
||||
unsigned TargetData::getAlignment(Type *Ty, bool abi_or_pref) const {
|
||||
int AlignType = -1;
|
||||
|
||||
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
||||
switch (Ty->getTypeID()) {
|
||||
// Early escape for the non-numeric types.
|
||||
case Type::LabelTyID:
|
||||
case Type::PointerTyID:
|
||||
return (abi_or_pref
|
||||
? getPointerABIAlignment()
|
||||
: getPointerPrefAlignment());
|
||||
case Type::ArrayTyID:
|
||||
return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
|
||||
|
||||
case Type::StructTyID: {
|
||||
// Packed structure types always have an ABI alignment of one.
|
||||
if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
|
||||
return 1;
|
||||
|
||||
// Get the layout annotation... which is lazily created on demand.
|
||||
const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
|
||||
unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
|
||||
return std::max(Align, Layout->getAlignment());
|
||||
}
|
||||
case Type::IntegerTyID:
|
||||
case Type::VoidTyID:
|
||||
AlignType = INTEGER_ALIGN;
|
||||
break;
|
||||
case Type::HalfTyID:
|
||||
case Type::FloatTyID:
|
||||
case Type::DoubleTyID:
|
||||
// PPC_FP128TyID and FP128TyID have different data contents, but the
|
||||
// same size and alignment, so they look the same here.
|
||||
case Type::PPC_FP128TyID:
|
||||
case Type::FP128TyID:
|
||||
case Type::X86_FP80TyID:
|
||||
AlignType = FLOAT_ALIGN;
|
||||
break;
|
||||
case Type::X86_MMXTyID:
|
||||
case Type::VectorTyID:
|
||||
AlignType = VECTOR_ALIGN;
|
||||
break;
|
||||
default:
|
||||
llvm_unreachable("Bad type for getAlignment!!!");
|
||||
}
|
||||
|
||||
return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
|
||||
abi_or_pref, Ty);
|
||||
}
|
||||
|
||||
unsigned TargetData::getABITypeAlignment(Type *Ty) const {
|
||||
return getAlignment(Ty, true);
|
||||
}
|
||||
|
||||
/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
|
||||
/// an integer type of the specified bitwidth.
|
||||
unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const {
|
||||
return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0);
|
||||
}
|
||||
|
||||
|
||||
unsigned TargetData::getCallFrameTypeAlignment(Type *Ty) const {
|
||||
for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
|
||||
if (Alignments[i].AlignType == STACK_ALIGN)
|
||||
return Alignments[i].ABIAlign;
|
||||
|
||||
return getABITypeAlignment(Ty);
|
||||
}
|
||||
|
||||
unsigned TargetData::getPrefTypeAlignment(Type *Ty) const {
|
||||
return getAlignment(Ty, false);
|
||||
}
|
||||
|
||||
unsigned TargetData::getPreferredTypeAlignmentShift(Type *Ty) const {
|
||||
unsigned Align = getPrefTypeAlignment(Ty);
|
||||
assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
|
||||
return Log2_32(Align);
|
||||
}
|
||||
|
||||
/// getIntPtrType - Return an unsigned integer type that is the same size or
|
||||
/// greater to the host pointer size.
|
||||
IntegerType *TargetData::getIntPtrType(LLVMContext &C) const {
|
||||
return IntegerType::get(C, getPointerSizeInBits());
|
||||
}
|
||||
|
||||
|
||||
uint64_t TargetData::getIndexedOffset(Type *ptrTy,
|
||||
ArrayRef<Value *> Indices) const {
|
||||
Type *Ty = ptrTy;
|
||||
assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()");
|
||||
uint64_t Result = 0;
|
||||
|
||||
generic_gep_type_iterator<Value* const*>
|
||||
TI = gep_type_begin(ptrTy, Indices);
|
||||
for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX;
|
||||
++CurIDX, ++TI) {
|
||||
if (StructType *STy = dyn_cast<StructType>(*TI)) {
|
||||
assert(Indices[CurIDX]->getType() ==
|
||||
Type::getInt32Ty(ptrTy->getContext()) &&
|
||||
"Illegal struct idx");
|
||||
unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
|
||||
|
||||
// Get structure layout information...
|
||||
const StructLayout *Layout = getStructLayout(STy);
|
||||
|
||||
// Add in the offset, as calculated by the structure layout info...
|
||||
Result += Layout->getElementOffset(FieldNo);
|
||||
|
||||
// Update Ty to refer to current element
|
||||
Ty = STy->getElementType(FieldNo);
|
||||
} else {
|
||||
// Update Ty to refer to current element
|
||||
Ty = cast<SequentialType>(Ty)->getElementType();
|
||||
|
||||
// Get the array index and the size of each array element.
|
||||
if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue())
|
||||
Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty);
|
||||
}
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
/// getPreferredAlignment - Return the preferred alignment of the specified
|
||||
/// global. This includes an explicitly requested alignment (if the global
|
||||
/// has one).
|
||||
unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const {
|
||||
Type *ElemType = GV->getType()->getElementType();
|
||||
unsigned Alignment = getPrefTypeAlignment(ElemType);
|
||||
unsigned GVAlignment = GV->getAlignment();
|
||||
if (GVAlignment >= Alignment) {
|
||||
Alignment = GVAlignment;
|
||||
} else if (GVAlignment != 0) {
|
||||
Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
|
||||
}
|
||||
|
||||
if (GV->hasInitializer() && GVAlignment == 0) {
|
||||
if (Alignment < 16) {
|
||||
// If the global is not external, see if it is large. If so, give it a
|
||||
// larger alignment.
|
||||
if (getTypeSizeInBits(ElemType) > 128)
|
||||
Alignment = 16; // 16-byte alignment.
|
||||
}
|
||||
}
|
||||
return Alignment;
|
||||
}
|
||||
|
||||
/// getPreferredAlignmentLog - Return the preferred alignment of the
|
||||
/// specified global, returned in log form. This includes an explicitly
|
||||
/// requested alignment (if the global has one).
|
||||
unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
|
||||
return Log2_32(getPreferredAlignment(GV));
|
||||
}
|
Loading…
Reference in New Issue