diff --git a/llvm/include/llvm/DataLayout.h b/llvm/include/llvm/DataLayout.h new file mode 100644 index 000000000000..28d891ae2173 --- /dev/null +++ b/llvm/include/llvm/DataLayout.h @@ -0,0 +1,363 @@ +//===------ llvm/DataLayout.h - Data size & alignment info ------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines target properties related to datatype size/offset/alignment +// information. It uses lazy annotations to cache information about how +// structure types are laid out and used. +// +// This structure should be created once, filled in if the defaults are not +// correct and then passed around by const&. None of the members functions +// require modification to the object. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_DATALAYOUT_H +#define LLVM_DATALAYOUT_H + +#include "llvm/Pass.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/DataTypes.h" + +namespace llvm { + +class Value; +class Type; +class IntegerType; +class StructType; +class StructLayout; +class GlobalVariable; +class LLVMContext; +template +class ArrayRef; + +/// Enum used to categorize the alignment types stored by TargetAlignElem +enum AlignTypeEnum { + INTEGER_ALIGN = 'i', ///< Integer type alignment + VECTOR_ALIGN = 'v', ///< Vector type alignment + FLOAT_ALIGN = 'f', ///< Floating point type alignment + AGGREGATE_ALIGN = 'a', ///< Aggregate alignment + STACK_ALIGN = 's' ///< Stack objects alignment +}; + +/// Target alignment element. +/// +/// Stores the alignment data associated with a given alignment type (pointer, +/// integer, vector, float) and type bit width. +/// +/// @note The unusual order of elements in the structure attempts to reduce +/// padding and make the structure slightly more cache friendly. +struct TargetAlignElem { + unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum) + unsigned TypeBitWidth : 24; ///< Type bit width + unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw + unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw + + /// Initializer + static TargetAlignElem get(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width); + /// Equality predicate + bool operator==(const TargetAlignElem &rhs) const; +}; + +/// DataLayout - This class holds a parsed version of the target data layout +/// string in a module and provides methods for querying it. The target data +/// layout string is specified *by the target* - a frontend generating LLVM IR +/// is required to generate the right target data for the target being codegen'd +/// to. If some measure of portability is desired, an empty string may be +/// specified in the module. +class DataLayout : public ImmutablePass { +private: + bool LittleEndian; ///< Defaults to false + unsigned PointerMemSize; ///< Pointer size in bytes + unsigned PointerABIAlign; ///< Pointer ABI alignment + unsigned PointerPrefAlign; ///< Pointer preferred alignment + unsigned StackNaturalAlign; ///< Stack natural alignment + + SmallVector LegalIntWidths; ///< Legal Integers. + + /// Alignments- Where the primitive type alignment data is stored. + /// + /// @sa init(). + /// @note Could support multiple size pointer alignments, e.g., 32-bit + /// pointers vs. 64-bit pointers by extending TargetAlignment, but for now, + /// we don't. + SmallVector Alignments; + + /// InvalidAlignmentElem - This member is a signal that a requested alignment + /// type and bit width were not found in the SmallVector. + static const TargetAlignElem InvalidAlignmentElem; + + // The StructType -> StructLayout map. + mutable void *LayoutMap; + + //! Set/initialize target alignments + void setAlignment(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width); + unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width, + bool ABIAlign, Type *Ty) const; + //! Internal helper method that returns requested alignment for type. + unsigned getAlignment(Type *Ty, bool abi_or_pref) const; + + /// Valid alignment predicate. + /// + /// Predicate that tests a TargetAlignElem reference returned by get() against + /// InvalidAlignmentElem. + bool validAlignment(const TargetAlignElem &align) const { + return &align != &InvalidAlignmentElem; + } + + /// Initialise a DataLayout object with default values, ensure that the + /// target data pass is registered. + void init(); + +public: + /// Default ctor. + /// + /// @note This has to exist, because this is a pass, but it should never be + /// used. + DataLayout(); + + /// Constructs a DataLayout from a specification string. See init(). + explicit DataLayout(StringRef TargetDescription) + : ImmutablePass(ID) { + std::string errMsg = parseSpecifier(TargetDescription, this); + assert(errMsg == "" && "Invalid target data layout string."); + (void)errMsg; + } + + /// Parses a target data specification string. Returns an error message + /// if the string is malformed, or the empty string on success. Optionally + /// initialises a DataLayout object if passed a non-null pointer. + static std::string parseSpecifier(StringRef TargetDescription, DataLayout* td = 0); + + /// Initialize target data from properties stored in the module. + explicit DataLayout(const Module *M); + + DataLayout(const DataLayout &TD) : + ImmutablePass(ID), + LittleEndian(TD.isLittleEndian()), + PointerMemSize(TD.PointerMemSize), + PointerABIAlign(TD.PointerABIAlign), + PointerPrefAlign(TD.PointerPrefAlign), + LegalIntWidths(TD.LegalIntWidths), + Alignments(TD.Alignments), + LayoutMap(0) + { } + + ~DataLayout(); // Not virtual, do not subclass this class + + /// Target endianness... + bool isLittleEndian() const { return LittleEndian; } + bool isBigEndian() const { return !LittleEndian; } + + /// getStringRepresentation - Return the string representation of the + /// DataLayout. This representation is in the same format accepted by the + /// string constructor above. + std::string getStringRepresentation() const; + + /// isLegalInteger - This function returns true if the specified type is + /// known to be a native integer type supported by the CPU. For example, + /// i64 is not native on most 32-bit CPUs and i37 is not native on any known + /// one. This returns false if the integer width is not legal. + /// + /// The width is specified in bits. + /// + bool isLegalInteger(unsigned Width) const { + for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i) + if (LegalIntWidths[i] == Width) + return true; + return false; + } + + bool isIllegalInteger(unsigned Width) const { + return !isLegalInteger(Width); + } + + /// Returns true if the given alignment exceeds the natural stack alignment. + bool exceedsNaturalStackAlignment(unsigned Align) const { + return (StackNaturalAlign != 0) && (Align > StackNaturalAlign); + } + + /// fitsInLegalInteger - This function returns true if the specified type fits + /// in a native integer type supported by the CPU. For example, if the CPU + /// only supports i32 as a native integer type, then i27 fits in a legal + // integer type but i45 does not. + bool fitsInLegalInteger(unsigned Width) const { + for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i) + if (Width <= LegalIntWidths[i]) + return true; + return false; + } + + /// Target pointer alignment + unsigned getPointerABIAlignment() const { return PointerABIAlign; } + /// Return target's alignment for stack-based pointers + unsigned getPointerPrefAlignment() const { return PointerPrefAlign; } + /// Target pointer size + unsigned getPointerSize() const { return PointerMemSize; } + /// Target pointer size, in bits + unsigned getPointerSizeInBits() const { return 8*PointerMemSize; } + + /// Size examples: + /// + /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] + /// ---- ---------- --------------- --------------- + /// i1 1 8 8 + /// i8 8 8 8 + /// i19 19 24 32 + /// i32 32 32 32 + /// i100 100 104 128 + /// i128 128 128 128 + /// Float 32 32 32 + /// Double 64 64 64 + /// X86_FP80 80 80 96 + /// + /// [*] The alloc size depends on the alignment, and thus on the target. + /// These values are for x86-32 linux. + + /// getTypeSizeInBits - Return the number of bits necessary to hold the + /// specified type. For example, returns 36 for i36 and 80 for x86_fp80. + uint64_t getTypeSizeInBits(Type* Ty) const; + + /// getTypeStoreSize - Return the maximum number of bytes that may be + /// overwritten by storing the specified type. For example, returns 5 + /// for i36 and 10 for x86_fp80. + uint64_t getTypeStoreSize(Type *Ty) const { + return (getTypeSizeInBits(Ty)+7)/8; + } + + /// getTypeStoreSizeInBits - Return the maximum number of bits that may be + /// overwritten by storing the specified type; always a multiple of 8. For + /// example, returns 40 for i36 and 80 for x86_fp80. + uint64_t getTypeStoreSizeInBits(Type *Ty) const { + return 8*getTypeStoreSize(Ty); + } + + /// getTypeAllocSize - Return the offset in bytes between successive objects + /// of the specified type, including alignment padding. This is the amount + /// that alloca reserves for this type. For example, returns 12 or 16 for + /// x86_fp80, depending on alignment. + uint64_t getTypeAllocSize(Type* Ty) const { + // Round up to the next alignment boundary. + return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty)); + } + + /// getTypeAllocSizeInBits - Return the offset in bits between successive + /// objects of the specified type, including alignment padding; always a + /// multiple of 8. This is the amount that alloca reserves for this type. + /// For example, returns 96 or 128 for x86_fp80, depending on alignment. + uint64_t getTypeAllocSizeInBits(Type* Ty) const { + return 8*getTypeAllocSize(Ty); + } + + /// getABITypeAlignment - Return the minimum ABI-required alignment for the + /// specified type. + unsigned getABITypeAlignment(Type *Ty) const; + + /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for + /// an integer type of the specified bitwidth. + unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const; + + + /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment + /// for the specified type when it is part of a call frame. + unsigned getCallFrameTypeAlignment(Type *Ty) const; + + + /// getPrefTypeAlignment - Return the preferred stack/global alignment for + /// the specified type. This is always at least as good as the ABI alignment. + unsigned getPrefTypeAlignment(Type *Ty) const; + + /// getPreferredTypeAlignmentShift - Return the preferred alignment for the + /// specified type, returned as log2 of the value (a shift amount). + /// + unsigned getPreferredTypeAlignmentShift(Type *Ty) const; + + /// getIntPtrType - Return an unsigned integer type that is the same size or + /// greater to the host pointer size. + /// + IntegerType *getIntPtrType(LLVMContext &C) const; + + /// getIndexedOffset - return the offset from the beginning of the type for + /// the specified indices. This is used to implement getelementptr. + /// + uint64_t getIndexedOffset(Type *Ty, ArrayRef Indices) const; + + /// getStructLayout - Return a StructLayout object, indicating the alignment + /// of the struct, its size, and the offsets of its fields. Note that this + /// information is lazily cached. + const StructLayout *getStructLayout(StructType *Ty) const; + + /// getPreferredAlignment - Return the preferred alignment of the specified + /// global. This includes an explicitly requested alignment (if the global + /// has one). + unsigned getPreferredAlignment(const GlobalVariable *GV) const; + + /// getPreferredAlignmentLog - Return the preferred alignment of the + /// specified global, returned in log form. This includes an explicitly + /// requested alignment (if the global has one). + unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const; + + /// RoundUpAlignment - Round the specified value up to the next alignment + /// boundary specified by Alignment. For example, 7 rounded up to an + /// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4 + /// is 8 because it is already aligned. + template + static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) { + assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!"); + return (Val + (Alignment-1)) & ~UIntTy(Alignment-1); + } + + static char ID; // Pass identification, replacement for typeid +}; + +/// StructLayout - used to lazily calculate structure layout information for a +/// target machine, based on the DataLayout structure. +/// +class StructLayout { + uint64_t StructSize; + unsigned StructAlignment; + unsigned NumElements; + uint64_t MemberOffsets[1]; // variable sized array! +public: + + uint64_t getSizeInBytes() const { + return StructSize; + } + + uint64_t getSizeInBits() const { + return 8*StructSize; + } + + unsigned getAlignment() const { + return StructAlignment; + } + + /// getElementContainingOffset - Given a valid byte offset into the structure, + /// return the structure index that contains it. + /// + unsigned getElementContainingOffset(uint64_t Offset) const; + + uint64_t getElementOffset(unsigned Idx) const { + assert(Idx < NumElements && "Invalid element idx!"); + return MemberOffsets[Idx]; + } + + uint64_t getElementOffsetInBits(unsigned Idx) const { + return getElementOffset(Idx)*8; + } + +private: + friend class DataLayout; // Only DataLayout can create this class + StructLayout(StructType *ST, const DataLayout &TD); +}; + +} // End llvm namespace + +#endif diff --git a/llvm/lib/VMCore/CMakeLists.txt b/llvm/lib/VMCore/CMakeLists.txt index c17e79454ea3..6c309679740f 100644 --- a/llvm/lib/VMCore/CMakeLists.txt +++ b/llvm/lib/VMCore/CMakeLists.txt @@ -8,6 +8,7 @@ add_llvm_library(LLVMCore ConstantFold.cpp Constants.cpp Core.cpp + DataLayout.cpp DebugInfo.cpp DebugLoc.cpp DIBuilder.cpp diff --git a/llvm/lib/VMCore/DataLayout.cpp b/llvm/lib/VMCore/DataLayout.cpp new file mode 100644 index 000000000000..0040147022d3 --- /dev/null +++ b/llvm/lib/VMCore/DataLayout.cpp @@ -0,0 +1,665 @@ +//===-- TargetData.cpp - Data size & alignment routines --------------------==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines target properties related to datatype size/offset/alignment +// information. +// +// This structure should be created once, filled in if the defaults are not +// correct and then passed around by const&. None of the members functions +// require modification to the object. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Target/TargetData.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Mutex.h" +#include "llvm/ADT/DenseMap.h" +#include +#include +using namespace llvm; + +// Handle the Pass registration stuff necessary to use TargetData's. + +// Register the default SparcV9 implementation... +INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true) +char TargetData::ID = 0; + +//===----------------------------------------------------------------------===// +// Support for StructLayout +//===----------------------------------------------------------------------===// + +StructLayout::StructLayout(StructType *ST, const TargetData &TD) { + assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); + StructAlignment = 0; + StructSize = 0; + NumElements = ST->getNumElements(); + + // Loop over each of the elements, placing them in memory. + for (unsigned i = 0, e = NumElements; i != e; ++i) { + Type *Ty = ST->getElementType(i); + unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); + + // Add padding if necessary to align the data element properly. + if ((StructSize & (TyAlign-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign); + + // Keep track of maximum alignment constraint. + StructAlignment = std::max(TyAlign, StructAlignment); + + MemberOffsets[i] = StructSize; + StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item + } + + // Empty structures have alignment of 1 byte. + if (StructAlignment == 0) StructAlignment = 1; + + // Add padding to the end of the struct so that it could be put in an array + // and all array elements would be aligned correctly. + if ((StructSize & (StructAlignment-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment); +} + + +/// getElementContainingOffset - Given a valid offset into the structure, +/// return the structure index that contains it. +unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { + const uint64_t *SI = + std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset); + assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); + --SI; + assert(*SI <= Offset && "upper_bound didn't work"); + assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && + (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && + "Upper bound didn't work!"); + + // Multiple fields can have the same offset if any of them are zero sized. + // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop + // at the i32 element, because it is the last element at that offset. This is + // the right one to return, because anything after it will have a higher + // offset, implying that this element is non-empty. + return SI-&MemberOffsets[0]; +} + +//===----------------------------------------------------------------------===// +// TargetAlignElem, TargetAlign support +//===----------------------------------------------------------------------===// + +TargetAlignElem +TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); + TargetAlignElem retval; + retval.AlignType = align_type; + retval.ABIAlign = abi_align; + retval.PrefAlign = pref_align; + retval.TypeBitWidth = bit_width; + return retval; +} + +bool +TargetAlignElem::operator==(const TargetAlignElem &rhs) const { + return (AlignType == rhs.AlignType + && ABIAlign == rhs.ABIAlign + && PrefAlign == rhs.PrefAlign + && TypeBitWidth == rhs.TypeBitWidth); +} + +const TargetAlignElem +TargetData::InvalidAlignmentElem = { (AlignTypeEnum)0xFF, 0, 0, 0 }; + +//===----------------------------------------------------------------------===// +// TargetData Class Implementation +//===----------------------------------------------------------------------===// + +/// getInt - Get an integer ignoring errors. +static int getInt(StringRef R) { + int Result = 0; + R.getAsInteger(10, Result); + return Result; +} + +void TargetData::init() { + initializeTargetDataPass(*PassRegistry::getPassRegistry()); + + LayoutMap = 0; + LittleEndian = false; + PointerMemSize = 8; + PointerABIAlign = 8; + PointerPrefAlign = PointerABIAlign; + StackNaturalAlign = 0; + + // Default alignments + setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1 + setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8 + setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16 + setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32 + setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64 + setAlignment(FLOAT_ALIGN, 2, 2, 16); // half + setAlignment(FLOAT_ALIGN, 4, 4, 32); // float + setAlignment(FLOAT_ALIGN, 8, 8, 64); // double + setAlignment(FLOAT_ALIGN, 16, 16, 128); // ppcf128, quad, ... + setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ... + setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... + setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct +} + +std::string TargetData::parseSpecifier(StringRef Desc, TargetData *td) { + + if (td) + td->init(); + + while (!Desc.empty()) { + std::pair Split = Desc.split('-'); + StringRef Token = Split.first; + Desc = Split.second; + + if (Token.empty()) + continue; + + Split = Token.split(':'); + StringRef Specifier = Split.first; + Token = Split.second; + + assert(!Specifier.empty() && "Can't be empty here"); + + switch (Specifier[0]) { + case 'E': + if (td) + td->LittleEndian = false; + break; + case 'e': + if (td) + td->LittleEndian = true; + break; + case 'p': { + // Pointer size. + Split = Token.split(':'); + int PointerMemSizeBits = getInt(Split.first); + if (PointerMemSizeBits < 0 || PointerMemSizeBits % 8 != 0) + return "invalid pointer size, must be a positive 8-bit multiple"; + if (td) + td->PointerMemSize = PointerMemSizeBits / 8; + + // Pointer ABI alignment. + Split = Split.second.split(':'); + int PointerABIAlignBits = getInt(Split.first); + if (PointerABIAlignBits < 0 || PointerABIAlignBits % 8 != 0) { + return "invalid pointer ABI alignment, " + "must be a positive 8-bit multiple"; + } + if (td) + td->PointerABIAlign = PointerABIAlignBits / 8; + + // Pointer preferred alignment. + Split = Split.second.split(':'); + int PointerPrefAlignBits = getInt(Split.first); + if (PointerPrefAlignBits < 0 || PointerPrefAlignBits % 8 != 0) { + return "invalid pointer preferred alignment, " + "must be a positive 8-bit multiple"; + } + if (td) { + td->PointerPrefAlign = PointerPrefAlignBits / 8; + if (td->PointerPrefAlign == 0) + td->PointerPrefAlign = td->PointerABIAlign; + } + break; + } + case 'i': + case 'v': + case 'f': + case 'a': + case 's': { + AlignTypeEnum AlignType; + char field = Specifier[0]; + switch (field) { + default: + case 'i': AlignType = INTEGER_ALIGN; break; + case 'v': AlignType = VECTOR_ALIGN; break; + case 'f': AlignType = FLOAT_ALIGN; break; + case 'a': AlignType = AGGREGATE_ALIGN; break; + case 's': AlignType = STACK_ALIGN; break; + } + int Size = getInt(Specifier.substr(1)); + if (Size < 0) { + return std::string("invalid ") + field + "-size field, " + "must be positive"; + } + + Split = Token.split(':'); + int ABIAlignBits = getInt(Split.first); + if (ABIAlignBits < 0 || ABIAlignBits % 8 != 0) { + return std::string("invalid ") + field +"-abi-alignment field, " + "must be a positive 8-bit multiple"; + } + unsigned ABIAlign = ABIAlignBits / 8; + + Split = Split.second.split(':'); + + int PrefAlignBits = getInt(Split.first); + if (PrefAlignBits < 0 || PrefAlignBits % 8 != 0) { + return std::string("invalid ") + field +"-preferred-alignment field, " + "must be a positive 8-bit multiple"; + } + unsigned PrefAlign = PrefAlignBits / 8; + if (PrefAlign == 0) + PrefAlign = ABIAlign; + + if (td) + td->setAlignment(AlignType, ABIAlign, PrefAlign, Size); + break; + } + case 'n': // Native integer types. + Specifier = Specifier.substr(1); + do { + int Width = getInt(Specifier); + if (Width <= 0) { + return std::string("invalid native integer size \'") + Specifier.str() + + "\', must be a positive integer."; + } + if (td && Width != 0) + td->LegalIntWidths.push_back(Width); + Split = Token.split(':'); + Specifier = Split.first; + Token = Split.second; + } while (!Specifier.empty() || !Token.empty()); + break; + case 'S': { // Stack natural alignment. + int StackNaturalAlignBits = getInt(Specifier.substr(1)); + if (StackNaturalAlignBits < 0 || StackNaturalAlignBits % 8 != 0) { + return "invalid natural stack alignment (S-field), " + "must be a positive 8-bit multiple"; + } + if (td) + td->StackNaturalAlign = StackNaturalAlignBits / 8; + break; + } + default: + break; + } + } + + return ""; +} + +/// Default ctor. +/// +/// @note This has to exist, because this is a pass, but it should never be +/// used. +TargetData::TargetData() : ImmutablePass(ID) { + report_fatal_error("Bad TargetData ctor used. " + "Tool did not specify a TargetData to use?"); +} + +TargetData::TargetData(const Module *M) + : ImmutablePass(ID) { + std::string errMsg = parseSpecifier(M->getDataLayout(), this); + assert(errMsg == "" && "Module M has malformed target data layout string."); + (void)errMsg; +} + +void +TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); + assert(pref_align < (1 << 16) && "Alignment doesn't fit in bitfield"); + assert(bit_width < (1 << 24) && "Bit width doesn't fit in bitfield"); + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + if (Alignments[i].AlignType == align_type && + Alignments[i].TypeBitWidth == bit_width) { + // Update the abi, preferred alignments. + Alignments[i].ABIAlign = abi_align; + Alignments[i].PrefAlign = pref_align; + return; + } + } + + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, + pref_align, bit_width)); +} + +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// preferred if ABIInfo = false) the target wants for the specified datatype. +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, + uint32_t BitWidth, bool ABIInfo, + Type *Ty) const { + // Check to see if we have an exact match and remember the best match we see. + int BestMatchIdx = -1; + int LargestInt = -1; + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + if (Alignments[i].AlignType == AlignType && + Alignments[i].TypeBitWidth == BitWidth) + return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; + + // The best match so far depends on what we're looking for. + if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { + // The "best match" for integers is the smallest size that is larger than + // the BitWidth requested. + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) + BestMatchIdx = i; + // However, if there isn't one that's larger, then we must use the + // largest one we have (see below) + if (LargestInt == -1 || + Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) + LargestInt = i; + } + } + + // Okay, we didn't find an exact solution. Fall back here depending on what + // is being looked for. + if (BestMatchIdx == -1) { + // If we didn't find an integer alignment, fall back on most conservative. + if (AlignType == INTEGER_ALIGN) { + BestMatchIdx = LargestInt; + } else { + assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); + + // By default, use natural alignment for vector types. This is consistent + // with what clang and llvm-gcc do. + unsigned Align = getTypeAllocSize(cast(Ty)->getElementType()); + Align *= cast(Ty)->getNumElements(); + // If the alignment is not a power of 2, round up to the next power of 2. + // This happens for non-power-of-2 length vectors. + if (Align & (Align-1)) + Align = NextPowerOf2(Align); + return Align; + } + } + + // Since we got a "best match" index, just return it. + return ABIInfo ? Alignments[BestMatchIdx].ABIAlign + : Alignments[BestMatchIdx].PrefAlign; +} + +namespace { + +class StructLayoutMap { + typedef DenseMap LayoutInfoTy; + LayoutInfoTy LayoutInfo; + +public: + virtual ~StructLayoutMap() { + // Remove any layouts. + for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end(); + I != E; ++I) { + StructLayout *Value = I->second; + Value->~StructLayout(); + free(Value); + } + } + + StructLayout *&operator[](StructType *STy) { + return LayoutInfo[STy]; + } + + // for debugging... + virtual void dump() const {} +}; + +} // end anonymous namespace + +TargetData::~TargetData() { + delete static_cast(LayoutMap); +} + +const StructLayout *TargetData::getStructLayout(StructType *Ty) const { + if (!LayoutMap) + LayoutMap = new StructLayoutMap(); + + StructLayoutMap *STM = static_cast(LayoutMap); + StructLayout *&SL = (*STM)[Ty]; + if (SL) return SL; + + // Otherwise, create the struct layout. Because it is variable length, we + // malloc it, then use placement new. + int NumElts = Ty->getNumElements(); + StructLayout *L = + (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); + + // Set SL before calling StructLayout's ctor. The ctor could cause other + // entries to be added to TheMap, invalidating our reference. + SL = L; + + new (L) StructLayout(Ty, *this); + + return L; +} + +std::string TargetData::getStringRepresentation() const { + std::string Result; + raw_string_ostream OS(Result); + + OS << (LittleEndian ? "e" : "E") + << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8 + << ':' << PointerPrefAlign*8 + << "-S" << StackNaturalAlign*8; + + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + const TargetAlignElem &AI = Alignments[i]; + OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':' + << AI.ABIAlign*8 << ':' << AI.PrefAlign*8; + } + + if (!LegalIntWidths.empty()) { + OS << "-n" << (unsigned)LegalIntWidths[0]; + + for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) + OS << ':' << (unsigned)LegalIntWidths[i]; + } + return OS.str(); +} + + +uint64_t TargetData::getTypeSizeInBits(Type *Ty) const { + assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); + switch (Ty->getTypeID()) { + case Type::LabelTyID: + case Type::PointerTyID: + return getPointerSizeInBits(); + case Type::ArrayTyID: { + ArrayType *ATy = cast(Ty); + return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements(); + } + case Type::StructTyID: + // Get the layout annotation... which is lazily created on demand. + return getStructLayout(cast(Ty))->getSizeInBits(); + case Type::IntegerTyID: + return cast(Ty)->getBitWidth(); + case Type::VoidTyID: + return 8; + case Type::HalfTyID: + return 16; + case Type::FloatTyID: + return 32; + case Type::DoubleTyID: + case Type::X86_MMXTyID: + return 64; + case Type::PPC_FP128TyID: + case Type::FP128TyID: + return 128; + // In memory objects this is always aligned to a higher boundary, but + // only 80 bits contain information. + case Type::X86_FP80TyID: + return 80; + case Type::VectorTyID: + return cast(Ty)->getBitWidth(); + default: + llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type"); + } +} + +/*! + \param abi_or_pref Flag that determines which alignment is returned. true + returns the ABI alignment, false returns the preferred alignment. + \param Ty The underlying type for which alignment is determined. + + Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref + == false) for the requested type \a Ty. + */ +unsigned TargetData::getAlignment(Type *Ty, bool abi_or_pref) const { + int AlignType = -1; + + assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); + switch (Ty->getTypeID()) { + // Early escape for the non-numeric types. + case Type::LabelTyID: + case Type::PointerTyID: + return (abi_or_pref + ? getPointerABIAlignment() + : getPointerPrefAlignment()); + case Type::ArrayTyID: + return getAlignment(cast(Ty)->getElementType(), abi_or_pref); + + case Type::StructTyID: { + // Packed structure types always have an ABI alignment of one. + if (cast(Ty)->isPacked() && abi_or_pref) + return 1; + + // Get the layout annotation... which is lazily created on demand. + const StructLayout *Layout = getStructLayout(cast(Ty)); + unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); + return std::max(Align, Layout->getAlignment()); + } + case Type::IntegerTyID: + case Type::VoidTyID: + AlignType = INTEGER_ALIGN; + break; + case Type::HalfTyID: + case Type::FloatTyID: + case Type::DoubleTyID: + // PPC_FP128TyID and FP128TyID have different data contents, but the + // same size and alignment, so they look the same here. + case Type::PPC_FP128TyID: + case Type::FP128TyID: + case Type::X86_FP80TyID: + AlignType = FLOAT_ALIGN; + break; + case Type::X86_MMXTyID: + case Type::VectorTyID: + AlignType = VECTOR_ALIGN; + break; + default: + llvm_unreachable("Bad type for getAlignment!!!"); + } + + return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), + abi_or_pref, Ty); +} + +unsigned TargetData::getABITypeAlignment(Type *Ty) const { + return getAlignment(Ty, true); +} + +/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for +/// an integer type of the specified bitwidth. +unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const { + return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0); +} + + +unsigned TargetData::getCallFrameTypeAlignment(Type *Ty) const { + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) + if (Alignments[i].AlignType == STACK_ALIGN) + return Alignments[i].ABIAlign; + + return getABITypeAlignment(Ty); +} + +unsigned TargetData::getPrefTypeAlignment(Type *Ty) const { + return getAlignment(Ty, false); +} + +unsigned TargetData::getPreferredTypeAlignmentShift(Type *Ty) const { + unsigned Align = getPrefTypeAlignment(Ty); + assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); + return Log2_32(Align); +} + +/// getIntPtrType - Return an unsigned integer type that is the same size or +/// greater to the host pointer size. +IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { + return IntegerType::get(C, getPointerSizeInBits()); +} + + +uint64_t TargetData::getIndexedOffset(Type *ptrTy, + ArrayRef Indices) const { + Type *Ty = ptrTy; + assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()"); + uint64_t Result = 0; + + generic_gep_type_iterator + TI = gep_type_begin(ptrTy, Indices); + for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX; + ++CurIDX, ++TI) { + if (StructType *STy = dyn_cast(*TI)) { + assert(Indices[CurIDX]->getType() == + Type::getInt32Ty(ptrTy->getContext()) && + "Illegal struct idx"); + unsigned FieldNo = cast(Indices[CurIDX])->getZExtValue(); + + // Get structure layout information... + const StructLayout *Layout = getStructLayout(STy); + + // Add in the offset, as calculated by the structure layout info... + Result += Layout->getElementOffset(FieldNo); + + // Update Ty to refer to current element + Ty = STy->getElementType(FieldNo); + } else { + // Update Ty to refer to current element + Ty = cast(Ty)->getElementType(); + + // Get the array index and the size of each array element. + if (int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue()) + Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty); + } + } + + return Result; +} + +/// getPreferredAlignment - Return the preferred alignment of the specified +/// global. This includes an explicitly requested alignment (if the global +/// has one). +unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { + Type *ElemType = GV->getType()->getElementType(); + unsigned Alignment = getPrefTypeAlignment(ElemType); + unsigned GVAlignment = GV->getAlignment(); + if (GVAlignment >= Alignment) { + Alignment = GVAlignment; + } else if (GVAlignment != 0) { + Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); + } + + if (GV->hasInitializer() && GVAlignment == 0) { + if (Alignment < 16) { + // If the global is not external, see if it is large. If so, give it a + // larger alignment. + if (getTypeSizeInBits(ElemType) > 128) + Alignment = 16; // 16-byte alignment. + } + } + return Alignment; +} + +/// getPreferredAlignmentLog - Return the preferred alignment of the +/// specified global, returned in log form. This includes an explicitly +/// requested alignment (if the global has one). +unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { + return Log2_32(getPreferredAlignment(GV)); +}