forked from OSchip/llvm-project
SLPVectorizer: Strength reduce SmallVectors to ArrayRefs.
Avoids a couple of copies and allows more flexibility in the clients. llvm-svn: 179935
This commit is contained in:
parent
08450bd55c
commit
4600bcc337
|
@ -128,7 +128,7 @@ private:
|
|||
bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
|
||||
|
||||
/// \brief Try to vectorize a list of operands.
|
||||
bool tryToVectorizeList(BoUpSLP::ValueList &VL, BoUpSLP &R);
|
||||
bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
|
||||
|
||||
/// \brief Try to vectorize a chain that may start at the operands of \V;
|
||||
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
|
||||
|
@ -174,13 +174,11 @@ unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
|
|||
|
||||
bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
|
||||
if (!A || !B) return false;
|
||||
BoUpSLP::ValueList VL;
|
||||
VL.push_back(A);
|
||||
VL.push_back(B);
|
||||
Value *VL[] = { A, B };
|
||||
return tryToVectorizeList(VL, R);
|
||||
}
|
||||
|
||||
bool SLPVectorizer::tryToVectorizeList(BoUpSLP::ValueList &VL, BoUpSLP &R) {
|
||||
bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
|
||||
DEBUG(dbgs()<<"SLP: Vectorizing a list of length = " << VL.size() << ".\n");
|
||||
int Cost = R.getTreeCost(VL);
|
||||
int ExtrCost = R.getScalarizationCost(VL);
|
||||
|
|
|
@ -103,7 +103,7 @@ bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
|
|||
return ((-Offset) == Sz);
|
||||
}
|
||||
|
||||
bool BoUpSLP::vectorizeStoreChain(ValueList &Chain, int CostThreshold) {
|
||||
bool BoUpSLP::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold) {
|
||||
Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
|
||||
unsigned Sz = DL->getTypeSizeInBits(StoreTy);
|
||||
unsigned VF = MinVecRegSize / Sz;
|
||||
|
@ -115,7 +115,7 @@ bool BoUpSLP::vectorizeStoreChain(ValueList &Chain, int CostThreshold) {
|
|||
for (unsigned i = 0, e = Chain.size(); i < e; ++i) {
|
||||
if (i + VF > e) return Changed;
|
||||
DEBUG(dbgs()<<"SLP: Analyzing " << VF << " stores at offset "<< i << "\n");
|
||||
ValueList Operands(&Chain[i], &Chain[i] + VF);
|
||||
ArrayRef<Value *> Operands = Chain.slice(i, VF);
|
||||
|
||||
int Cost = getTreeCost(Operands);
|
||||
DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
|
||||
|
@ -130,7 +130,7 @@ bool BoUpSLP::vectorizeStoreChain(ValueList &Chain, int CostThreshold) {
|
|||
return Changed;
|
||||
}
|
||||
|
||||
bool BoUpSLP::vectorizeStores(StoreList &Stores, int costThreshold) {
|
||||
bool BoUpSLP::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold) {
|
||||
ValueSet Heads, Tails;
|
||||
SmallDenseMap<Value*, Value*> ConsecutiveChain;
|
||||
|
||||
|
@ -178,7 +178,7 @@ bool BoUpSLP::vectorizeStores(StoreList &Stores, int costThreshold) {
|
|||
return Changed;
|
||||
}
|
||||
|
||||
int BoUpSLP::getScalarizationCost(ValueList &VL) {
|
||||
int BoUpSLP::getScalarizationCost(ArrayRef<Value *> VL) {
|
||||
// Find the type of the operands in VL.
|
||||
Type *ScalarTy = VL[0]->getType();
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
||||
|
@ -223,7 +223,7 @@ Value *BoUpSLP::isUnsafeToSink(Instruction *Src, Instruction *Dst) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
void BoUpSLP::vectorizeArith(ValueList &Operands) {
|
||||
void BoUpSLP::vectorizeArith(ArrayRef<Value *> Operands) {
|
||||
Value *Vec = vectorizeTree(Operands, Operands.size());
|
||||
BasicBlock::iterator Loc = cast<Instruction>(Vec);
|
||||
IRBuilder<> Builder(++Loc);
|
||||
|
@ -236,7 +236,7 @@ void BoUpSLP::vectorizeArith(ValueList &Operands) {
|
|||
}
|
||||
}
|
||||
|
||||
int BoUpSLP::getTreeCost(ValueList &VL) {
|
||||
int BoUpSLP::getTreeCost(ArrayRef<Value *> VL) {
|
||||
// Get rid of the list of stores that were removed, and from the
|
||||
// lists of instructions with multiple users.
|
||||
MemBarrierIgnoreList.clear();
|
||||
|
@ -278,7 +278,7 @@ int BoUpSLP::getTreeCost(ValueList &VL) {
|
|||
return getTreeCost_rec(VL, 0);
|
||||
}
|
||||
|
||||
void BoUpSLP::getTreeUses_rec(ValueList &VL, unsigned Depth) {
|
||||
void BoUpSLP::getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth) {
|
||||
if (Depth == RecursionMaxDepth) return;
|
||||
|
||||
// Don't handle vectors.
|
||||
|
@ -367,7 +367,7 @@ void BoUpSLP::getTreeUses_rec(ValueList &VL, unsigned Depth) {
|
|||
}
|
||||
}
|
||||
|
||||
int BoUpSLP::getTreeCost_rec(ValueList &VL, unsigned Depth) {
|
||||
int BoUpSLP::getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth) {
|
||||
Type *ScalarTy = VL[0]->getType();
|
||||
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
||||
|
@ -516,14 +516,14 @@ int BoUpSLP::getTreeCost_rec(ValueList &VL, unsigned Depth) {
|
|||
}
|
||||
}
|
||||
|
||||
Instruction *BoUpSLP::GetLastInstr(ValueList &VL, unsigned VF) {
|
||||
Instruction *BoUpSLP::GetLastInstr(ArrayRef<Value *> VL, unsigned VF) {
|
||||
int MaxIdx = InstrIdx[BB->getFirstNonPHI()];
|
||||
for (unsigned i = 0; i < VF; ++i )
|
||||
MaxIdx = std::max(MaxIdx, InstrIdx[VL[i]]);
|
||||
return InstrVec[MaxIdx + 1];
|
||||
}
|
||||
|
||||
Value *BoUpSLP::Scalarize(ValueList &VL, VectorType *Ty) {
|
||||
Value *BoUpSLP::Scalarize(ArrayRef<Value *> VL, VectorType *Ty) {
|
||||
IRBuilder<> Builder(GetLastInstr(VL, Ty->getNumElements()));
|
||||
Value *Vec = UndefValue::get(Ty);
|
||||
for (unsigned i=0; i < Ty->getNumElements(); ++i) {
|
||||
|
@ -538,7 +538,7 @@ Value *BoUpSLP::Scalarize(ValueList &VL, VectorType *Ty) {
|
|||
return Vec;
|
||||
}
|
||||
|
||||
Value *BoUpSLP::vectorizeTree(ValueList &VL, int VF) {
|
||||
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, int VF) {
|
||||
Value *V = vectorizeTree_rec(VL, VF);
|
||||
// We moved some instructions around. We have to number them again
|
||||
// before we can do any analysis.
|
||||
|
@ -547,7 +547,7 @@ Value *BoUpSLP::vectorizeTree(ValueList &VL, int VF) {
|
|||
return V;
|
||||
}
|
||||
|
||||
Value *BoUpSLP::vectorizeTree_rec(ValueList &VL, int VF) {
|
||||
Value *BoUpSLP::vectorizeTree_rec(ArrayRef<Value *> VL, int VF) {
|
||||
Type *ScalarTy = VL[0]->getType();
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
|
||||
ScalarTy = SI->getValueOperand()->getType();
|
||||
|
|
|
@ -53,24 +53,24 @@ struct BoUpSLP {
|
|||
|
||||
/// \brief Vectorize the tree that starts with the elements in \p VL.
|
||||
/// \returns the vectorized value.
|
||||
Value *vectorizeTree(ValueList &VL, int VF);
|
||||
Value *vectorizeTree(ArrayRef<Value *> VL, int VF);
|
||||
|
||||
/// \returns the vectorization cost of the subtree that starts at \p VL.
|
||||
/// A negative number means that this is profitable.
|
||||
int getTreeCost(ValueList &VL);
|
||||
int getTreeCost(ArrayRef<Value *> VL);
|
||||
|
||||
/// \returns the scalarization cost for this ValueList. Assuming that this
|
||||
/// subtree gets vectorized, we may need to extract the values from the
|
||||
/// \returns the scalarization cost for this list of values. Assuming that
|
||||
/// this subtree gets vectorized, we may need to extract the values from the
|
||||
/// roots. This method calculates the cost of extracting the values.
|
||||
int getScalarizationCost(ValueList &VL);
|
||||
int getScalarizationCost(ArrayRef<Value *> VL);
|
||||
|
||||
/// \brief Attempts to order and vectorize a sequence of stores. This
|
||||
/// function does a quadratic scan of the given stores.
|
||||
/// \returns true if the basic block was modified.
|
||||
bool vectorizeStores(StoreList &Stores, int costThreshold);
|
||||
bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold);
|
||||
|
||||
/// \brief Vectorize a group of scalars into a vector tree.
|
||||
void vectorizeArith(ValueList &Operands);
|
||||
void vectorizeArith(ArrayRef<Value *> Operands);
|
||||
|
||||
/// \returns the list of new instructions that were added in order to collect
|
||||
/// scalars into vectors. This list can be used to further optimize the gather
|
||||
|
@ -79,21 +79,21 @@ struct BoUpSLP {
|
|||
|
||||
private:
|
||||
/// \brief This method contains the recursive part of getTreeCost.
|
||||
int getTreeCost_rec(ValueList &VL, unsigned Depth);
|
||||
int getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth);
|
||||
|
||||
/// \brief This recursive method looks for vectorization hazards such as
|
||||
/// values that are used by multiple users and checks that values are used
|
||||
/// by only one vector lane. It updates the variables LaneMap, MultiUserVals.
|
||||
void getTreeUses_rec(ValueList &VL, unsigned Depth);
|
||||
void getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth);
|
||||
|
||||
/// \brief This method contains the recursive part of vectorizeTree.
|
||||
Value *vectorizeTree_rec(ValueList &VL, int VF);
|
||||
Value *vectorizeTree_rec(ArrayRef<Value *> VL, int VF);
|
||||
|
||||
/// \brief Number all of the instructions in the block.
|
||||
void numberInstructions();
|
||||
|
||||
/// \brief Vectorize a sorted sequence of stores.
|
||||
bool vectorizeStoreChain(ValueList &Chain, int CostThreshold);
|
||||
bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold);
|
||||
|
||||
/// \returns the scalarization cost for this type. Scalarization in this
|
||||
/// context means the creation of vectors from a group of scalars.
|
||||
|
@ -109,10 +109,10 @@ private:
|
|||
|
||||
/// \returns the instruction that appears last in the BB from \p VL.
|
||||
/// Only consider the first \p VF elements.
|
||||
Instruction *GetLastInstr(ValueList &VL, unsigned VF);
|
||||
Instruction *GetLastInstr(ArrayRef<Value *> VL, unsigned VF);
|
||||
|
||||
/// \returns a vector from a collection of scalars in \p VL.
|
||||
Value *Scalarize(ValueList &VL, VectorType *Ty);
|
||||
Value *Scalarize(ArrayRef<Value *> VL, VectorType *Ty);
|
||||
|
||||
private:
|
||||
/// Maps instructions to numbers and back.
|
||||
|
|
Loading…
Reference in New Issue