[NaryReassociate] Add support for Mul instructions

This patch extends the current pass by handling
Mul instructions as well.

Patch by: Volkan Keles (vkeles@apple.com)

llvm-svn: 247705
This commit is contained in:
Marcello Maggioni 2015-09-15 17:22:52 +00:00
parent 20ade932fb
commit 454faa84e2
2 changed files with 95 additions and 24 deletions

View File

@ -71,8 +71,8 @@
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds for now. This should be extended and
// generalized.
// 1) We only considers n-ary adds and muls for now. This should be extended
// and generalized.
//
//===----------------------------------------------------------------------===//
@ -145,12 +145,23 @@ private:
unsigned I, Value *LHS,
Value *RHS, Type *IndexedType);
// Reassociate Add for better CSE.
Instruction *tryReassociateAdd(BinaryOperator *I);
// A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
// Rewrites I to LHS + RHS if LHS is computed already.
Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);
// Reassociate binary operators for better CSE.
Instruction *tryReassociateBinaryOp(BinaryOperator *I);
// A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly
// passed.
Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS,
BinaryOperator *I);
// Rewrites I to (LHS op RHS) if LHS is computed already.
Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS,
BinaryOperator *I);
// Tries to match Op1 and Op2 by using V.
bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2);
// Gets SCEV for (LHS op RHS).
const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
const SCEV *RHS);
// Returns the closest dominator of \c Dominatee that computes
// \c CandidateExpr. Returns null if not found.
@ -219,6 +230,7 @@ static bool isPotentiallyNaryReassociable(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::GetElementPtr:
case Instruction::Mul:
return true;
default:
return false;
@ -276,7 +288,8 @@ bool NaryReassociate::doOneIteration(Function &F) {
Instruction *NaryReassociate::tryReassociate(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
return tryReassociateAdd(cast<BinaryOperator>(I));
case Instruction::Mul:
return tryReassociateBinaryOp(cast<BinaryOperator>(I));
case Instruction::GetElementPtr:
return tryReassociateGEP(cast<GetElementPtrInst>(I));
default:
@ -453,49 +466,89 @@ GetElementPtrInst *NaryReassociate::tryReassociateGEPAtIndex(
return NewGEP;
}
Instruction *NaryReassociate::tryReassociateAdd(BinaryOperator *I) {
Instruction *NaryReassociate::tryReassociateBinaryOp(BinaryOperator *I) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
return NewI;
if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
return NewI;
return nullptr;
}
Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
Instruction *I) {
Instruction *NaryReassociate::tryReassociateBinaryOp(Value *LHS, Value *RHS,
BinaryOperator *I) {
Value *A = nullptr, *B = nullptr;
// To be conservative, we reassociate I only when it is the only user of A+B.
if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
// I = (A + B) + RHS
// = (A + RHS) + B or (B + RHS) + A
// To be conservative, we reassociate I only when it is the only user of (A op
// B).
if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
// I = (A op B) op RHS
// = (A op RHS) op B or (B op RHS) op A
const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
const SCEV *RHSExpr = SE->getSCEV(RHS);
if (BExpr != RHSExpr) {
if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
if (auto *NewI =
tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
return NewI;
}
if (AExpr != RHSExpr) {
if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
if (auto *NewI =
tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
return NewI;
}
}
return nullptr;
}
Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
Value *RHS, Instruction *I) {
Instruction *NaryReassociate::tryReassociatedBinaryOp(const SCEV *LHSExpr,
Value *RHS,
BinaryOperator *I) {
// Look for the closest dominator LHS of I that computes LHSExpr, and replace
// I with LHS + RHS.
// I with LHS op RHS.
auto *LHS = findClosestMatchingDominator(LHSExpr, I);
if (LHS == nullptr)
return nullptr;
Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
Instruction *NewI = nullptr;
switch (I->getOpcode()) {
case Instruction::Add:
NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
break;
case Instruction::Mul:
NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
break;
default:
llvm_unreachable("Unexpected instruction.");
}
NewI->takeName(I);
return NewI;
}
bool NaryReassociate::matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1,
Value *&Op2) {
switch (I->getOpcode()) {
case Instruction::Add:
return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
case Instruction::Mul:
return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
default:
llvm_unreachable("Unexpected instruction.");
}
return false;
}
const SCEV *NaryReassociate::getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
const SCEV *RHS) {
switch (I->getOpcode()) {
case Instruction::Add:
return SE->getAddExpr(LHS, RHS);
case Instruction::Mul:
return SE->getMulExpr(LHS, RHS);
default:
llvm_unreachable("Unexpected instruction.");
}
return nullptr;
}
Instruction *
NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr,
Instruction *Dominatee) {

View File

@ -0,0 +1,18 @@
; RUN: opt < %s -nary-reassociate -S | FileCheck %s
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
declare void @foo(i32)
; CHECK-LABEL: @bar(
define void @bar(i32 %a, i32 %b, i32 %c) {
%1 = mul i32 %a, %c
; CHECK: [[BASE:%[a-zA-Z0-9]+]] = mul i32 %a, %c
call void @foo(i32 %1)
%2 = mul i32 %a, %b
%3 = mul i32 %2, %c
; CHECK: mul i32 [[BASE]], %b
call void @foo(i32 %3)
ret void
}